金属与非金属矿石展(水晶、玛瑙、自然铜、孔雀石、云母、辉锑矿)

金属与非金属矿石展(水晶、玛瑙、自然铜、孔雀石、云母、辉锑矿)
金属与非金属矿石展(水晶、玛瑙、自然铜、孔雀石、云母、辉锑矿)

1.云母

云母是钾、铝、镁、铁、锂等层状结构铝硅酸盐的总称,常呈假六方或菱形的板状、片状、柱状晶形。云母族矿物中最常见的矿物种有黑云母、白云母、金云母、和锂云母等。颜色随化学成分的变化而异,主要随铁含量的增多而变深。白云母无色透明或呈浅色(如图1);黑云母为黑至深褐、暗绿等色(如图2);金云母呈黄色、棕色、绿色、无色(如图3);锂云母呈淡紫色(如图4)、玫瑰红色至灰色(如图5)。玻璃光泽,解理面上呈珍珠光泽。

图1 白云母

图2 黑云母

图3 金云母

图4 锂云母

图5 锂云母

白云母和金云母具有良好的电绝缘性和不导热、抗酸、抗碱和耐压性能,因而被广泛应用于建材行业、消防行业、灭火剂、电焊条、塑料、电绝缘、造纸、沥青纸、橡胶、珠光颜料等化工工业。超细云母粉作塑料、涂料、油漆、橡胶等功能性填料,可提高其机械强度,增强韧性、附着力抗老化及耐腐蚀型等。

2.自然铜

自然铜是铜元素在自然界天然生成的各种片状、板状、块状集合体,晶面上有条纹,完好晶体少见。没有氧化过的自然铜表面为铜红色,具有金属光泽。但因为氧化的原因,通常自然铜会呈棕黑色或绿色(如图6)。自然铜中往往还会含有微量的铁、银和金等元素。自然铜在地表及氧化环境中不稳定,易转变为铜

的氧化物和碳酸盐,如赤铜矿、孔雀石、蓝铜矿等矿物。

图6 结晶的自然铜闪耀着金子般的光泽

铜在自然界储量非常丰富,并且加工方便。铜是人类用于生产的第一种金属,最初人们使用的只是存在于自然界中的天然单质铜,用石斧把它砍下来,便可以锤打成多种器物。随着生产的发展,只是使用天然铜制造的生产工具就不敷应用

了,生产的发展促使人们找到了从铜矿中取得铜的方法。

自然铜的用途:

(1)青铜器以前的红铜时代就是使用的自然铜;

(2)自然铜是工业铜矿物之一,可用于冶炼铜;

(3)发育良好的自然铜,可作为矿物标本,具有学术价值、观赏价值和收藏价值。

图7 铜水管(左)、铜电线(右)

3.孔雀石

孔雀石是一种天然矿石,为水合碱式碳酸铜,呈翠绿或草绿色的块石。原产巴西,有“妻子幸福”的寓意。早在4000年前,古埃及人就开采了苏伊士和西奈之间的矿山,利用孔雀石作为儿童的护身符。

孔雀石颜色酷似孔雀羽毛上斑点,中国古代称为“绿青”、“石绿”或“青琅玕”,是一种古老的玉料(如图9)。孔雀石有独一无二的色泽,其它任何宝石几乎没有与它相似的,因此几乎没有仿冒品。中国的孔雀石产地主要在湖北。块大色美的孔雀石可以用于琢磨各种装饰品,粉末用于制作颜料。

孔雀石还可入药,其味苦、酸、涩,寒、有毒;主要可以解毒,去腐,杀虫。外用治鼻瘜肉,眼睑糜烂,疮疡顽癣。一般多作外用药。内科常配入相应方剂中治疗风痰为患,突然昏厥及血气心痛等症。

图8 孔雀石

图9 孔雀石

4.辉锑矿

5.辉锑矿是锑的硫化物矿物。呈尖顶的长柱状,柱面具纵条纹。集合体呈块状、粒状或放射状。铅灰色,金属光泽。性脆,易熔,常与辰砂、雄黄、雌黄共生。

6.锑矿中的锑会刺激人的眼、鼻、喉咙及皮肤,持续接触可破坏心脏及肝脏功能,吸入高含量的锑会导致锑中毒,症状包括呕吐、头痛、呼吸困难,严重者可能死

亡。德国音乐神童莫扎特死因不明,有一派说法就说他死于锑中毒。

图10 辉锑矿

中国是世界上发现、利用锑较早的国家之一。据《汉书?食货志》记载:“王莽居摄,变汉制,铸作钱币均用铜,淆以连锡。”《史记》记载:“长沙出连锡”。秦墓出土文物的秦代箭,经光谱分析含锑,由此可知中国对锑的利用很早,当时不叫锑,而称“连锡”。明朝末年(1541年),中国发现了世界最大的锑矿产地——湖南锡矿山,但当时把锑误认为锡,故命名锡矿山,至清光绪16年(1890)经化验始知是锑。

1942年中国著名的有色金属冶金学家,世界最早的锑冶金专家之一王宠佑与美国人霍德森(Hodson)共同取得飘浮熔炼—气态还原熔炼的专利权。

随着科学技术的发展,锑现在已被广泛用于生产各种阻燃剂、搪瓷、玻璃、橡胶、涂料、颜料、陶瓷、塑料、半导体元件、烟花、医药及化工等部门产品。

7.硬锰矿

锰的重要矿石矿物。单斜晶系。一般呈葡萄状、肾状、钟乳状或块状产出。铁黑至暗钢灰色,条痕呈发亮的棕黑色。半金属光泽或暗淡。通常是在地表或近地表条件下,由含锰的碳酸盐或硅酸盐矿物风化而形成的一种次生矿物。通常与

软锰矿共同产出。

图11 硬锰矿

8.水晶

石英是硅的氧化物之一,半透明或不透明的晶体;含有杂质时颜色不一,无色透明的晶体称水晶,乳白色的称乳石英,浅红色的称蔷薇石英,紫色的称紫水晶,黄褐色的称烟晶、茶晶,黑色的则称墨晶。

