神经网络技术综述

神经网络技术综述
神经网络技术综述

神经网络技术综述

1引言

人工神经网络(Artificial Neural Network,ANN)简称为神经网络〔NN),是由大量的神经处理单元广泛地相互连接而形成的复杂网络,它是从微观结构和功能上对人脑的简化、抽象和模拟。它具有大规模并行模拟处理、连续时间动力学和网络全局等特点,可以大大提高工作速度。信息的存储体现在神经元之间连接的分布上神经网络有很强的自适应和学习能力、鲁棒性和容错能力,从而可以替代复杂的传统算法,使信号处理更接近于人类的思维活动。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。

早在本世纪四十年代,人们己经开始了人工神经网络的研究工作。1943年,心理学家McCulloch和数学家Pitts一起提出了神经元模型(MP模型),神经网络科学的研究从此开始。1957年,Rosenblatt设计出感知器,第一次把神经网络的研究付诸工程实现。我国关于神经网络的研究起步于八十年代后期,1989年10月在北京召开了一个非正式的神经网络会议。

1987年6月在美国圣地亚哥召开了第一届世界神经网络会议,标志着神经网络在世界范围内形成高潮。美国国防部预研计划管理局于1988年11月开始一项投资达数亿美元的发展神经网络及其应用研究的计划,并将基于神经网络的自动目标识别、声纳信号处理、语音识别、地震勘探信号处理等作为为研究的重中之重,并认为这些是最有前景并能取得重大突破的应用领域。目前,我国实施的有关自然科学基金重大项目也将基于神经网络的智能信号处理作为重点研究内容。日本、法国、加拿大等国家也制订了相应计划发展神经网络,并将神经网络在信号处理的应用研究作为重点研究方向。

2.神经网络的基本特征及模型

人工神经网络是由许多简单处理单元组成的网络,每个处理单元可能有一定量的局部存储器;单元间由通信通道相连,通信通道上载有数据以用于不同的目的;这种单元只对局部数据和由通信通道传来的输入进行操作,而在人工神经网络的训练中这种限制往往被放松。

2.1神经网络的基本特征

神经网络之所以受到人们的重视,主要是因为它具有如下特点:

1)学习能力。学习能力是神经网络具有智能的重要表现,即通过训练课抽象出训练样本的主要特征,表现出强大的自适应能力。

2)分布式。在传统的串行运行体系计算机中,信息分布在独立的存储单元中,任何部分内存的损坏都将导致整个信息的无效。而神经网络中,信息则分散分布在神经元的连接上,单个的连接权值和神经元都没有多大的用途,但它们组合起来,就能从宏观上反映出一定的信息特征。对个别神经元和连接权值的损坏,并不会对信息特征造成太大的影响,表现了神经网络强大的鲁棒性(受干扰时自动稳定的特性)和容错能力。在输入信号受到一定干扰时,输出也不会有较大的畸变。神经网络的信息分布特性,还使经过训练的神经网络具有强大的联想能力。

3)并行性。神经网络是对人脑结构和功能的模拟,但更偏重对结构的模拟。各种神经元在处理信息时是各自独立的,它们分别接受输入,作用后产生输出。

这种并行计算的处理使得它有可能用于适时快速处理信息,成为下一代智能计算机的基础。

4)非线性。神经网络可有效地实现输入空间到输出空间的非线性映射。寻求输入到输出间的非线性关系模型,是工程界普遍面临的问题。对大部分无模型的非线性系统,神经网络都能很好地模拟。因此,神经网络成为非线性系统研究的重要工具。

从上面几点可以看出,神经网络的优点,也正是传统的基于串行计算机的符号运算推理难以实现的。因此,神经网络受到重视是必然的。

2.2神经网络的分类

神经网络发展几十年来,形成了数十种网络,包括多层感知器,Kohomen自组织特征映射,Hopfield网络,自适应共振理论,ART网络,RBF网络,及近年来出现的小波神经网络,概率神经网络,小脑模型神经网络等。这些网络,由于结构不同,应用范围页各不相同。

人工神经网络模型有两种分类方式。按照神经元的连接方式,神经网络可分为前馈型与反馈型两类。根据网络网络不同,神经网络又可分为连续性与离散型,确定型与随机型,静态与动态网络。按学习方式分,神经网络分为有导师的学习和无导师的学习。

