遗传算法在试题组卷中的应用

遗传算法在试题组卷中的应用
遗传算法在试题组卷中的应用

燕山大学研究生部刘彬金涛李阳明卢纪生摘要:本文运用遗传算法的全局寻优对考试中的自动化组卷进行了研究,并得到了一个解决适合考方要求的试题模型的好的算法。关键词:遗传算法全局寻优自动化组卷1 引言计算机辅助考试系统的自动组卷的效率与质量完全取决于抽题算法的设计。如何设计一个算法从题库中既快又好的抽出一组最佳解或是抽出一组非常接近最佳解的实体,涉及到一个全局寻优和收敛速度快慢的的问题,很多学者对其进行了研究。遗传算法以其自适应寻优及良好的智能搜索技术,受到了广泛的运用。Potts J C等人基于变异和人工选择的遗传算法对最优群体规模进行了论述;Hamilton M A等结合遗传算法把其运用到神经网络中,并取得了良好的效果[4];也有众多的学者对保留最佳状态的遗传算法的收敛速度做了讨论。通过理论推导和事实运用,发现遗传算法在寻优和收敛性方面都是非常有效的。本文结合遗传算法的原理和思想,对考试自动出题组卷的问题进行了研究,找到了一种获得与考试试题控制指标符合的试题模型的解决方法。2 问题描述自动组卷是考试系统自动化或半自动化操作的核心目标之一,而如何保证生成的试卷能最大程度的满足用户的不同需要,并具有随机性、科学性、合理性,这是实现中的一个难点。尤其在交互式环境下用户对于组卷速度要求较高,而一个理论上较完美的算法可能会以牺牲时间作为代价,往往不能达到预期的效果。因此,选择一个高效、科学、合理的算法是自动组卷的关键。以往的具有自动组卷功能的考试系统大多采用随机选取法和回溯试探法。随机选取法根据状态空间的控制指标,由计算机随机的抽取一道试题放入试题库,此过程不断重复,直到组卷完毕,或已无法从题库中抽取满足控制指标的试题为止。该方法结构简单,对于单道题的抽取运行速度较快,但是对于整个组卷过程来说组卷成功率低,即使组卷成功,花费时间也令人难以忍受。尤其是当题库中各状态类型平均出题量较低时,组卷往往以失败而告终。回溯试探法这是将随机选取法产生的每一状态类型纪录下来,当搜索失败时释放上次纪录的状态类型,然后再依据一定的规律(正是这种规律破坏了选取试题的随机性)变换一种新的状态类型进行试探,通过不断的回溯试探直到试卷生成完毕或退回出发点为止,这种有条件的深度优先算法,对于状态类型和出题量都较少的题库系统而言,组卷成功率较好,但是在实际到一个应用时发现这种算法对内存的占用量很大,程序结构相对比较复杂,而且选取试题缺乏随机性,组卷时间长,后两点是用户无法接受的,因此它也不是一种很好的用来自动组卷的算法。分析上述两种算法的优缺点,不难发现,在限制条件状态空间的控制下,随机选取法有时能够抽取出一组令用户满意的试题。只不过由于它随机选取试题的范围太大,无法确定目前条件下哪些区域能够抽取合适的试题,反而可能在那些已经证明是无法抽取合适试题的区域内反复选题,进行大量的无效操作进入死循环,最终导致组卷失败。回溯试探法组卷成功率高,但它是以牺牲大量的时间为代价的,对于现今越来越流行的考生网上随机即时调题的考试过程来说,它已不符合要求。因此,必须结合以上两种方法寻找一种新的改进算法,这种算法要具有全局寻优和收敛速度快的特点。遗传算法(Genetic Algorithms)以其具有自适应全局寻优和智能搜索技术,并且收敛性好的特性能很好的满足自动考试组卷的要求。[!--empirenews.page--]3 遗传算法描述遗传算法是一种并行的、能够有效优化的算法,以Morgan的基因理论及Eldridge 与Gould间断平衡理论为依据,同时融合了Mayr的边缘物种形成理论和Bertalanffv一般系统理论的一些思想,模拟达尔文的自然界遗传学:继承(基因遗传)、进化(基因突变)优胜劣汰(优的基因大量被遗传复制,劣的基因较少被遗传复制)。其实质就是一种把自然界有机体的优胜劣汰的自然选择、适者生存的进化机制与同一群体中个体与个体间的随机信息交换机制相结合的搜索算法。运用遗传算法求解问题首先需将所要求解的问题表示成二进制编码,然后根据环境进行基本的操作:selection,crossover,mutation……这样进行不断的所谓“生存选择”,最后收敛到一个最适应环境条件的个体上,得到问题的最优解。[6,7]4 遗传算法应用一般来说,用户在自动组卷时会对试卷的质量提出多方面的要求,如总题量、平均难度、题型比例、章节比例、重点章节比例、知识点的交叉