中国古代对水晶有不同的解释:

(1)无色透明的结晶石英。属贵重矿石,产量较少。古称“水玉”、“水精”

《资治通鉴·后晋高祖天福二年》:“ 闽主作紫微宫,饰以水晶。”《古今小说·李公子救蛇获称心》:“器皿皆是玻璃、水晶、琥珀、玛瑙为之,曲尽巧妙,非人间所有。”《<艾青诗选>自序》:“凝思花露的形状,喜爱水晶的素质。”

(2).借指晶莹透明的物体。

《全唐诗》卷七八五载《白雪歌》:“鸟啄冰潭玉镜开,风敲檐溜水晶折。” 明徐渭《宴游西郊诗》:“菡萏含冰脑,樱桃滴水晶。”

(3).喻皎洁的月光。

清洪升《长生殿·偷曲》:“凉蟾正当高阁升,帘卷薰风映水晶。” 清陈维崧《菩萨蛮·题青溪遗事画册》词:“犹记捉迷藏,水晶庭院凉。”

图12 紫水晶

9.玛瑙

传说爱和美的的女神阿佛洛狄,躺在树荫下熟睡时,她的儿子爱神厄洛斯,

偷偷的把她闪闪发光的指甲剪下来,并欢天喜地拿着指甲飞上了天空。飞到空中的厄洛斯,一不小心把指甲弄掉了,而掉落到地上的指甲变成了石头,就是玛瑙。

因此有人认为拥有玛瑙,可以强化爱情,调整自己与爱人之间的感情。在日本的神话中,玉祖栉明玉命献给天照大神的,就是一块月牙形的绿玛瑙,这也是日本三种神器之一。

玛瑙,也作码瑙、马瑙、马脑等,是玉髓类矿物的一种,经常是混有蛋白石和隐晶质石英的纹带状块体,色彩相当有层次。有半透明或不透明的。

图12 红玛瑙

图13 蓝玛瑙

图14 绿玛瑙

图15 紫玛瑙

晶体的常识教学反思

《晶体的常识》教学反思 晶体的常识安排在原子结构、分子结构以及结构决定性质的内容之后来学习,对于学生的学习有一定的理论基础。本章比较全面而系统地介绍了晶体结构和性质,不管是哪种类型的晶体,它们都具有一些共性,这些共性的内容作为第一节《晶体常识》。本节内容主要是通过介绍各种各样的固体为出发点来过渡到本堂课的主题——晶体和非晶体,晶体与非晶体的本质差异是本节课的重难点。由于这一节内容比较抽象,其间出现了诸多抽象名词,如:“自范性、各向异性、无隙并置、晶胞”,以及研究原子对晶胞的贡献等,如何将这些抽象的内容具体化、形象化,并深入浅出地介绍给学生,成为本节课的难点。作为执教者运用身边事物,直观录象、图片、亲自动手操作实验等方法,利用多种教学手段,比较巧妙地使科学知识与学生的认识、学生的情感产生共鸣,通过主观感悟使学生轻松地学习本节内容。 利用具体的实物和图片进行教学,让学生展示课前收集的各种固体,教师展示一些实验室常见的晶体实物:食盐、蓝矾、明矾、硝酸钾等和非晶体实物:玻璃、松香,一些塑料以及部分它们的图片,以物激趣,引出晶体的学习。然后提出疑问:如何对这些固体进行分类?提出晶体与非晶体的概念。这样从学生身边的固体入手,直观、简洁地引入课题,潜移默化地使学生融入课堂。合理地创设情境,培养学生把所学的化学知识与生活实际联系起来,从化学视角观察、分析周围的事物与现象,寻找其中的规律和联系,引导学生进行自主合作活动,提高学生学习化学的兴趣和学习效率。 展示玛瑙和水晶饰品学生描述外观,播放玛瑙和水晶形成过程的录像,提出问题:二者材质有何关系?水晶的天然规则几何外形是如何形成的?为何玛瑙不象水晶一样形成规则的几何外形?通过视频材料,给学生以直观的视觉感知,紧扣视频设计问题,层层推进,让学生对晶体形成过程中的“自范性”和“自范性条件”这两个难以理解的概念轻松地了解。展示晶体二氧化硅和非晶体二氧化硅的微观结构示意图,引导学生自主讨论为什么晶体呈现多面体外形?晶体有什么性质?怎样鉴别晶体与非晶体?分析晶体与非晶体的本质差异,通过对晶体内部微观结构的分析,培养学生实事求是、务实严谨的学习作风和学习化学的兴趣,通过“内部有序造就了外部有序”的事实,培养学生的探究精神。 通过和学生一起回忆水晶、玛瑙的形成过程,学生分组进行碘升华的实验,

33 实际金属的晶体结构 一、多晶体结构和亚结构

3.3 实际金属的晶体结构 一、多晶体结构和亚结构 实际使用的工业金属材料,即使体积很小,其内部的晶格位向也不是完全一致的,而是包含着许许多多彼此间位向不同的、称之为晶粒的颗粒状小晶体。而晶粒之间的界面称为晶界。这种实际上由许多晶粒组成的晶体结构称为多晶体结构(polycrystalline structure)。一般金属材料都是多晶体(图3-12)。通常测得的金属性能是各个位向不同的晶粒的平均值,故显示出各向同性。 图3—12 多晶体结构示意图 实践证明,即使在一个晶粒内部,其晶格位向也并不是象理想晶体那样完全一致,而是存在着许多尺寸更小,位向差也很小的小晶块。它们相互嵌镶成一颗晶粒。这些小晶块称为亚结构。可见,只有在亚结构内部,晶格的位向才是一致的。 二、晶体缺陷 实际晶体还因种种原因存在着偏离理想完整点阵的部位或结构,称为晶体缺陷(crystal defect)。晶体缺陷的存在及其多寡,是研究晶体结构、金属塑性变形的关键问题。根据其几何特性,晶体的缺陷可分为三类: 1.点缺陷——空位和间隙原子 实际晶体未被原子占有的晶格结点称为空位;而不占有正常晶格位置而处于晶格空隙之间的原子则称为间隙原子。在空位或间隙原子的附近,由于原子间作用力的平衡被破坏,使其周围的原子离开了原来的平衡位置,即产生所谓的晶格畸变。空位和间隙原子都处于不断的运动和变化之中,这对于热处理和化学处理过程都是极为重要的。 2.线缺陷——位错 晶体中某处有一列或若干列原子发生有规律的错排现象称为位错(dislocation)。有刃型