2.3神经网络的学习

人工神经网络的功能特性由其连接的拓扑结构和突触连接强度,即连接权值决定。神经网络能够通过对样本的学习训练,不断改变网络的连接权值以及拓扑结构,以使网络的实际输出不断地接近所期望的输出。神经网络的学习方式改变权值的规则称为学习规则或学习算法。神经网络的学习算法一类是有导师学习,一类为无导师学习。有导师学习在学习训练过程中需要不断给网络成对提供一个输入模式和一个期望网络正确输出的模式,称为“导师信号”。当网络的输出与期望的教师信号不符时,则调整权值,能产生所期望的输出。无导师学习需要不断给网络提供动态输入信息,网络能根据自有的学习规则和这些输入信息调整权值。这种模式中,网络的权值调整不取决于外来教师信号的影响,网络的学习评价标准隐含于网络的内部。

3人工神经网络的应用

人工神经网络以其独特的结构和处理信息的方法,在自动控制、图像处理、模式识别、传感器信号处理、机器人控制、信号处理、焊接、地理、数据挖掘、电力系统、军事、交通、矿业、农业和气象等许多实际应用领域展现出了卓越性能。下面介绍几种常用神经网络的应用:

3.1BP神经网络的应用

BP网络的应用大体有分类、函数逼近、优化预测等方面。例如,心电图分类和胃电图分类,对函数的最小二乘逼近,对工业过程或自然科学数据的拟合,电力负荷或多媒体中信息流的预测等等[9]。尤其是对时间序列的预测更有实用价值,像国民经济和人口发展等计算都用BP网络来建模与拟合。由于BP网络较简单,因此在工业上得到广泛应用。在控制系统中,BP网络作为一个神经元控制部件,可以用于装置的控制系统或信息流控制系统中。BP网络的优点[10]:BP 网络在分类与识别方面的性能优越,可以快速高效的对机械故障进行诊断,比传统的谱分析诊断技术效率大大提高型。存在的不足有:①网络的容错性和鲁棒性差,难以保证在线实时机械故障诊断、监测和预报的精准度。②BP算法的收敛速度较慢,且网络隐层节点个数的选取尚缺少统一而完整的理论[11]。

3.2ART网络的应用

ART网络在语音、图像、文字、识别等模式识别领域的应用广泛[12];在工业系统控制中也有应用,如用于故障检测、故障诊断、事故报警等复杂生产流程的质量控制;ART网络还可以应用与数据挖掘,从大量数据中搜索并发现稳定而有意义的模式。其优点是:聚类效果好、稳定性强、对于环境变化有良好的自适应能力、算法简单高效。不足之处:ART网络为确定合理的诊断模型和参数,网络结构须进一步学习和优化。

3.3RBF网络的应用

RBF神经网络已经成功地应用于函数近似、模式分类、系统建模、模式识别、信号处理等领域。RBF的优点是与其网络结构简单、非线性逼近能力强、收敛速度快以及全局收敛等优点。RBF在函数逼近方面还有许多方面需要进一步研究,特别是如何选取径向基函数的个数、中心仍是要深入研究的重要问题[13]。

3.4Hopfield网络的应用

Hopfield是一种反馈神经网络模型,具有在高度连接下的神经网络依靠集体协同能自发产生计算行为。其应用领域有图像识别,加工车间调度,电力系统最佳消耗计算,LSI优化布局,线性系统模型参数估计,最佳调节器设计,电磁场并行计算,并行运动估计等[14]。

Hopfield网络的优点有:在线性规划问题中,霍普菲尔德回避了用纯数学方法(单纯形法)来研究该问题。在模数转化时,一旦硬件电路实现后,如果在输入端加入模拟电压值,那么在其几个神经元上立即(实时)地显示出所对应的输出数字信号。

3.5模糊神经网络的应用

模糊神经网络集合了模糊理论和神经网络的优点,由其独特的应用特性,是目前研究的热点之一。目前模糊神经网络在窑炉、工业机器人控制等领域应用较广[15]。其存在的问题有[16]:①自适应和自调整性能差,抗干扰能力弱,难以实现实时控制;②缺乏实用的开发平台,限制模糊神经网络的应用。