与综合等,自动组卷就应最大程度的满足用户的要求。因此,在组卷之前,我们首先为自动组卷过程建立控制指标相应状态空间D,D=[]D的每一行由某一试题的控制指标组成,如题号、题型、章节、难度等,并且这些属性指标都进行编码表示成二进制形式,而每一列是题库中的某一指标的全部取值。在具体出题时,考方可能不会用到所有的指标,所以D包含的个体d_target可以表示为d_request和d_void,d_request表示考方要求的控制指标,d_void 表示考方不要求的控制指标。即d_target::=<d_request>:<d_void><d_request>::={0,1}m<d_void>::={0,1}n试题库[STK]中的每一道试题在建库时都输入了相应的属性指标。试题模型的产生形式是:if <data> then<model><data>::={0,1,#}m#表示0和1之间的任意一位。考试自动出题的遗传算法如下:(1) 根据考方的出题要求,规划状态空间库D中的数据,保留d_request 部分,而不要d_void部分,对其剩余部分进行编码D [1],D[2],……D[i]。(2) 初始化试题库[STK]。随机从题库中抽出一组试题,并进行编号STK[1],STK[2]……STK[j],确定合适的交换概率Pc和变异概率Pm;并定义其适应值flexibility[k](k=1,2……j)flexibility[k]<-0 (k=1,2……j)(3) 从试题库[STK]中取出STK[m](0≤m≤j)与状态空间库[D]中的指标D[n] (0≤n≤i)进行匹配。如果STK[m]与D[n]完全匹配,则flexibility[k]<-flexibility[k]+1如果不匹配,则有flexibility[k]<-flexibility[k]+0 (4) 进行淘汰选择,保留具有高适应度的试题。即把flexibility[k]为0的STK[m]去掉,这样就生成了一个新的试题模型STK[h]。(5) 重复过程2生成新的试题模型STK[p]。按一定的交换概率Pc从[STK]中随机选取模型STK[h]和STK[p],交换彼此位串中对应的值,产生新的试题模型STK[h]、STK[p],如交换前STK[h]=1 1 0 1 0 1 1STK[p]=0 0 1 1 1 1 0[!--empirenews.page--]交换前STK[h]=1 1 1 1 0 1 1STK[p]=1 1 1 1 1 1 0(6) 按一定的变异概率从题库[STK]中随机选出一试题模型STK[h]进行基因突变,产生一个新的试题模型。(7) 在完成以上选择、交叉、变异步骤后,产生一个考试试题模型,按照事先确定的误差精度对其进行收敛性的判别,当其适应度高时,试题组卷成功,转向步骤8,如果其适应度低,则转向步骤3继续执行。(8) 输出相应的考试试题,组卷结束。以上用遗传算法抽题时,交换概率Pc和变异概率Pm的确定很重要。Pc太小使选题工作进展缓慢,太大则会破坏适应值高的试题模型。通常规定其为0.4。同样,Pm太小就不能产生新的试题模型,太大又会产生过多的试题模型。它宜规定为0.1。在自动选题时,选题的方式可采用父辈挑选和生存选择两种。父辈挑选就是采用不返回随机抽样,它使每个题目都有被选中的可能;生存选择采用允许父辈和子代进行竞争,并让其中的优良者进入下一轮竞争环境的二分之一择优选择。两种选择方式共同作用于选题保证了选题的顺利完成。在选题的过程中,哪一道题目被选中是一个非均匀随机事件,其概率依赖于上一次选题的过程。5结束语本文利用遗传算法的全局寻优和收敛速度快的特点,结合随机选取法和回溯试探法的优点,设计了一种用于自动组卷的好的算法,使自动组卷的成功率和速度都得到了明显的提高。要使自动出题的误差精度和收敛速度进一步得到改进,还需要做出更深的研究。

《题库智能组卷系统》组卷功能说明分析

《题库智能组卷系统》组卷功能说明教师用户可以利用系统提供的智能出卷、标准化出卷、搜索出卷、知识点题数出卷、知识点题分出卷共五种方式进行出卷。为了使生成的试卷更适合用户的要求,系统还提供了手工调整试卷功能。试卷生成后如果没有达到教师期望的目的,还可以在“试卷修改”页面中,进行手工试卷调整,包括试题添加、删除、更换,试题顺序调整,题型顺序调整和试题题分修改等多种手工修改试卷方式。 1.智能出卷 智能出卷的基本思路是在用户提出的较为模糊和较少要求的情况下,高度智能化地生成满意的试卷。 智能出卷分四个步骤,下面将具体介绍其操作。 第1步设置试卷参数 鼠标点击“智能出卷”按钮,进入到智能出卷,如图1-1所示。 【说明】:“试卷名称”是试卷的标题,默认为“未命名智能试卷”,可以重新命名,也可以在试卷生成后再修改名称,但是试卷名称不得为空。 “试卷总分”默认为100分,可以修改,总分可以限制在10~300分。 “出卷份数”表示系统支持同时生成多份试卷。 “难易比例”,试题库中每道题都有难度系数指标,难度系数即试题的失分率,分为易(0-25)、中(30-55)、难(60-100)三个等级。试卷默认的易中难比例为5:3:2,此比例可根据老师的教学要求自行调整。 图1-1 第2步选择试题范围

如图1-2所示:首先选择教材,然后在“选择考试范围”栏中选择考试的范围,“全部内容”中显示了本教材中所有试题范围,用鼠标点击“+”图标,可以打开下面的章节的具体内容,在用鼠标点击“+”图标可以继续点开下面的内容。然后用鼠标点击要选择内容前的图标,被选择的内容前的选择框变为。选择范围确定后,点击下一步,进入下一步的设置。 图1-2 第3步确定题型题分 如图1-3,页面中显示了每个题型中拥有的试题数量。在“出卷总分设置”框中添加各题型分数,使“目前输入的试题总分”与“试卷要求总分”相同后,点击下方的“完成”按钮,开始出卷。 【注】:不同学科看到的题型列表和题型对应的总题数会不同;即使同一学科内,选择不同的选题范围和试卷参数,也可能会有不同的题型和总试题数。当试题总数量等于零时,将不显示相应题型。

题库智能组卷系统批量上传模板使用说明

批量上传模板使用说明 一、什么是标签? 1.标签是提供程序自动识别、提取试题的指定字符串,中间不能加空格等其他字符,且各个标签之间的内容要换行隔开,请参看文档后面的示例。 2.必有标签有:【题文】【答案】【详解】【结束】4个,并且顺序固定。 3.【答案】标签后面的内容,用来做客观题的标准答案,程序只提取“纯文本”无格式内容(最多200字符),非纯文本格式或多于200字符的答案请放入【详解】标签。 4.Word模版提供插入标签的快捷工具栏和快捷键,对应关系是: 【题文】F5【答案】F6【详解】F7【结束】F8格式检查F9 二、关于试题的题号: 试题的题号是不需要的,若有也请放在【题文】标签之外(之前),那样程序就不会提取它;程序会在处理完毕后,按照试题在word中出现的先后顺序重新安排题号。 三、试题录入的细节注意事项: 1.必须先安装题库智能组卷系统中的试卷排版插件,在word中使用其中的标签项(手动 输入的标签符号题库系统不识别),试卷排版插件可以在题库首页下载。 2.试题的文字格式以“宋体五号字黑色”为标准。 3.段落缩进以及行距最好使用Word的默认值。 4.插入图片、绘图等对象时要注意元素的位置要及试题位置对应,环绕方式请使用“嵌入型”。 5插入公式请使用Word自带的公式编辑器进行编辑。 6.不要使用任何域代码的内容(包括各种自动编号、项目符号)。 7.不要使用网页不支持的显示格式(比如加点字、带圈字、加框字、下波浪线、双下划线等)。 8.试题标签加完以后请使用“格式检查”进行检测,格式检查可以检测出的题目才可以导入题库中。 9.导入的试题文档需为.doc格式,word2007保存的.docx格式文档不能被识别。