和螺型两种位错。 刃型位错如图3-13所示。垂直方向的原子面EFGH中断于水平晶面ABCD上的EF处,就像刀刃一样切入晶体,使得晶体中位于ABCD面的上、下两部分出现错排现象。EF线称为刃型位错线。在位错线附近区域,晶格发生畸变,导致ABCD晶面上、下方位错线附近的区域内,晶体分别受到压应力和拉应力。符号“┴”和“┬”分别表示多出的原子面在晶体的上半部和下半部,分别称为正、负刃型位错。 图3—13 刃型位错示意图 螺型位错如图3-14所示。晶体在BC右方的上、下两部分原子排列沿ABCD晶面发生了错动。aa’右边晶体上、下层原子相对移动了一原子间距,而在BC和aa’之间形成了一个上下层原子不相吻合的过渡区域,这里的原子平面被扭成了螺旋面。在原子面上,每绕位错线一周就推进了一个晶面间距。显然,螺型位错附近区域的晶格也发生了严重畸变,形成了一个应力集中区。 3.面缺陷——晶界和亚晶界 晶界实际上是不同位向晶粒之间原子排列无规则的过渡层(图3-15)。晶界处晶格处于畸变状态,导致其能量高于晶粒内部能量,常温下显示较高的强度和硬度,容易被腐蚀,熔点较低,原子扩散较快。

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

晶体相关基础知识

石英晶体基本常识 一、基础概念 1、石英晶体谐振器:利用石英晶体的逆电压效应制造具有选择频率和稳定频率的无线电元件。 电介质由于外界的机械作用,(如压缩?伸拉)而在其內部产生变化,产生表面电荷的现象,叫压电效应,如果将具有压电效应的介质至于外电场中,由于电场的作用,会引起介质內部正负电荷中心位移,而这一位移产生效应为逆压电效应 2、晶片的主要成分SiO2(二氧化硅)密度:2.65g/cm3分子量:60.06 3、振动模式晶体分为以下两类: AT 基频:BT 在振动模式最低阶次的振动频率 CT DT 3次 泛音:5次晶体振动的机械谐波,泛音频率与基频频率之比, 7次接近整倍数,又不是整倍数。 9次 AT与BT如何区分 1)通过测量晶片厚度 AT厚度t=1670/F0 F0-晶体标称频率 BT厚度t=2560/F0 2)通过温选根据晶片的拟合曲线来确定 3)通过测量晶体的C0、C1、TS、L、T来确定 4、按规格分为:HC-49S,HC-49U,HC-49S/SMD,表晶(3*8、2*6),UM系列等 HC-49S HC-49U HC-49S/SMD 表晶 陶瓷SMD 钟振UM系列 5、标称频率:晶体技术条件中所给定的频率,如4.000MHz,12.000MHz,25.000MHz等 6、调整频差:在规定条件下,基准温度时,工作频率相对于标称频率所允许的偏离值(如: ±30ppm、±25ppm)

7、串联谐振频率(FR):晶体本身固有的频率 8、负载谐振频率(FL):在规定条件下,晶体与一负载电容相并联或相串联,其组合阻抗呈现 出来的谐振频率。 9、负载电容:在振荡电路中晶体两脚之间所有的等效电容量之和.在通常情况下IC厂家在规格书中都会给出推荐的晶体匹配电容. 说明:负载电容CL是组成振荡电路时的必备条件。在通常的振荡电路中,石英晶体谐振器作为感抗,而振荡电路作为一个容抗被使用。也就是说,当晶体两端均接入谐振回路中,振荡电路的负阻抗-R和电容CL即被测出,这时,这一电容称为负载电容。负载电容和谐振频率之间的关系不是线性的,负载电容小时,频率偏差量大,当负载电容提高时,频率偏差量减小。当振荡电路中的负载电容减少时,谐振频率发生较大的偏差,甚至当电路中发生一个小变化时,频率的稳定性就受到巨大影响。负载电容可以是任意值,但10-30PF会更佳。 10、温度频差(F/T):在规定条件下,工作温度范围内,相对于基准温度时工作频率允许的偏离 值 11、基准温度:25±2℃,湿度:50%±10% 12、谐振电阻(RR):在规定条件下,晶振在谐振频率时的等效电阻 13石英晶体谐振器等效电路 石英晶体谐振器的振动实质上是一种机械振动。实际上,石英晶体谐振器可以被一个具有电子转换性能的两端网络测出。这个回路包括L1、C1,同时C0作为一个石英晶体的绝缘体的电容被并入回路,与弹性振动有关的阻抗R1是在谐振频率时石英晶体谐振器的谐振阻抗。(见图1)

纯金属与合金的晶体结构

淮安信息职业技术学院教案首页 一、章节:第二章纯金属与合金的晶体结构 第一节纯金属的晶体结构第二节纯金属的实际晶体结构第三节合金的晶体结构 二、教学目的:使学生了解纯金属与合金的晶体结构,晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 三、教学方法: 讲授法。 四、教学重点: 晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 五、教学难点: 晶胞、晶格、合金的基本概念,了解固溶体与金属化合物。 六、使用教具: 挂图。 七、课后作业: P17:1、2、6。 八、课后小结:

第二章纯金属与合金的晶体结构 第一节纯金属的晶体结构 一、晶体结构的基本知识 1.晶体与非晶体 晶体内部的原子按一定几何形状作有规则地重复排列,如金钢石、石墨及固态金属与合金。而非晶体内部的原子无规律地规律地堆积在一起,如沥青、玻璃、松香等。 晶体具有固定的熔点和各向异性的特征,而非晶体没有固定的熔点,且各向同性。 2.晶体管格与晶胞 为便于分析晶体中原子排列规律,可将原子近似地看成一个点,并用假想的线条将各原子中心连接起来,便形成一个空间格子。 晶格——抽象的、用于描述原子在晶体中的规则排列方式的空间几何图形。结点——晶格中直线的交点。 晶胞——晶格是由一些最基本的几何单元周期重复排列而成的,这种最基本的几何单元称为晶胞。

晶胞大小和形状可用晶胞的三条棱长a、b、c(单位,1A=108cm)和棱边夹角来描述,其中a、b、c称为晶格常数。 各种晶体由于其晶格类型和晶格常数不同,故呈现出不同的物理、化学及力学性能。 二、常见的晶格类型 1.体心立方晶格 体心立方晶格的晶胞为一立方体,立方体的八个顶角各排列着一个原子,立方体的中心有一个原子。其晶格常数a=b=c。属于这种晶格类型的金属有α铁、铬、钨、钼、钒等。 2.面心立方晶格 面心立方晶格的晶胞也是一个立方体,立方体的八个顶角和六个面的中心各排列一个原子。属于这种晶格类型的金属有γ铁、铝、铜墙铁壁、镍、金、银等。 3.密排六方晶格 密排六方晶格的晶胞是一个六方柱体,柱体的十二个顶角和上、下中心各排列着一个原子,在上、下面之间还有三个原子。属于这种晶格类型的金属有镁、锌、铍等、α-Ti。 晶格类型不同,原子排列的致密度也不同。体心立方晶格的致

晶体的常识

【教学目标】 1、了解晶体的初步知识,知道晶体与非晶体的本质差异,学会识别晶体与非晶体的结构示意图。 2、知道晶胞的概念,了解晶胞与晶体的关系,学会通过分析晶胞得出晶体的组成。 3、培养空间想象能力和进一步认识“物质结构觉得物质性质”的客观规律。 【教学重点】晶体、晶胞的概念。 【教学难点】计算晶胞的化学式。 【教学过程】 你是否知道固体有晶体和非晶体之分?绝大多数常见的固体是晶体,只有如玻璃之类的物质属于非晶体(又称玻璃体)。晶体与非晶体有什么本质的差异呢?今天我们开始学习…。 [板书] 第三章晶体的结构与性质 第一节晶体的常识 [投影]常见的晶体(或展示实物): [思考]晶体规则的几何外型与组成晶体的微粒在空间的存在什么关系? [投影]表3-1晶体与非晶体的本质差异 自范性微观结构 晶体有(能自发呈现多面体外型)原子在三维空间里呈周期性的有序排列 非晶体没有(不能自发呈现多面体外型)原子排列相对无序 [讲解] 晶体的自范性即晶体能白发地呈现多面体外形的性质。所谓自发过程,即自动发生的过程。不过,“自发”过程的实现,仍需要一定的条件。例如,水能白发地从高处流向低处,但不打开拦截水流的闸门,水库里的水就不能下泻。晶体呈现自范性的条件之一是晶体生长的速率适当。熔融态物质冷却凝固,有时得到晶体,但凝固速率过快,常常只得到看不到多面体外形的粉末或没有规则外形的块状物。 [板书]1、晶体的自范性即晶体能白发地呈现多面体外形的性质。 [投影]图3-1天然水晶球里的玛瑙和水晶。 [讲述]最有趣的例子是天然的水晶球。水晶球是岩浆里熔融态的si02侵入地壳内的空洞冷却形成的。剖开水晶球,常见它的外层是看不到晶体外形的玛瑙,内层才是呈现晶体外形的水晶。其实,玛瑙和水晶都是二氧化硅晶体,不同的是,玛瑙是熔融态si02快速冷却形成的,而水晶则是热液缓慢冷却形成的。 [讨论]除以上水晶和玛瑙是熔融态冷却得到的,根据所学知识还有那些方法得到晶体? [汇报并板书] 2、得到晶体一般有三条途径:(1)熔融态物质凝固;(2)气态物质冷却不经液态直接凝固(凝华); (3)溶质从溶液中析出。 [投影]硫晶体、碘晶体、硫酸铜晶体的获得 [分组实验1] 在一个小烧杯里加入少量碘,用一个表面皿盖在小烧杯上,并在表面皿上加少量冷水。把小烧杯放在石棉网上加热,观察实验现象。 [板书]3、晶体的自范性是晶体中粒子在微观空间里呈现周期性的有序排列的宏观表象。[投影]晶体二氧化硅与非晶体二氧化硅微粒排列情况: [自学]晶体特点自然段。 [提问]什么是晶体的各向异性? [板书]4、晶体的特点①外形和内部质点排列的高度有序性;②各向异性;③晶体的熔点较固定。 [讲述]各向异性:像人们在观察大幅图案画时的视觉感受,对不同的图案画的感受当然是不同的,而对于同一幅图案画来说,由不同的方向审视时,也会产生不同的感受。所以,晶体

晶体的常识(全套教案)

晶体的常识 第一课时 教学目标 知识与技能 1、了解晶体与非晶体的本质差异 2、掌握晶体的基本性质 过程与方法 通过生活常识、情感经验从宏观特征逐步过渡到微观特征,认真把握内部有序造就了外部有序 情感、态度与价值观 1、通过对晶体内部微观结构的分析,培养学生实事求是、务实严谨的学习作风和学习化学的兴趣 2、通过“内部有序造就了外部有序”的事实,培养学生的探究精神 教学重点 晶体与非晶体的本质差异 教学难点 晶体与非晶体的本质差异,晶体的物理性质 教学过程 【引言】通过以前对原子结构、分子结构和化学键的学习,我们知道组成物质的质点可以是原子、分子或离子。根据物质在不同温度和压力下,质点间作用力大小的不同和质点排列的有序或无序,物质主要可分为三种聚集状态;固态、液态和气态。固态物质又可分为晶体和非晶体(无定形体)。从这节课开始,我们来学习有关晶体的知识。 【板书】第三章晶体和结构与性质 【师】我们先来了解一下晶体的有关常识 【板书】第一节晶体的常识 一、晶体与非晶体 【师】我们先来看一下它们的定义。 【板书】1、晶体:具有规则几何外形的固体。 【师】 如:NaCl、I2、金刚石等。 【板书】2、非晶体:不具规则几何外形的固体。 【师】如:松香、蜡烛、玻璃等等。 【板书】3、晶体与非晶体的本质差异