4人工神经网络的发展与应用展望

随着神经网络理论的不断深入发展,在信号处理、模式识别、自动控制、优化处理、人工智能等领域显示出优越性能越来越受重视。然而人工神经网络还存在缺点和不足,需进一步研究和发展的有以下几个方面:

人工神经网络就是对人脑的模拟,随着神经网络研究的发展,人们对人脑部分功能的认识已有很大的提高,如视觉处理网络的研究,对存储与记忆问题的研究等都取得一定的成功。当神经网络理论的发展至今,已经客观要求有关数学领域必须有所发展,并大胆预期一种更简洁、更完善和更有效的非线性系统表达与分析的数学方法是这一领域数学发展的主要目标。

制造技术与科学技术是相辅相成的,在科学技术不断推动制造技术发展的同时,制造技术也不断使科学技术加速发展。神经网络技术也要求神经网络制造技

术的不断发展,因为目前在单片上集成上百个神经元已不能满足神经网络应用的要求要。因此,神经网络的芯片制造技术也是神经网络技术需要发展的一个方面。

任何方法都有其局限性,为了推动神经网络理论的发展,除了神经网络理论本身要不断完善和发展,也要注重与其他科学的结合。如将量子力学、混沌理论等学科与神经网络技术相结合,这也将是神经网络技术发展的方面之一。

5结束语

经过半个多世纪的研究,神经计算目前已成为一门日趋成熟、应用面日趋广泛的学科。本文首先对人工神经网络的发展历史作了回顾,简要介绍了人工神经网络的结构和特性,详细阐述了常用几种网络的应用范围和优缺点。最后,对人工神经网络的发展和应用作了展望。人工神经网络以其独特的作用,随着各个方面的研究不断深入,其发展和应用空间必将日益广阔。

参考文献

[1]徐丽娜.神经网络控制[M].北京:电子工业出版社,2003.

[2]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2004

[3]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998

[4]王永骥,神经元网络控制[M].北京:机械工业出版社,1998

[5]谢承泮,神经网络发展综述[J].科技情报开发与经济,2006,12(16)

[6]周政BP神经网络的发展现状综述[J].山西电子技术,2008,2

[7]李恒嵬,模糊神经网络研究现状综述[J]辽宁科技学院学报,2010,6(2)

[8]吴新余.人工神经网络的研究与应用[J].电子工程师,1999,3:426.

[9]柴燕茹,马岩.浅谈BP人工神经网络[J].学理论,2008,22:39240.

[10]曲杨,宫爱玲.三种常用的人工神经网络[J].内江科技,2008,12:22223.

[11]张新海,雷勇.BP神经网络在机械故障诊断中的应用[J].噪声与振动控制,2008,5:

95297.

[12]高晓红.ART神经网络的发展与应用[J].电脑知识与技术,2007(20):5092526.

[13]郭风,王思选,催红军.基于RBF神经网络的航空发动机故障多断研究[J].航空计

算技术,2007,2(37):23226.

[14]郭鹏.Hopfield网络在优化计算中的应用[J].计算机仿真,2002(11):22225.

[15]刘普寅.模糊神经网络理论研究综述[J].模糊系统与数学,1998(21):31233.

[16]焦李成.神经网络系统理论[M].西安:西安科技大学出版社,1990.