基于遗传算法的智能组卷策略的研究综述Word版

《基于遗传算法的智能组卷策略的研究》综述 姓名刘春晓 学号 2015216104 专业计算机技术 班级 3班 天津大学计算机科学与技术学院 2016年 6 月

基于遗传算法的智能组卷策略的研究综述 摘要随着计算机技术的日益发展和成熟,手工组卷已经不能满足现代的教学要求,组卷智能化在提高教学质量方面发挥着很重要的作用。文章对组卷策略进行了梳理,对比和总结,主要介绍了遗传算法的优点,从遗传算法的基本流程、编码方式、适应度函数和遗传算子方面进行了归纳。接着分析了目前智能组卷策略研究的不足和挑战,最后总结了未来的研究设想。 关键词智能组卷;遗传算法;适应度函数;遗传算子 1引言 在计算机技术发展飞速的今天,计算机应用已经慢慢的渗透到人类生活的方方面面,计算机的辅助教学功能也逐渐得到大家的重视。传统的手工组卷受到人为因素的干扰,导致考试的效率低下,组卷智能化已经成为不可或缺的一项研究。 近几年,智能优化算法倍受人们关注,如人工神经网络、遗传算法,为解决复杂问题提供了新的方法,并在诸多领域取得了成功。组卷问题是一个在一定约束条件下的多目标参数优化问题,针对传统的组卷算法具有组卷速度慢、成功率较低、试卷质量不高等缺点。 智能组卷算法在计算机辅导教学过程中之所以受到重视,是因为它把人工智能技术运用到了组卷中,能够智能的设计试卷的结构和内容,包括试卷的难易度,知识点,题型和题量等,使生成的试卷质量比较高。 遗传算法(Genetic Algorithm ,GA)基于达尔文的进化论和孟德尔的自然遗传学说,是通过模拟遗传选择和自然淘汰的生活进化的随机搜索和全局优化算法(张建国 2009:1)。由于该算法有智能的搜索技术和收敛性质,可以较好的满足智能组卷的要求。所以本系统选用遗传算法作为组卷算法,以试题章节、试题数量、试题知识点、试题题型、试题难度分布、试题曝光度、覆盖度、试题分数分配等约束为组卷条件,使试卷有更好的区分度。 基于遗传算法的智能组卷系统实现了组卷智能化,优化了其他组卷算法的不足,使教学更加自动化和公平化,提高了组卷效率。 2研究现状分析 在系统开发之前,应该首先选择适合本系统的组卷算法,组卷算法的选取对试卷的质量影响颇大。只有相对好的算法才能提高组卷的效率和成功率。组卷实质上就是在复杂的约束条件下的多目标求最优解的问题,保证试卷能够满足教学要求。随着计算机技术和人工智能理论的飞速发展,各种组卷策略层出不穷,选择适合的算法对系统运行有极其重要的作用。分析各种组卷算法的优缺点,找到最优的组卷算法是该系统开发的任务之一。这里我们就现阶段组卷算法进行分析和总结。 现阶段比较成熟的组卷算法有随机选取法、回溯试探法和遗传算法。随机选取法生成的试题重复率较高,难以达到预期效果。回溯试探法是一种有条件的深度优化法,对于状态类型和题量较小的题库系统而言,组卷成功率高,但占用内

基本遗传算法及应用举例

基本遗传算法及应用举例 遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。遗传算法是多学科相互结合与渗透的产物。目前它已发展成一种自组织、自适应的多学科技术。 针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。基本遗传算法只使用选择、交叉、变异三种基本遗传操作。遗传操作的过程也比较简单、容易理解。同时,基本遗传算法也是其他一些遗传算法的基础与雏形。 1.1.1 编码方法 用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。 编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。迄今为止人们已经设计出了许多种不同的编码方法。基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。一般染色体的长度L 为一固定的数,如 X=1010100 表示一个个体,该个体的染色体长度L=20。 二进制编码符号串的长度与问题所要求的求解精度有关。假设某一参数的取值范围是[a ,b],我们用长度为L 的二进制编码符号串来表示该参数,总共能产生L 2种不同的编码,若参数与编码的对应关系为 00000000000……00000000=0 →a 00000000000……00000001=1 →a+δ ? ? ? ……=L 2-1→b 则二进制编码的编码精度1 2--= L a b δ 假设某一个个体的编码是kl k k k a a a x 21=,则对应的解码公式为 )2(121 ∑=---+=L j j L kj L k a a b a x 例如,对于x ∈[0,1023],若用长度为10的二进制编码来表示该参数的话,则下述符号串:

智能组卷及在线考试评测系统

在线考试评测解决方案

1. 系统概述 智能出卷评测系统是针对中小学题高升学率、增加学生知识面的需求,结合INTERNET 和多媒体技术定制的一套系统。它经过五千多所学校使用,在实践中取得了很好的效果;教师可以通过它题供的海量的静、动态学科试题资源库和智能的出卷系统轻松的作出针对不同教学目的的各类试题,以满足教学要求。智能出卷评测系统分为"智能出卷系统"和"在线考试评测系统" 。 智能出卷的基本思路是要在老师题出的较为模糊的和较少要求的情况下高度智能化地生成满意的试卷。 网络考试评测系统是通过网上进行考试和作业的结果,智能检测出学生知识点薄弱的地方,并通过计算机智能的手段对其加以辅导。 智能出卷的基本思路是要在用户题出的较为模糊的和较少要求的情况下高度智能化地生成满意的试卷。智能出卷的习题来源--题库也不是一成不变的,新版的"龙教智囊智能出卷系统" 附带的题库中,一些不符合新教材的题目被换掉,增加了许多新的更灵活的以及近期各大考中用到的好题,这都是龙教智囊公司的老师们辛勤劳动的结果,相信一定会对学校的教学工作有帮助。 智能出卷题供了符合教师习惯的抽取整卷、智能出卷、专业出卷、知识点题分出卷,知识点题数出卷,输入题号出卷和搜索组卷多种方式,特别是操作起来很容易,实现了出卷智能化、自动化。新版智能出卷系统还新增了试题浏览功能、增强了查看、检索试题分布功能、试卷模板功能(如有期中考试及期末考试及选拔考试等)、套卷功能(就是已经组好的卷子,如历年高考试题集及一些其它比较好的套卷)、混合组卷功能、英语听力题的语音功能、试卷处理、权限管理、留有题目升级的接口(以后通过更新的数据包即可扩充题量)、题库加密、WORD排版功能、对组卷的算法进行再一次的优化。对新增加的题库的结构进行转化,使其能够被目前智能出卷所使用。 2.系统架构

遗传算法经典MATLAB代码

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] % % 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01。 % % 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其 中 b 是 [0,1023] 中的一个二值数。 % % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

第七章遗传算法应用举例

第七章 遗传算法应用举例 遗传算法提供了一种求解非线性、多模型、多目标等复杂系统优化问题的通用框架,它不依赖于问题具体的领域。随着对遗传算法技术的不断研究,人们对遗传算法的实际应用越来越重视,它已经广泛地应用于函数优化、组合优化、自动控制、机器人学、图象处理、人工生命、遗传编码、机器学习等科技领域。遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等多方面的应用取得了成功。本章通过一些例子,介绍如何利用第五章提供的遗传算法通用函数,编写MATLAB 程序,解决实际问题。 7.1 简单一元函数优化实例 利用遗传算法计算下面函数的最大值: ()sin(10) 2.0[1,2]f x x x x π=?+∈-, 选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25。 下面为一元函数优化问题的MA TLAB 代码。 figure(1); fplot ('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线 % 定义遗传算法参数 NIND= 40; % 个体数目(Number of individuals) MAXGEN = 25; % 最大遗传代数(Maximum number of generations) PRECI = 20; % 变量的二进制位数(Precision of variables) GGAP = 0.9; % 代沟(Generation gap) trace=zeros (2, MAXGEN); % 寻优结果的初始值 FieldD = [20;-1;2;1;0;1;1]; % 区域描述器(Build field descriptor) Chrom = crtbp(NIND, PRECI); % 初始种群 gen = 0; % 代计数器 variable=bs2rv(Chrom,FieldD); % 计算初始种群的十进制转换 ObjV = variable.*sin (10*pi*variable)+2.0; % 计算目标函数值 while gen < MAXGEN, FitnV = ranking (-ObjV); % 分配适应度值(Assign fitness values) SelCh = select ('sus', Chrom, FitnV , GGAP); % 选择 SelCh = recombin ('xovsp',SelCh,0.7); % 重组 SelCh = mut(SelCh); % 变异 variable=bs2rv(SelCh,FieldD); % 子代个体的十进制转换 ObjVSel =variable.*sin(10*pi*variable)+2.0; % 计算子代的目标函数值 [Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV ,ObjVSel); % 重插入子代的新种群 gen = gen+1; % 代计数器增加 % 输出最优解及其序号,并在目标函数图象中标出,Y 为最优解,I 为种群的序号 [Y,I]=max(ObjV),hold on; plot (variable (I),Y , 'bo'); trace (1,gen)=max (ObjV); %遗传算法性能跟踪

遗传算法

遗传算法的基本理论 一、起源: 早在20世纪50年代和60年代,就有少数人几个计算机科学家独立地进行了所谓的“人工进化系统”研究,其出发点是进化的思想可以发展成为许多工程问题的优化工具。早期的研究形成了遗传算法的雏形,如大多数系统都遵循“适者生存”的仿自然法则,有些系统采用了基于群体(population)的设计方案,并且加入了自然选择与变异操作,还有一些系统对生物染色体编码进行了抽象处理,应用二进制编码。由于缺乏一种通用的编码方案,人们只能依赖变异而非交叉来产生新的基因结构,早期的算法收敛甚微。20世纪60年代中期,美国Michigan大学的John Holland在A.S.Fraser和H.J.Bremermann等人工作的基础上提出了位串编码技术。这种编码既适用于变异操作,又适用于交叉(即杂交)操作。并且强调将交叉作为主要的遗传操作。随后,Holland将该算法用于自然和人工系统的自适应行为的研究中,并于1975年出版了其开创性著作“Adaption in Natural and Artificial System”。以后,Holland等人将该算法加以推广,应用到优化及机器学习等问题中,并正式定名为遗传算法。遗传算法的通用编码技术和简单有效的遗传操作作为其广泛、成功地应用奠定了基础。Holland早期有关遗传算法的许多概念一直沿用至今,可见Holland对遗传算法的贡献之大。他认为遗传算法本质上是适应算法,应用最多的是系统最优化的研究。 二、发展: 年份贡献者内容 1962Holland程序漫游元胞计算机自适应系统框架 1968Holland模式定理的建立 1971Hollstein具有交配和选择规则的二维函数优化 1972Bosworth、Foo、Zeigler提出具有复杂变异、类似于遗传算法的基因操作1972Frantz位置非线性和倒位操作研究 1973Holland遗传算法中试验的最优配置和双臂强盗问题 1973Martin类似遗传真法的概率算法理论 1975De Jong用于5个测试函数的研究基本遗传算法基准参数 1975Holland 出版了开创性著作《Adaptation in Natural and Artificial System》 1981Bethke应用Walsh函数分析模式 1981Brindle研究遗传算法中的选择和支配问题 1983Pettit、Swigger遗传算法应用于非稳定问题的粗略研究1983Wetzel用遗传算法解决旅行商问题(TSP) 1984Mauldin基本遗传算法小用启发知识维持遗传多样性1985Baker试验基于排序的选择方法 1985Booker建议采用部分匹配计分、分享操作和交配限制法1985Goldberg、Lingle TSP问题个采用部分匹配交叉 1985Grefenstette、Fitzpattrick对含噪声的函数进行测试 1985Schaffer多种群遗传算法解决多目标优化问题1986Goldberg最优种群大小估计 1986Grefenstette元级遗传算法控制的遗传算法 1987Baker选择中随机误差的减少方法 1987Goldberg复制和交叉时最小欺骗问题(MDP) 1987Goldberg、Richardson借助分享函数的小生境和物种归纳法