4、晶体具有自范性的条件 晶体的生长速率适当 【师】熔融态物质凝固,但如果凝固速率过快,常常只得到看不到规则多面体外形的粉末或没有规则外形的击块状物。如: 快速冷却 玛瑙 缓慢冷却 水晶 【过渡】下面,我们来看一下晶体的特点。 【板书】二、晶体的特点 1、晶体内部质点和外形质点排列的高度有序性。 【师】 晶体二氧化硅 非晶体二氧化硅 晶体的外形具有一定的、整齐的、规则的几何外形。如教材中所给出的几种晶体的外观。虽然由于生成晶体的条件不同,所得到的晶体在外形上可能有些外曲,但晶体表面的夹角(晶角)总是不变的。 【板书】2、有固定的熔点。 【师】加热晶体,温度达到晶体熔点时即开始熔化,在完全没有熔化之前,继续加热,温度不现升高。这时所供给的热都用来使晶体熔化,完全熔化后,温度才开始升高。 加热非晶体,温度升高到某一程度后开始软化,流动性增强,最后变为液体。从软化到完全熔化,中间经一定的较长的温度范围。也就是说,非晶体没有固定的熔点。 【板书】3、有各向异性。 【师】由于晶格各个方向上的排列的质点的距离不同,而导致晶体各个方向上的性质也不一定相同,这就是晶体的各向异性。 如:云母的离解性(晶体容易沿着某一平面剥离的现象)就不同。如沿两层平面的平行方向剥离就容易,沿着垂直于平面的方向剥离就困难得多。 石墨在与层垂直的方向上的导电率为与层平行方向上导电率的1/10000。 这种各向异性还表现在晶体的光学性质、热学性质及其他电学性质上。 【板书】4、当单一波长的X —射线通过晶体时,会在记录仪上看到分立的斑点或谱线。 【师】这就是X -衍射。晶体能使X —射线产生衍射,而非晶体却X —射线只能使产生散射。 X —射线衍射法是用来研究晶体的主要方法。一般是从衍射方向和衍射强度两个方面去研究。前者主要研究点阵结构的周期性,后者主要研究点阵中原子分布的情况。两者结合就熔融态SiO 2

晶体的常识(晶胞)教学设计

教学设计]第三章第一节晶体的常识(晶胞) 江苏省如东高级中学张霞 教学设想 从教材看,本章首先从人们熟悉的固体出发,把固体分为晶体和非晶体两大类,引出了晶体的特征和晶胞的概念。晶胞是描述晶体结构的基本单元,是研究晶体结构的最基本概念,教科书利用图片、比喻等方式介绍了晶体与晶胞的关系,并通过例子介绍了如何计算晶胞中所含的原子数。 本教案选择《晶胞》作为学生自主学习的课题,试图利用多媒体课件和形象比喻等教学方式,使学生建构起晶胞的概念,通过动手制作晶胞模型并把自己制作的晶胞模型拼凑成晶体模型,体会晶胞与晶体之间的关系;再以课本上的问题设置矛盾,通过学生自学讨论,教师的适当点拨,总结归纳出一个晶胞中平均所含粒子个数的计算方法,在此过程中,提升学生的空间想象能力。 一、教学目标分析 知识与技能 1.了解晶体与晶胞的关系,体会由晶胞“无隙并置”构成晶体的过程。 2.通过自学讨论,掌握不同晶胞中平均所含粒子个数的计算方法。 过程与方法 1.运用多种教学媒体,借助形象的比喻,帮助学生建构抽象的空间结构。 2.知道研究晶体结构的一般方法。 情感态度和价值观 1、进一步形成求真务实、勤于思考的科学态度;形成敢于质疑、勇于创新的科学精神。 二、教学内容分析 对本节教学内容的处理方法:利用多媒体演示若干晶体和晶胞,组织学生讨论晶体与晶胞的关系,动手制作晶胞模型,引导学生建立以晶胞为基本结构研究晶体的思想,结合课本图3-7铜晶胞,展示实物模型,提出问题:为什么说一个晶胞里只含4个铜原子?学生自学、讨论并归纳出立方晶胞中平均所含粒子个数的计算方法,然后设置问题:如果为三棱柱晶胞或者六棱柱晶胞,又该如何计算?举一反三,巩固了学生对空间结构的理解和计算。最后利用课本学与问与课后习题3,进行训练反思。

金属的晶体结构

引言 金属学是研究金属及合金的成分、组织、结构与力学性能之间关系的科学。所谓力学性能主要指材料的强度、硬度和塑性。通常用来承受载荷的零件要求材料具有一定的力学性能,我们称这类材料为结构材料。与结构材料对应的另一类材料是功能材料,它一般不要求承受载荷,主要使用它的物理性能,如光、电、磁性能等。功能材料利用它对光、电、磁的敏感特性制作各类传感器。 金属学只讨论金属材料的力学性能,不涉及物理性能。 固态金属通常是晶体,金属学研究的最小结构单元是原子。原子通过不同的排列可构成各种不同的晶体结构,产生不同的性能。原子结构不是金属学研究的范畴。 第1章金属的晶体结构 1-1金属及金属键 金属的定义根据学科的不同有多种划分方法。本人倾向按结合键的性质来划分,即金属是具有金属键的一类物质。这种分类的好处是有利于解释与金属力学性能相关的现象。例如,为什么金属具有较好的塑性? 什么是金属键、离子键、共价键我们早就熟知,金属键的最大特点是无饱和性、无方向性。以后我们将会看到,正是这些特点使金属具有较好的塑性。 研究表明,固态金属通常是晶体,且其结构趋于密堆积结构。这是为什么?下面我们用双原子模型来说明。 当两个原子相距很远时,它们之间不发生作用。当它们逐渐靠近时,一个原子的原子核与另一个原子的核外电子之间将产生引力;而两原子的原子核及电子之间产生斥力。研究表明,引力是长程力,斥力是短程力,即距离较远时,引力大于斥力,表现为相互吸引。随着原子距离的减小,斥力增加的速度逐渐大于引力增加的速度。显然这样作用的结果必然存在一个平衡距离d0,此时,引力等于斥力,偏离这一距离时,都将受到一个恢复力,如P3图2。d c对应最大恢复引力,即最大结合力,它对应着金属的理论抗拉强度。 下面,我们从能量的角度来考虑系统的稳定性。在引力作用下原子移近所做的功使原子的势能降低,所以吸引能是负值。相反,排斥能是正值。吸引能