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

最新神经网络最新发展综述汇编

神经网络最新发展综述 学校:上海海事大学 专业:物流工程 姓名:周巧珍 学号:201530210155

神经网络最新发展综述 摘要:作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具。目前,模拟人脑复杂的层次化认知特点的深度学习成为类脑智能中的一个重要研究方向。通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮。本文分8个方面综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。 关键词: 类脑智能;神经网络;深度学习;大数据 Abstract: As a typical realization of connectionism intelligence, neural network, which tries to mimic the information processing patterns in the human brain by adopting broadly interconnected structures and effective learning mechanisms, is an important branch of artificial intelligence and also a useful tool in the research on brain-like intelligence at present. Currently, as a way to imitate the complex hierarchical cognition characteristic of human brain, deep learning brings an important trend for brain-like intelligence. With the increasing number of layers, deep neural network entitles machines the capability to capture “abstract concepts” and it has achieved great success in various fields, leading a new and advanced trend in neural network research. This paper summarizes the latest progress in eight applications and existing problems considering neural network and points out its possible future directions. Key words : artificial intelligence; neural network; deep learning; big data 1 引言 实现人工智能是人类长期以来一直追求的梦想。虽然计算机技术在过去几十年里取得了长足的发展,但是实现真正意义上的机器智能至今仍然困难重重。伴随着神经解剖学的发展,观测大脑微观结构的技术手段日益丰富,人类对大脑组织的形态、结构与活动的认识越来越深入,人脑信息处理的奥秘也正在被逐步揭示。如何借助神经科学、脑科学与认知科学的研究成果,研究大脑信息表征、转换机理和学习规则,建立模拟大脑信息处理过程的智能计算模型,最终使机器掌握人类的认知规律,是“类脑智能”的研究目标。 类脑智能是涉及计算科学、认知科学、神经科学与脑科学的交叉前沿方向。类脑智能的

关于模糊控制理论的综述

物理与电子工程学院 《人工智能》 课程设计报告 课题名称关于模糊控制理论的综述 专业自动化 班级 11级3班 学生姓名郑艳伟 学号 指导教师崔明月 成绩 2014年6月18日

关于模糊控制理论的综述 摘要:模糊控制方法是智能控制的重要组成部分,本文简要回顾了模糊控 制理论的发展,详细介绍了模糊控制理论的原理和模糊控制器的设计步骤, 分析了模糊控制理论的优缺点以及模糊控制需要完善或继续研究的内容,根 据各种模糊控制器的不同特点,对模糊控制在电力系统中的应用进行了分 类,并分析了各类模糊控制器的应用效能.最后,展望了模糊控制的发展趋 势与动态. 关键词:模糊控制;模糊控制理论;模糊控制系统;模糊控制理论的发展模糊控制是以模糊集理论、模糊语言变量和模糊控制逻辑推理为基础的一种智能控制方法,从行为上模拟人的思维方式,对难建模的对象实施模糊推理和决策的一种控制方法.模糊控制作为智能领域中最具有实际意义的一种控制方法,已经在工业控制领域、电力系统、家用电器自动化等领域中解决了很多的问题,引起了越来越多的工程技术人员的兴趣. 模糊控制系统简介 模糊控制系统是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术.1965年美国的扎德[1]创立了模糊集合论, 1973 年, 他给出了模糊逻辑控制的定义和相关的定理.1974 年英国的Mamdani 首先用模糊控制语句组成模糊控制器,并把它用于锅炉和蒸汽机的控制, 在实验室获得成功, 这一开拓性的工作标志着模糊控制论的诞生. 模糊控制系统主要是模拟人的思维、推理和判断的一种控制方法, 它将人的经验、常识等用自然语言的形式表达出来, 建立一种适用于计算机处理的输入输出过程模型, 是智能控制的一个重要研究领域.从信息技术的观点来看, 模糊控制是一种基于规则的专家系统.从控制系统技术的观点来看, 模糊控制是一种普遍的非线性特征域控制器. 相对传统控制, 包括经典控制理论与现代控制理论.模糊控制能避开对象的数学模型(如状态方程或传递函数等) , 它力图对人们关于某个控制问题的成功与失败和经验进行加工, 总结出知识, 从中提炼出控制规则, 用一系列多维模糊条件语句构造系统的模糊语言变量模型, 应用CRI 等各类模糊推理方法,