遗传算法的应用研究_赵夫群

2016年第17期 科技创新科技创新与应用 遗传算法的应用研究 赵夫群 (咸阳师范学院,陕西咸阳712000) 1概述 遗传算法(Genetic Algorithms,GA)一词源于人们对自然进化系统所进行的计算机仿生模拟研究,是以达尔文的“进化论”和孟德尔的“遗传学原理”为基础的,是最早开发出来的模拟遗传系统的算法模型。遗传算法最早是由Fraser提出来的,后来Holland对其进行了推广,故认为遗传算法的奠基人是Holland。 随着遗传算法的不断完善和成熟,其应用范围也在不断扩大,应用领域非常广泛,主要包括工业控制、网络通讯、故障诊断、路径规划、最优控制等。近几年,出现了很多改进的遗传算法,改进方法主要包括:应用不同的交叉和变异算子;引入特殊算子;改进选择和复制方法等。但是,万变不离其宗,都是基于自然界生物进化,提出的这些改进方法。 2遗传算法的原理 遗传算法是从某一个初始种群开始,首先计算个体的适应度,然后通过选择、交叉、变异等基本操作,产生新一代的种群,重复这个过程,直到得到满足条件的种群或达到迭代次数后终止。通过这个过程,后代种群会更加适应环境,而末代种群中的最优个体,在经过解码之后,就可以作为问题的近似最优解了。 2.1遗传算法的四个组成部分 遗传算法主要由四个部分组成[1]:参数编码和初始群体、适应度函数、遗传操作和控制参数。编码方法中,最常用的是二进制编码,该方法操作简单、便于用模式定理分析。适应度函数是由目标函数变换而成的,主要用于评价个体适应环境的能力,是选择操作的依据。遗传操作主要包括了选择、交叉、变异等三种基本操作。控制参数主要有:串长Z,群体大小size,交叉概率Pc,变异概率Pm等。目前对遗传算法的研究主要集中在参数的调整中,很多文献建议的参数取值范围一般是:size取20~200之间,Pc取0.5~1.0之间,Pm取0~0.05之间。 2.2遗传算法的基本操作步骤 遗传算法的基本操作步骤为: (1)首先,对种群进行初始化;(2)对种群里的每个个体计算其适应度值;(3)根据(2)计算的适应度,按照规则,选择进入下一代的个体;(4)根据交叉概率Pc,进行交叉操作;(5)以Pm为概率,进行变异操作;(6)判断是否满足停止条件,若没有,则转第(2)步,否则进入(7);(7)得到适应度值最优的染色体,并将其作为问题的满意解或最优解输出。 3遗传算法的应用 遗传算法的应用领域非常广泛,下面主要就遗传算法在优化问题、生产调度、自动控制、机器学习、图像处理、人工生命和数据挖掘等方面的应用进行介绍。 3.1优化问题 优化问题包括函数优化和组合优化两种。很多情况下,组合优化的搜索空间受问题规模的制约,因此很难寻找满意解。但是,遗传算法对于组合优化中的NP完全问题非常有效。朱莹等[2]提出了一种结合启发式算法和遗传算法的混合遗传算法来解决杂货船装载的优化问题中。潘欣等[3]在化工多目标优化问题中应用了并行遗传算法,实验结果表明该方法效果良好。王大东等[4]将遗传算法应用到了清运车辆路径的优化问题求解中,而且仿真结果表明算法可行有效。 3.2生产调度 在复杂生产调度方面,遗传算法也发挥了很大的作用。韦勇福等[5]将遗传算法应用到了车间生产调度系统的开发中,并建立了最小化完工时间目标模型,成功开发了车间生产调度系统模块,并用实例和仿真验证了该方法的可行性。张美凤等[6]将遗传算法和模拟退火算法相结合,提出了解决车间调度问题的混合遗传算法,并给出了一种编码方法以及建立了相应的解码规则。 3.3自动控制 在自动控制领域中,遗传算法主要用于求解的大多也是与优化相关的问题。其应用主要分为为两类,即离线设计分析和在线自适应调节。GA可为传统的综合设计方法提供优化参数。 3.4机器学习 目前,遗传算法已经在机器学习领域得到了较为广泛的应用。邢晓敏等[7]提出了将遗传算子与Michigan方法和基于Pitt法的两个机器学习方法相结合的机器学习方法。蒋培等[8]提出了一种基于共同进化遗传算法的机器学习方法,该方法克服了学习系统过分依赖于问题的背景知识的缺陷,使得学习者逐步探索新的知识。 3.5图像处理 图像处理是一个重要的研究领域。在图像处理过程中产生的误差会影响图像的效果,因此我们要尽可能地减小误差。目前,遗传算法已经在图像增强、图像恢复、图像重建、图像分形压缩、图像分割、图像匹配等方面应用广泛,详见参考文献[9]。 4结束语 遗传算法作为一种模拟自然演化的学习过程,原理简单,应用广泛,已经在许多领域解决了很多问题。但是,它在数学基础方面相对不够完善,还有待进一步研究和探讨。目前,针对遗传算法的众多缺点,也相继出现了许多改进的算法,并取得了一定的成果。可以预期,未来伴随着生物技术和计算机技术的进一步发展,遗传算法会在操作技术等方面更加有效,其发展前景一片光明。 参考文献 [1]周明,孙树栋.遗传算法原理及应用[M].国防工业出版社,1999,6. [2]朱莹,向先波,杨运桃.基于混合遗传算法的杂货船装载优化问题[J].中国船舰研究,2015:10(6):126-132. [3]潘欣,等.种群分布式并行遗传算法解化工多目标优化问题[J].化工进展,2015:34(5):1236-1240. [4]王大东,刘竞遥,王洪军.遗传算法求解清运车辆路径优化问题[J].吉林师范大学学报(自然科学版),2015(3):132-134. [5]韦勇福,曾盛绰.基于遗传算法的车间生产调度系统研究[J].装备制造技术,2014(11):205-207. [6]黄巍,张美凤.基于混合遗传算法的车间生产调度问题研究[J].计算机仿真,2009,26(10):307-310. [7]邢晓敏.基于遗传算法的机器学习方法赋值理论研究[J].软件导刊[J].2009,8(11):80-81. [8]蒋培.基于共同进化遗传算法的机器学习[J].湖南师范大学自然科学学报,2004,27(3):33-38. [9]田莹,苑玮琦.遗传算法在图像处理中的应用[J].中国图象图形学报,2007,12(3):389-396. [10]周剑利,马壮,陈贵清.基于遗传算法的人工生命演示系统的研究与实现[J].制造业自动化,2009,31(9):38-40. [11]刘晓莉,戎海武.基于遗传算法与神经网络混合算法的数据挖掘技术综述[J].软件导刊,2013,12(12):129-130. 作者简介:赵夫群(1982,8-),女,汉族,籍贯:山东临沂,咸阳师范学院讲师,西北大学在读博士,工作单位:咸阳师范学院教育科学学院,研究方向:三维模型安全技术。 摘要:遗传算法是一种非常重要的搜索算法,特别是在解决优化问题上,效果非常好。文章首先介绍了遗传算法的四个组成部分,以及算法的基本操作步骤,接着探讨了遗传算法的几个主要应用领域,包括优化、生产调度、机器学习、图像处理、人工生命和数据挖掘等。目前遗传算法以及在很多方面的应用中取得了较大的成功,但是它在数学基础方面相对还不够完善,因而需要进一步研究和完善。 关键词:遗传算法;优化问题;数据挖掘 67 --