第3讲纯金属的晶体结构

第三讲纯金属的晶体结构 1.典型金属的晶体结构 考点再现:这一部分08年09年10年都有所涉及,10年考了晶胞致密度的概念,这部分以名词解释,填空为主,需要在理解的基础上记忆,但是总体上说难度不大,但是却很重点。考试要求:记忆,特别是理解基础上的记忆,对于一些内容需要会一定的推导。 知识点: 晶胞中的原子数:完全属于该晶胞的原子数。★★★ 配位数:晶体结构中任一原子周围最近邻且等距离的原子数(CN)。★★★★ 致密度:晶体结构中的原子体积占总体积的百分比(k)。★★★★ 八面体间隙:位于6个原子所组成的8面体中间的间隙。★★★ 四面体间隙:位于4个原子所组成的4面体中间的间隙。★★★ 典型金属晶体结构有(面心立方fcc),(体心立方bcc),(密排六方hcp)★★★★★

fcc bcc hcp 面心立方结构n = 8×1/8 + 6×1/2 = 4 体心立方结构n = 8×1/8 + 1 =2 密排六方结构n = 12×1/6 +2×1/2 +3 = 6 三种典型金属晶体结构特征 晶体类型原子密排面原子密排方 向晶胞中的原 子数 配位数CN 致密度K A1(fcc){111} <110> 4 12 0.74 A2(bcc){110} <111> 2 8,(8+6)0.68 A3(hcp){0001} <11-20> 6 12 0.74 对于金属晶体结构的这一部分的主要内容都集中在这个表上,在这些方面里,我们更加侧重密排面和密排方向以及致密度的掌握,这是本讲内容的一个重点。 而对于本讲的另一个重点就是关于间隙问题的讨论。 我们知道位于6个原子所组成的8面体中间的间隙。位于4个原子所组成的4面体中间的间隙。单8面体间隙和四面体间隙时如何排布的呢,我们由图可以清楚的了解。

纯金属的晶体结构

纯金属的晶体结构

1.三种常见的金属晶体结构 固态物质按其原子的聚集状态可分为两大类:晶体和非晶体,晶体指的是材料的原子(离子、分子)在三维空间呈规则的周期性排列的物体,如金刚石、水晶、金属等。非晶体指的是材料的原子(离子、分子)在三维空间无规则排列的物体,如松香、石蜡、玻璃等。在一定的条件下晶体和非晶体可以互相转化(I2-1)。 晶体结构是晶体中原子(离子或分子)规则排列的方式。晶格是假设通过原子结点的中心划出许多空间直线所形成的空间格架。能反映晶格特征的最小组成单元称为晶胞(I2-2)。晶格常数指的是晶胞的三个棱边的长度a,b,c。 常见的金属晶体结构有 ⑴体心立方晶格(BCC—Body-Centered Cube),典型代表为钼(Mo)、钨、钒、铬、铌、α-Fe等,八个原子处于立方体的角上,一个原子处于立方体的中心,如图2所示。 ⑵面心立方晶格(FCC—Face-Centered Cube),典型代表为铝、铜、镍、金、银、γ-Fe等,原子分布在立方体的八个角上和六个面的中心,如图1所示。 ⑶密排六方晶格(HCP—Hexagonal Close-Packed)典型代表为镁、镉(Cd)、锌、铍(Be)等。12个原子分布在六方体的12个角上,上下底面中心各分布一个原子,上下底面之间均匀分布3个原子,如图3所示。 图1面心立方晶格图2体心立方晶格图3密排六方晶格 原子半径指的是晶胞中相距最近的两个原子之间距离的一半,致密度指的是晶胞中所包含的原子所占有的体积与该晶胞体积之比。 体心立方模型与晶胞示意图(I2-3),在体心立方晶格中如图4: 图 4 晶格常数:a=b=c;a=b=g=90° 晶胞原子数:2 原子半径: 致密度:0.68 面心立方模型与晶胞示意图(I2-4),在面心立方晶格中如图5: 图 5 晶格常数:a=b=c;a=b=g=90° 晶胞原子数:4 原子半径:

《晶体的常识》教案最全版

第三章晶体结构与性质 第一节晶体常识 教学目标: 知识与技能:1、了解晶体与非晶体的本质差异 2、掌握晶体的基本性质 3、掌握晶体与晶胞的关系、会通过晶胞确定晶体的化学式 过程与方法:1、通过生活常识、感情经验从宏观特征逐步过渡到微观特征,认真把握内部有序造就了外部有序 2、学会判断晶体的化学式以及计算晶胞中所含的微粒数目的方法,提高逻辑思维能力和空间想象能力 情感态度与价值观:增强探究晶体结构的兴趣,强化结构决定性质的辨证思维 教学重难点: 1、晶体与非晶体的区别 2、通过晶胞确定晶体的化学式 教学过程 [新课引入]: 前面我们讨论了原子结构、分子结构,又知道原子、分子或离子之间可以通过化学键相互结合成丰富多彩的化学物质。在不同温度和压强下,物质主要分为三态:气态、液态和固态。自然界中的绝大多数物质都是固体。下面让我们一起来仔细观察一些固态物质的图片,看看它们在外形上有什么不同? [投影]:1、紫水晶、猫眼石、祖母绿、钻石 2、胆矾、冰糖、明矾、雪花 3、石蜡、泡沫塑料、玛瑙 [板书]一、晶体和非晶体 1、定义: 2、分类: [思考] 为什么晶体呈现规则的几何外形,而非晶体没有规则的几何外形?你认为可能和什么因素有关? [投影] 观察图片,思考:构成晶体与非晶体的微粒在空间的排列有何不同? [板书]:3、特点和性质 ① ② ③