模糊神经网络技术研究的现状及展望

模糊神经网络技术研究的现状及展望 摘要:本文对模糊神经网络技术研究的现状进行了综述,首先介绍了模糊控制技术和神经网络技术的发展,然后结合各自的特点讨论了模糊神经网络协作体的产生以及优越性,接着对模糊神经网络的常见算法、结构确定、规则的提取等进行了阐述,指出了目前模糊神经网络的研究发展中还存在的一些问题,并对模糊神经网络的发展进行了展望。 关键字:模糊控制;神经网络;模糊神经网络 引言 系统的复杂性与所要求的精确性之间存在尖锐的矛盾。为此,通过模拟人类学习和自适应能力,人们提出了智能控制的思想。控制理论专家Austrom(1991)在IFAC大会上指出:模糊逻辑控制、神经网络与专家控制是三种典型的智能控制方法。通常专家系统建立在专家经验上,并非建立在工业过程所产生的操作数据上,且一般复杂系统所具有的不精确性、不确定性就算领域专家也很难把握,这使建立专家系统非常困难。而模糊逻辑和神经网络作为两种典型的智能控制方法,各有优缺点。模糊逻辑与神经网络的融合——模糊神经网络由于吸取了模糊逻辑和神经网络的优点,避免了两者的缺点,已成为当今智能控制研究的热点之一了。 1 模糊神经网络的提出 模糊集理论由美国著名控制论专家L.A.Zadeh于1965年创立[1]。1974年,英国著名学者E.H.Mamdani将模糊逻辑和模糊语言用于工业控制,提出了模糊控制论。至今,模糊控制已成功应用在被控对象缺乏精确数学描述及系统时滞、非线性严重的场合。 人工神经网络理论萌芽于上世纪40年代并于80年代中后期重掀热潮,其基本思想是从仿生学的角度对人脑的神经系统进行功能化模拟。人工神经网络可实现联想记忆,分类和优化计算等功能,在解决高度非线性和严重不确定系统的控制问题方面,显示了巨大的优势和潜力 模糊控制系统与神经网络系统具有整体功能的等效性[2],两者都是无模型的估计器,都不需要建立任何的数学模型,只需要根据输入的采样数据去估计其需要的决策:神经网络根据学习算法,而模糊控制系统则根据专家提出的一些语言规则来进行推理决策。实际上,两者具有相同的正规数学特性,且共享同一状态空间[3]。 另一方面,模糊控制系统与神经网络系统具有各自特性的互补性[。神经网络系统完成的是从输入到输出的“黑箱式”非线性映射,但不具备像模糊控制那样的因果规律以及模糊逻辑推理的将强的知识表达能力。将两者结合,后者正好弥补前者的这点不足,而神经网络的强大自学习能力则可避免模糊控制规则和隶属函数的主观性,从而提高模糊控制的置信度。 因此,模糊逻辑和神经网络虽然有着本质上的不同,但由于两者都是用于处理不确定性问题,不精确性问题,两者又有着天然的联系。Hornik和White(1989)证明了神经网络的函数映射能力[4];Kosko(1992)证明了可加性模糊系统的模糊逼近定理(FAT,Fuzzy Approximation Theorem)[5];Wang和Mendel(1992)、Buckley和Hayashi(1993)、Dubots 和Grabish(1993)、Watkins(1994)证明了各种可加性和非可加性模糊系统的模糊逼近定理[6]。这说明模糊逻辑和神经网络有着密切联系,正是由于这类理论上的共性,才使模糊逻辑

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.360docs.net/doc/fe4943817.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

Hopfield神经网络综述

题目:Hopfield神经网络综述 一、概述: 1.什么是人工神经网络(Artificial Neural Network,ANN) 人工神经网络是一个并行和分布式的信息处理网络结构,该网络结构一般由许多个神经元组成,每个神经元有一个单一的输出,它可以连接到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。 人工神经网络系统是以工程技术手段来模拟人脑神经元(包括细胞体,树突,轴突)网络的结构与特征的系统。利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。主要从两个方面进行模拟:一是结构和实现机理;二是从功能上加以模拟。 根据神经网络的主要连接型式而言,目前已有数十种不同的神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。 1)反馈神经网络(Recurrent Network) 反馈神经网络,又称自联想记忆网络,其目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。反馈神经网络是一种将输出经过一步时移再接入到输入层的神经网络系统。 反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点:(1).网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态; (2).系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。 反馈网络是一种动态网络,它需要工作一段时间才能达到稳定。该网络主要用于联想记忆和优化计算。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。 2.Hopfiel d神经网络 Hopfield网络是神经网络发展历史上的一个重要的里程碑。由美国加州理工学院物理学家J.J.Hopfield 教授于1982年提出,是一种单层反馈神经网络。Hopfiel d神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能。 Hopfield神经网络模型是一种循环神经网络,从输出到输入有反馈连接。在输入的激励下,会产生不断的状态变化。 反馈网络有稳定的,也有不稳定的,如何判别其稳定性也是需要确定的。对于一个Hopfield 网络来说,关键是在于确定它在稳定条件下的权系数。 下图中,第0层是输入,不是神经元;第二层是神经元。