遗传算法的C语言程序案例

遗传算法的C语言程序案例 一、说明 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.举个例子,输入初始变量后,用y= (x1*x1)+(x2*x2),其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 4.程序流程图

5.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual { char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 6.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个

使用MATLAB遗传算法工具实例(详细) (1)【精品毕业设计】(完整版)

最新发布的MA TLAB 7.0 Release 14已经包含了一个专门设计的遗传算法与直接搜索工具箱(Genetic Algorithm and Direct Search Toolbox,GADS)。使用遗传算法与直接搜索工具箱,可以扩展MATLAB及其优化工具箱在处理优化问题方面的能力,可以处理传统的优化技术难以解决的问题,包括那些难以定义或不便于数学建模的问题,可以解决目标函数较复杂的问题,比如目标函数不连续、或具有高度非线性、随机性以及目标函数没有导数的情况。 本章8.1节首先介绍这个遗传算法与直接搜索工具箱,其余各节分别介绍该工具箱中的遗传算法工具及其使用方法。 8.1 遗传算法与直接搜索工具箱概述 本节介绍MATLAB的GADS(遗传算法与直接搜索)工具箱的特点、图形用户界面及运行要求,解释如何编写待优化函数的M文件,且通过举例加以阐明。 8.1.1 工具箱的特点 GADS工具箱是一系列函数的集合,它们扩展了优化工具箱和MA TLAB数值计算环境的性能。遗传算法与直接搜索工具箱包含了要使用遗传算法和直接搜索算法来求解优化问题的一些例程。这些算法使我们能够求解那些标准优化工具箱范围之外的各种优化问题。所有工具箱函数都是MATLAB的M文件,这些文件由实现特定优化算法的MATLAB语句所写成。 使用语句 type function_name 就可以看到这些函数的MATLAB代码。我们也可以通过编写自己的M文件来实现来扩展遗传算法和直接搜索工具箱的性能,也可以将该工具箱与MATLAB的其他工具箱或Simulink结合使用,来求解优化问题。 工具箱函数可以通过图形界面或MA TLAB命令行来访问,它们是用MATLAB语言编写的,对用户开放,因此可以查看算法、修改源代码或生成用户函数。 遗传算法与直接搜索工具箱可以帮助我们求解那些不易用传统方法解决的问题,譬如表查找问题等。 遗传算法与直接搜索工具箱有一个精心设计的图形用户界面,可以帮助我们直观、方便、快速地求解最优化问题。 8.1.1.1 功能特点 遗传算法与直接搜索工具箱的功能特点如下: 图形用户界面和命令行函数可用来快速地描述问题、设置算法选项以及监控进程。 具有多个选项的遗传算法工具可用于问题创建、适应度计算、选择、交叉和变异。 直接搜索工具实现了一种模式搜索方法,其选项可用于定义网格尺寸、表决方法和搜索方法。 遗传算法与直接搜索工具箱函数可与MATLAB的优化工具箱或其他的MATLAB程序结合使用。 支持自动的M代码生成。 8.1.1.2 图形用户界面和命令行函数 遗传算法工具函数可以通过命令行和图形用户界面来使用遗传算法。直接搜索工具函数也可以通过命令行和图形用户界面来进行访问。图形用户界面可用来快速地定义问题、设置算法选项、对优化问题进行详细定义。 133