[板书]:4、晶体自范性的条件 [投影]:同样是熔融态的二氧化硅,快速的冷却得到玛瑙,而缓慢冷却得到水晶过程。[设问]:得到晶体的途径,除了冷却的方法,还有没有其它途径呢?你能列举哪些? [投影图片]:1、从熔融态结晶出来的硫晶体; 2、凝华得到的碘晶体; 3、从硫酸铜饱和溶液中析出的硫酸铜晶体。 [板书]:5、晶体形成的条件: ① ②Array③ [学与问]: 1、某同学在网站上找到一张玻璃的结构示意图,如 右图,这张图说明玻璃是不是晶体?为什么? 2、根据晶体的物理性质的各向异性的特点,人们很容易识别用玻 璃仿造的假宝石。你能列举一些可能有效的方法鉴别假宝石吗? [板书]: 6、鉴别晶体和非晶体 小结:晶体与非晶体的差异 固体外观微观结构自范性各向异性熔点 晶体 非晶体 本质区别 [过渡]:为了描述晶体在微观空间里原子的排列,无须画出千千万万个原子,只需在晶体微观空间里取出一个基本单元即可。 [板书]:二、晶胞 1、定义: [投影]:几种常见的晶体的晶胞 [思考]: 1、上述铜晶体、金刚石、CO2晶体、NaCl晶体的晶胞的空间构型呈什么形状? 2、在上述晶体中,晶胞是如何排列的?晶胞之间是否有空隙? [板书]:2、特点:

常见的金属晶体结构

第二章作业2-1 常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?V、Mg、Zn 各属何种结构?答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15 天,然后再精加工。试解释这样做的目的及其原因?答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)?答:W、Sn 的最低再结晶温度分别为: TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃所以W 在1000℃时为冷加工,Sn 在室温下为热加工4-9 用下列三种方法制造齿轮,哪一种比较理想?为什么?(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法1、2 都可以,用方法3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因?答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因?答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同?答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共

晶体的常识

第一节晶体的常识 1.认识晶体和非晶体的本质差异,知道晶体的特征和性质。 2.了解获得晶体的途径。 3.知道晶胞的概念,学会晶胞中微粒数的计算方法(均摊法),能根据晶胞的结构确定晶体的化学式。 晶体与非晶体[学生用书P35] 1.晶体与非晶体的本质差异 2. 3.晶体的特点 (1)自范性 ①定义:晶体能自发地呈现多面体外形的性质。 ②形成条件之一:晶体生长速率适当。 ③本质原因:晶体中粒子在微观空间里呈现周期性的有序排列。 (2)各向异性:许多物理性质(强度、导热性、光学性质等)常常会表现出各向异性。 (3)有序性:外形和内部质点排列的高度有序。 (4)熔点:有固定的熔点。 1.判断正误(正确的打“√”,错误的打“×”)。 (1)晶体有自范性但其微粒排列无序。() (2)晶体具有各向同性,非晶体具有各向异性。() (3)晶体有固定的熔点。() (4)熔融态物质快速冷却即可得到晶体。() (5)熔融的硝酸钾冷却可得晶体,故液态玻璃冷却也能得到晶体。() (6)粉末状的固体也有可能是晶体。() 答案:(1)×(2)×(3)√(4)×(5)×(6)√ 2.下列物质中属于晶体的是________。 A.橡胶B.玻璃 C.食盐D.水晶 E.塑料F.胆矾 解析:固体有晶体和非晶体之分,晶体是内部微粒(原子、离子或分子)在空间按一定规律呈周期性有序排列构成的具有规则几何外形的固体,如食盐、冰、金属、水晶、大部分矿

石等都是晶体;非晶体中内部粒子的排列则相对无序,如玻璃、橡胶等都是非晶体。 答案:CDF 1.晶体与非晶体的区别 (1)依据是否具有自范性 晶体具有自范性,能自发地呈现多面体的外形,而非晶体不具有自范性。 (2)依据是否具有各向异性 晶体具有各向异性,在不同方向上质点排列一般是不一样的,而非晶体不具有各向异性。 (3)依据是否具有固定的熔、沸点 晶体具有固定的熔、沸点,给晶体加热时,当温度升高到某温度时便立即熔化或汽化,在熔化过程中,温度始终保持不变,而非晶体没有固定的熔、沸点。 (4)依据能否发生 X-射线衍射(最科学的区分方法) 当入射光的波长与光栅隙缝大小相当时,能产生光的衍射现象。X-射线的波长与晶体结构的周期大小相近,所以晶体是个理想的光栅,它能使X-射线产生衍射。利用这种性质人们建立了测定晶体结构的重要实验方法。非晶体物质没有周期性结构,不能使X-射线产生衍射,只有散射效应。 非晶硅光电薄膜的发电成本仅为多晶硅的三分之一,将成为今后太阳能电池的市场主流。就晶体硅与非晶体硅探究如下问题。 (1)如图a 、b 是两种硅的部分结构,请指出哪种是晶体硅,哪种是非晶硅。 a :____________; b :____________。 (2)有关晶体常识的相关说法中正确的是________。 A .玻璃是非晶体 B .固体粉末都是非晶体 C .晶体内部质点具有有序性,有固定的熔、沸点和各向异性 D .区别晶体和非晶体最有效的方法是进行X-射线衍射实验