神经网络的应用及其发展

神经网络的应用及其发展 [摘要] 该文介绍了神经网络的发展、优点及其应用和发展动向,着重论述了神经网络目前的几个研究热点,即神经网络与遗传算法、灰色系统、专家系统、模糊控制、小波分析的结合。 [关键词]遗传算法灰色系统专家系统模糊控制小波分析 一、前言 神经网络最早的研究20世纪40年代心理学家Mcculloch和数学家Pitts合作提出的,他们提出的MP模型拉开了神经网络研究的序幕。神经网络的发展大致经过三个阶段:1947~1969年为初期,在这期间科学家们提出了许多神经元模型和学习规则,如MP模型、HEBB学习规则和感知器等;1970~1986年为过渡期,这个期间神经网络研究经过了一个低潮,继续发展。在此期间,科学家们做了大量的工作,如Hopfield教授对网络引入能量函数的概念,给出了网络的稳定性判据,提出了用于联想记忆和优化计算的途径。1984年,Hiton教授提出Boltzman机模型。1986年Kumelhart等人提出误差反向传播神经网络,简称BP 网络。目前,BP网络已成为广泛使用的网络;1987年至今为发展期,在此期间,神经网络受到国际重视,各个国家都展开研究,形成神经网络发展的另一个高潮。神经网络具有以下优点: (1) 具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。 (2) 并行处理方法,使得计算快速。 (3) 自学习、自组织、自适应性,使得网络可以处理不确定或不知道的系统。 (4) 可以充分逼近任意复杂的非线性关系。 (5) 具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系,适用于多信息融合和多媒体技术。 二、神经网络应用现状 神经网络以其独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下: (1) 图像处理。对图像进行边缘监测、图像分割、图像压缩和图像恢复。

神经网络控制

神经网络控制 沈阳电力高等专科学校杨庆柏 刊载于《辽宁电机工程科普》1999年第4期神经网络控制是一种基本上不依赖模型的控制方法。它比较适用于那些具有不确定性或高度非线性的控制对象,并且有较强的适应和学习功能,因而神经网络控制是智能控制的一个重要分支领域。神经网络控制的机理人脑是由大量的神经细胞组合而成的,它们之间互相连接。人工神经网络是对生物神经网络的一种模拟和近似,该网络是一个并行和分布式的信息处理网络结构,它一般由许多个神经元(即神经细胞)组成。虽然单个神经元的结构和功能极其简单和有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富的。每个神经元有一个单一的输出,它可以到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。由给定的输入,神经网络产生一组输出,这些输出与已知的输出或期望的输出比较,如有偏差,则修正连接权系数以改进网络性能这种培育过程直到神经网络达到令人满意的水平为止。 目前,取代人工控制的途径大致有二种,一是将手工操作中的经验总结成普通的规则或模糊规则,然后构造相应的专家控制器或模糊控制器。二是在知识难于表达的情况下,应用神经网络学习人的控制行为,即对人工控制器建模。然后用此神经网络控制器取代。这种通过对人工或传统控制器进行学习,然后用神经网络控制器取代或逐渐取代原控制器的方法,称为神经网络监督控制。

2.神经网络控制特点 (1)具有很强的自学习和自组织能力,能进行在线或离线学习。 (2)具有并行处理及其带来的高速处理能力,而且处理的时间与问题的复杂程度只是成比例关系,而不是串行处理中的几何数量级关系。 (3)具有很强的处理非线性问题的能力,能逼近任意的非线性函数,因而适于处理那些难于用模型或规则描述的过程或系统。 (4)具有很强的信息综合能力,能同时处理大量的、不同类型的定量和定性信息,便于进行多种信息的融合。 (5)具有分布式存储信息和容错能力,每个神经元存储多种信息的部分内容,部分神经元的损坏和信息破坏只会导致网络部分功能减弱。 3.神经网络控制应用 神经网络在自动控制系统中应用方式是多种多样的,基本上可分为单神经元的应用和神经网络的应用。由于目前缺乏相应的神经网络芯片或神经网络计算机硬件支持,此系统尚未获得实际应用。而由单个神经元构成的控制器,是利用了目前的计算机串行计算方法来模拟神经网络控制,其系统结构简单,易于实时控制,因此获得了实际应用。 神经网络在电力工业的应用研究已有多项,如用神经网络模拟火电厂的生产过程,可制成令人满意的火电厂模拟装置,并可以应用于火电厂的动态控制。