遗传算法及其在TSP问题中的应用

遗传算法及其在TSP问题中的应用 摘要:本文首先介绍了遗传算法的基本理论与方法,从应用的角度对遗传算法做了认真的分析和研究,总结了用遗传算法提出求解组合优化问题中的典型问题——TSP问题的最优近似解的算法。其次,本文在深入分析和研究了遗传算法基本理论与方法的基础上,针对旅行商问题的具体问题,设计了基于TSP的遗传算法的选择、交叉和变异算子等遗传算子,提出了求解旅行商问题的一种遗传算法,并用Matlab语言编程实现其算法,最后绘出算法的仿真结果,并对不同结果作出相应的分析。然后,本文还针对遗传算法求解TSP时存在的一些问题对该算法进行了适当的改进。如针对初始群体、遗传算子作出适当改进,或者将遗传算法与其他方法相结合,以及在编程过程中对算法流程的改进。本人在用计算机模拟遗传算法求解TSP问题时,首先分析了用Matlab语言设计遗传算法程序的优越性,接着以遗传算法求解TSP问题为例,深入讨论了各个遗传算子的程序实现,并通过分析实验数据,得到各个遗传算子在搜索寻优过程中所起的作用,最后指出了用Matlab语言编程同用其它高级程序语言编程的差异所在,以及运用Matlab编写遗传算法程序的一些注意事项。最后,本文提出将遗传算法与其它算法相结合来求解一般问题的想法;并将遗传算法的应用范围扩展,提出可以运用遗传算法求解由TSP衍生出的各类TSP扩展问题,如求解配送/收集旅行商问题的遗传算法(TSPD)、遗传算法在货物配送问题中的应用(ST-TSP)、多旅行商问题(MTSP)等。 引言:优化问题可以自然地分为两类:一类是连续变量的优化问题;另一类是离散变量的优化问题,即所谓组合优化问题。对于连续变量的优化问题,一般是求一组实数或一个函数;而在组合优化问题中,一般是从一个无限集或有限的几个无限集中寻找一个对象——它可以是一个整数,一个集合,一个排列或者一个图,也即是从可行解中求出最优解的问题。TSP问题就是其中的典型例子,就本质上而言它可抽象为数学上的组合优化,它描述的是旅行商经N个城市的最短路径问题,因而对TSP问题的求解是数学上,同时也是优化问题中普遍关注的。旅行商问题(Traveling Salesman Problem,简称TSP)也称为货担郎问题,是一个较古的问题,最早可以追溯到1759年Euler提出的骑士旅行问题[9]。旅行商问题可以解释为,一位推销员从自己所在城市出发,必须邀访所有城市且每个城市只能访问一次之后又返回到原来的城市,求使其旅行费用最小(和旅行距离最短)的路径。 TSP是一个典型的组合优化问题,并且是一个NP难题,所以一般很难精确地求出其最优解,因而寻找出其有效的近似求解算法就具有重要的理论意义。另一方面,很多实际应用问题,如公安执勤人员的最优巡回路线、流水作业生产线的顺序问题、车辆调度问题、网络问题、切割问题以至机组人员的轮班安排、教师任课班级负荷分配等问题,经过简化处理后,都可建模为TSP问题,因而对旅行商问题求解方法的研究也具有重要的应用价值。再者,在各种遗传算法应用实例中,其个体编码方法大多都是采用二进制编码方法或浮点数编码方法,而TSP问题是一种典型的需要使用符号编码方法的实际问题,所以,研究求解TSP问题的遗传算法,对促进遗传算法本身的发展也具有重要意义。在过去的20年里,在求解旅行商问题的最优解方面取得了极大的进展。尽管有这些成就,但旅行商问题还远未解决,问题的许多方面还要研究,很多问题还在期待满意的回答。 另外,遗传算法就其本质来说,主要是解决复杂问题的一种鲁棒性强的启发式随机

智能组卷考试系统的制作方法

本技术提供了一种智能组卷考试系统,系统,包括用户终端和网络侧服务器;网络侧服务器,包括题库模块,存储考试题目,并根据考试题目对应的知识点类型,将考试题目分别存储于知识点类型对应的题库存储单元中;用户终端,接收用户传输的组卷规则信息,并向网络侧服务器传输;网络侧服务器,还包括智能组卷模块;智能组卷模块,根据用户终端传输的组卷规则信息从题库模块中抽取考试题目组成考试试卷,并将考试试卷向用户终端传输;用户终端,还接收用户基于考试试卷的作答信息,并将作答信息向网络侧服务器传输;网络侧服务器,还包括判卷模块;判卷模块,对用户终端传输的作答信息进行批阅,获取考试成绩,并将考试成绩向用户终端传输。 权利要求书 1.一种智能组卷考试系统,其特征在于,所述系统,包括用户终端和网络侧服务器,其中, 所述网络侧服务器,包括题库模块;所述题库模块,用于存储考试题目,并根据所述考试题目对应的知识点类型,将所述考试题目分别存储于所述知识点类型对应的题库存储单元中; 所述用户终端,用于接收用户传输的组卷规则信息,并将所述组卷规则信息向所述网络侧服务器传输; 所述网络侧服务器,还包括智能组卷模块;所述智能组卷模块,用于根据所述用户终端传输的所述组卷规则信息从所述题库模块中抽取所述考试题目组成考试试卷,并将所述考试试卷向所述用户终端传输; 所述用户终端,还用于接收用户基于所述考试试卷的作答信息,并将所述作答信息向所述网络侧服务器传输; 所述网络侧服务器,还包括判卷模块;所述判卷模块,用于对所述用户终端传输的所述作答信息进行批阅,获取考试成绩,并将所述考试成绩向所述用户终端传输。