实际金属的晶体结构

第三讲实际金属的晶体结构 第三节实际金属的晶体结构 一、主要内容: 晶体缺陷的概念,研究晶体缺陷的意义,晶体缺陷的种类 点缺陷的概念、种类,点缺陷产生的原因,晶格畸变的概念,间隙原子,置换原子,晶格空位, 线缺陷的概念,线缺陷的种类,刃型位错、螺型位错的特征,正刃型位错、负刃型位错,左螺型位错、右螺型位错,混合型位错,位错周围的应力场,位错周围的晶格畸变,柏氏矢量的概念,柏氏矢量的确定、表示方法,用柏氏矢量判断位错的类型,位错密度,位错在晶体中的特性。 面缺陷的种类,晶体表面,晶界,小角度晶界,大角度晶界,亚晶界,堆垛层错,相界,晶界的特性。 二、要点: 缺陷的概念及缺陷的种类。 三、方法说明; 晶体内部的缺陷确实存在,晶体内部的缺陷对金属的性能有很大的影响甚至起着决定性的作用。应该了解晶界与相界的区别,晶界的特性。 重点概念:是晶格畸变,间隙原子,置换原子,位错,亚结构。 难点:是螺型位错,用模型讲述会更清楚。 授课内容: 一、点缺陷 点缺陷的类型及特点: 金属晶体中常见的点缺陷有:空位、间隙原子、置换原子等。 晶体中位于晶格结点上的原子并非静止不动的,而是以其平衡位置为中心作热运动。当某一瞬间,某个原子具有足够大的能量,克服周围原子对它的制约,跳出其所在的位置,使晶格中形成空结点,称空位。挤入间隙的原子叫间隙原子; 占据在原来晶格结点的异类原子叫置换原子。 1、空位 空位是一种热平衡缺陷,即在一定温度下,空位有一定的平衡浓度。空位在晶体中的位置不是固定不变的,而是不断运动变化的。空位是由原子脱离其平衡位置而形成的,脱离平衡位置的原子大致有三个去处: (1)迁移到晶体表面上,这样所产生的空位叫肖脱基空位; (2)迁移到晶格的间隙中,这样所形成的空位叫弗兰克尔空位; (3)迁移到其他空位处,这样虽然不产生新的空位,但可以使空位变换位置。 晶格畸变:由于空位的存在。其周围原子失去了一个近邻原子而使相互间的作用失去平衡,因而它们朝空位方向稍有移动,偏离其平衡位置,就会在空位周围出现一个涉及几个原子间距范围的弹性畸变区,叫晶格畸变。 2、间隙原子 处于晶格间隙中的原子即为间隙原子。在形成弗兰克尔空位的同时,也形成一个间隙原子,另外溶质原子挤入溶剂的晶格间隙中后,也称为间隙原子,他们都会造成严重的晶体畸变。间隙原子也是一种热平衡缺陷,在一定温度下有一平衡浓度,对于异类间隙原子来说,常将这一平衡浓度称为固溶度或溶解度。 3、置换原子

1.1.1金属的晶体结构试题

1.1.1 金属的晶体结构 (一)填空题 1.同非金属相比,金属的主要特性是导电性、导热性、塑性优良,正的电阻-温度系数2.晶体与非晶体的最根本区别是晶体中原子排列是周期性规则有序的,而非晶体中原子排列是混乱无序的 3.金属晶体中常见的点缺陷是空位和间隙原子,最主要的面缺陷是晶界。 4.位错密度是指单位体积中位错线的总长度,其数学表达式为L / V 。 5.表示晶体中原子排列形式的空间格子叫做晶格,而晶胞是指能表示晶体结构的最小的晶格。 6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是【111】,而面心立方晶格是【110】。 7 晶体在不同晶向上的性能是不同的,这就是单晶体的各向异性现象。一般结构用金 属为多晶体晶体,在各个方向上性能是相同的,这就是实际金属的伪各向同性现象。 8 实际金属存在有点缺陷、线缺陷和面缺陷三种缺陷。位错是线缺陷。实际晶体 的强度比理想晶体的强度低得多。 9.常温下使用的金属材料以细小晶粒为好。而高温下使用的金属材料在一定范围内以粗大晶粒为好。 10.金属常见的晶格类型是FCC 、BCC 、HCP 。 11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为<1-10> 或<-110> ,OC晶向指数为<112> ,OD晶向指数为<212> 。 12.铜是FCC 结构的金属,它的最密排面是(111) ,若铜的晶格常数a=0.36nm,那么最密排面上原子间距为。 13 α-Fe、γ-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn中属于体心立方晶格的有, 属于面心立方晶格的有,属于密排六方晶格的有。 14.已知Cu的原子直径为0.256nm,那么铜的晶格常数为。1mm3Cu中的原子数为。 15.晶面通过(0,0,0)、(1/2、1/4、0)和(1/2,0,1/2)三点,这个晶面的晶面指数为{001} . 16.在立方晶系中,某晶面在x轴上的截距为2,在y轴上的截距为1/2;与z轴平行,则该晶面指数为{120} . 17.金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有金属键的结合方式。 18.同素异构转变是指同一成分的金属在固态下具有不同的晶体结构。纯铁在1394C°和912C°温度发生δ-Fe —γ-Fe 和γ-Fe —α-Fe 转变。 19.在常温下铁的原子直径为0.256nm,那么铁的晶格常数为。 20.金属原子结构的特点是原子核外最外层电子数为1-3 。 21.物质的原子间结合键主要包括离子键、共价键和金属键三种。22.大部分陶瓷材料的结合键为离子键和共价键。 23.高分子材料的结合键是共价键。 (二)判断题 1.因为单晶体具有各向异性的特征,所以实际应用的金属晶体在各个方向上的性能也是不相同的。( × ) 2.金属多晶体是由许多结晶位向相同的晶粒所构成。( ×) 3.因为面心立方晶体与密排六方晶体的配位数相同,所以它们的原子排列密集程度也相同 (√) 4.体心立方晶格中最密原子面是{111}。(×) 5.金属理想晶体的强度比实际晶体的强度高得多。(√ )

相关文档
最新文档