Hopfield神经网络综述

题目: Hopfield神经网络综述 一、概述: 1.什么是人工神经网络(Artificial Neural Network,ANN) 人工神经网络是一个并行和分布式的信息处理网络结构,该网络结构一般由许多个神经元组成,每个神经元有一个单一的输出,它可以连接到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。 人工神经网络系统是以工程技术手段来模拟人脑神经元(包括细胞体,树突,轴突)网络的结构与特征的系统。利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。主要从两个方面进行模拟:一是结构和实现机理;二是从功能上加以模拟。 根据神经网络的主要连接型式而言,目前已有数十种不同的神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。 1)反馈神经网络(Recurrent Network) 反馈神经网络,又称自联想记忆网络,其目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。反馈神经网络是一种将输出经过一步时移再接入到输入层的神经网络系统。 反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点:(1).网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态; (2).系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。 反馈网络是一种动态网络,它需要工作一段时间才能达到稳定。该网络主要用于联想记忆和优化计算。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。 2.Hopfield神经网络 Hopfield网络是神经网络发展历史上的一个重要的里程碑。由美国加州理工学院物理学家J.J.Hopfield 教授于1982年提出,是一种单层反馈神经网络。Hopfield神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能。 Hopfield神经网络模型是一种循环神经网络,从输出到输入有反馈连接。在输入的激励下,会产生不断的状态变化。 反馈网络有稳定的,也有不稳定的,如何判别其稳定性也是需要确定的。对于一个Hopfield 网络来说,关键是在于确定它在稳定条件下的权系数。 下图中,第0层是输入,不是神经元;第二层是神经元。

深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(DeepNeural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

人工智能发展综述

人工智能发展综述 摘要:概要的阐述下人工智能的概念、发展历史、当前研究热点和实际应用以及未来的发展趋势。 关键词:人工智能; 前景; 发展综述 人工智能(Artificial Intelligence)自1956 年正式问世以来的五十年间已经取得了长足的进展,由于其应用的极其广泛性及存在的巨大研究开发潜力, 吸引了越来越多的科技工作者投入人工智能的研究中去。尤其是八十年代以来出现了世界范围的开发新技术的高潮,许多发达国家的高科技计划的重要内容是计算机技术,而尤以人工智能为其基本重要组成部分。人工智能成为国际公认的当代高技术的核心部分之一。 1什么是人工智能 美国斯坦福大学人工智能研究中心尼尔逊教授给人工智能下了这样一个定义:人工智能是关于知识的学科, 是怎样表示知识以及怎样获得知识并使用知识的科学。从人工智能所实现的功能来定义是智能机器所执行的通常与人类智能有关的功能,如判断、推理、证明、识别学习和问题求解等思维活动。这些反映了人工智能学科的基本思想和基本内容, 即人工智能是研究人类智能活动的规律。若是从实用观点来看,人工智能是一门知识工程学:以知识为对象,研究知识的获取、知识的表示方法和知识的使用。 从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。如果仅从技术的角度来看,人工智能要解决的问题是如何使电脑表现智能化,使电脑能更灵活方效地为人类服务。只要电脑能够表现出与人类相似的智能行为,就算是达到了目的,而不在乎在这过程中电脑是依靠某种算法还是真正理解了。人工智能就是计算机科学中涉及研究、设计和应用智能机器的—个分支,人工智能的目标就是研究怎样用电脑来模仿和执行人脑的某些智力功能,并开发相关的技术产品,建立有关的理论。 2 人工智能历史 当然,人工智能的发展也并不是一帆风顺的,人工智能的研究经历了以下几