2.如权利要求1所述的系统,其特征在于, 所述组卷规则信息,包括所述考试题目的数量、题目类型、难易程度以及知识点类型中的一种或多种; 所述用户终端,包括智能手机、平板电脑或者个人电脑中的一种或多种。 3.如权利要求1所述的系统,其特征在于, 所述系统,还包括教师端; 所述教师端,用于对所述网络侧服务器的所述存储模块中的考试题目进行增加、删除、修改或者查询。 4.如权利要求1所述的系统,其特征在于, 所述用户终端,还用于记录用户基于所述考试试卷作答所耗费的答题时间信息,并将所述答题时间信息向所述网络侧服务器传输; 所述网络侧服务器,还包括成绩分析模块;所述成绩分析模块,用于接收所述判卷模块获取的所述考试成绩,并根据所述考试成绩和所述答题时间信息分析用户对所述考试题目对应的知识的掌握情况。 5.如权利要求1所述的系统,其特征在于, 所述网络侧服务器,还包括试卷存储模块和试题分析模块; 所述试卷存储模块,用于存储所述智能组卷模块获取的所述考试试卷、所述用户终端传输的所述作答信息和所述判卷模块传输的所述作答信息对应的所述考试成绩;

matlab基本遗传算法应用实例

基本遗传算法应用实例。用基本遗传算法求下面函数的最大值 10090060)(23++-=x x x x f 300≤≤x 个体数目取50,最大进化代数取100,离散精度取0.001,杂交概率取0.9,变异概率取0.004 1、在editor 中建立基本遗传算法函数:GA 程序如下: function[xv,fv]=GA(fitness,a,b,NP,NG,pc,pm,eps) %待优化的目标函数:fitness %自变量下界:a %自变量上界:b %种群个体数:NP %最大进化代数:NG %杂交概率:pc %自变量概率:pm %自变量离散精度:eps %目标函数取最小值时的自变量值:xm %目标函数的最小值:fv L=ceil(log2((b-a)/eps+1)); %根据离散精度,确定二进制编码需要的码长 x=zeros(NP,L); for i=1:NP x(i,:)=Initial(L);%种群初始化 fx(i)=fitness(Dec(a,b,x(i,:),L)); %个体适应值 end for k=1:NG sumfx=sum(fx); %所有个体适应值之和 px=fx/sumfx; %所有个体适应值的平均值 ppx=0; ppx(1)=px(1); for i=2:NP %用于轮盘赌策略的累加 ppx(i)=ppx(i-1)+px(i); end for i=1:NP sita=rand(); for n=1:NP if sita<=ppx(n) SelFather=n; %根据轮盘赌策略确定的父亲 break; end end Selmother=floor(rand()*(NP-1))+1; %随机选择母亲 posCut=floor(rand()*(L-2))+1; %随机选择交叉点 r1=rand(); if r1<=pc %交叉

《题库智能组卷系统》组卷功能说明书

实用标准文档 《题库智能组卷系统》组卷功能说明教师用户可以利用系统提供的智能出卷、标准化出卷、搜索出卷、知识点题数出卷、知识点题分出卷共 五种方式进行出卷。为了使生成的试卷更适合用户的要求,系统还提供了手工调整试卷功能。试卷生成后如果没有达到教师期望的目的,还可以在“试卷修改”页面中,进行手工试卷调整,包括试题添加、删除、更换,试题顺序调整,题型顺序调整和试题题分修改等多种手工修改试卷方式。 1.智能出卷 智能出卷的基本思路是在用户提出的较为模糊和较少要求的情况下,高度智能化地生成满意的试卷。 智能出卷分四个步骤,下面将具体介绍其操作。 第1步设置试卷参数 鼠标点击“智能出卷”按钮,进入到智能出卷,如图1-1所示。 【说明】:“试卷名称”是试卷的标题,默认为“未命名智能试卷”,可以重新命名,也可以在试卷生成 后再修改名称,但是试卷名称不得为空。 “试卷总分”默认为 100分,可以修改,总分可以限制在10?300分。 “出卷份数”表示系统支持同时生成多份试卷。 “难易比例”,试题库中每道题都有难度系数指标,难度系数即试题的失分率,分为易(0 - 25)、中(30 —55)、难(60 — 100)三个等级。试卷默认的易中难比例为5: 3: 2,此比例可根据老师的教学要求自行调整。 沖teazher 当前包胥:百页-A出巷中尤一》智能出巻当前学阀:高屮数羊C虫击矣檸学斜) 11诡■诫播於融]2連;>值&怕?禺确定期到■号| ■覚成出欄

图1-1

第2步选择试题范围 如图1-2所示:首先选择教材,然后在“选择考试范围”栏中选择考试的范围,“全部内容”中显示了 本教材中所有试题范围,用鼠标点击“ + ”图标,可以打开下面的章节的具体内容,在用鼠标点击“+”图标可以继续点开下面的内容。然后用鼠标点击要选择内容前的图标,被选择的内容前的选择框变为。选择范围确定后,点击下一步,进入下一步的设置。 軒?CMdwr 当前位詈:首旨- > 出卷中卄一> 智^出雜当前钢:鬲中轍学{门击甫村学科) I 丫9?传??致12遶操试层范.Fsitwg 丁出創帼■ —1 选捧教材:|苏撤版(新课标)”. 选握考谥范固:曰厂苏教版t、 自厂必修丄 ? □必術2 @匚必修耳 F M厂必修4 li匚必悔宫 i厂世修1-1 1±|厂选修 +厂选<2-1 田厂选修 & 1~ 选^2-3 田厂选惟4 1匚何逋闕选讲 tb厂选修矩阵号強拱 i+i厂选修47坐耘柬肩参数方程 田厂选^4-5耳等式选讲 图1-2 第3步确定题型题分 如图1-3,页面中显示了每个题型中拥有的试题数量。在“出卷总分设置”框中添加各题型分数,使“目 前输入的试题总分”与“试卷要求总分”相同后,点击下方的“完成”按钮,开始出卷。 【注】:不同学科看到的题型列表和题型对应的总题数会不同;即使同一学科内,选择不同的选题范围 和试卷参数,也可能会有不同的题型和总试题数。当试题总数量等于零时,将不显示相应题型。

相关文档
最新文档