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究 摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。 关键词:BP神经网络、算法分析、应用 1 引言 人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。现在分别介绍人工神经元模型及人工神经网络模型。 1.1 人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts 在分析总结神经元基本特性的基础上首先提出的MP模型。该模型经过不断改进后,形成现在广泛应用的BP神经元模型。人工神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1)具有一组突触或连接,常用表示神经元i和神经元j之间的连接强度。 w ij (2)具有反映生物神经元时空整合功能的输入信号累加器。

基于人工神经网络预测探究文献综述

基于人工神经网络的预测研究文献综述专业:电子信息工程班级:08级2班作者:刘铭指导老师:熊朝松 引言 随着多媒体和网络技术的飞速发展及广泛应用,人工神经网络已被广泛运用于各种领域,而它的预测功能也在不断被人挖掘着。人工神经网络是一种旨在模仿人脑结构及其功能的信息处理系统。现代计算机构成单元的速度是人脑中神经元速度的几百万倍,对于那些特征明确,推理或运算规则清楚地可编程问题,可以高速有效地求解,在数值运算和逻辑运算方面的精确与高速极大地拓展了人脑的能力,从而在信息处理和控制决策等方面为人们提供了实现智能化和自动化的先进手段。但由于现有计算机是按照冯·诺依曼原理,基于程序存取进行工作的,历经半个多世纪的发展,其结构模式与运行机制仍然没有跳出传统的逻辑运算规则,因而在很多方面的功能还远不能达到认得智能水平。随着现代信息科学与技术的飞速发展,这方面的问题日趋尖锐,促使科学和技术专家们寻找解决问题的新出路。当人们的思想转向研究大自然造就的精妙的人脑结构模式和信息处理机制时,推动了脑科学的深入发展以及人工神经网络和闹模型的研究。随着对生物闹的深入了解,人工神经网络获得长足发展。在经历了漫长的初创期和低潮期后,人工神经网络终于以其不容忽视的潜力与活力进入了发展高潮。这么多年来,它的结构与功能逐步改善,运行机制渐趋成熟,应用领域日益扩大,在解决各行各业的难题中显示出巨大的潜力,取得了丰硕的成果。通过运用人工神经网络建模,可以进行预测事物的发展,节省了实际要求证结果所需的研究时间。 正是由于人工神经网络是一门新兴的学科,它在理论、模型、算法、应用和时限等方面都还有很多空白点需要努力探索、研究、开拓和开发。因此,许多国家的政府和企业都投入了大量的资金,组织大量的科学和技术专家对人工神经网络的广泛问题立项研究。从人工神经网络的模拟程序和专用芯片的不断推出、论文的大量发表以及各种应用的报道可以看到,在这个领域里一个百家争鸣的局面已经形成。 为了能深入认识人工神经网络的预测功能,大量收集和阅读相关资料是非常必要的。搜集的资料范围主要是大量介绍人工神经网路,以及认识和熟悉了其中重要的BP网络。参考的著作有:马锐的《人工神经网络原理》,胡守仁、余少波的《神经网络导论》以及一些相关论文,董军和胡上序的《混沌神经网络研究进展和展望》,朱大奇的《人工神经网络研究现状及其展望》和宋桂荣的《改进BP算法在故障诊断中的应用》,这些

人工神经网络综述

人工神经网络综述 摘要:人工神经网络是属于人工智能的一个组成部分,它的提出是基于现代神经科学的相关研究,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。首先论述了人工神经网络的发展历程,并介绍了几种常见的模型及应用现状,最后总结了当前存在的问题及发展方向。 关键词:神经网络、分类、应用 0引言 多年以来,科学家们不断从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度探索人脑工作的秘密,希望能制作模拟人脑的人工神经元。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在计算某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。在研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“人工神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。 1人工神经网络概述 1.1人工神经网络的发展 人工神经网络是20世纪80年代以来人工智能领域中兴起的研究热点,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。 1.1.1人工神经网络发展初期 1943年美国科学家家Pitts和MeCulloch从人脑信息处理观点出发,采用数理模型的方法研究了脑细胞的动作和结构及其生物神经元的一些基本生理特性,他们提出了第一个神经计算模型,即神经元的阈值元件模型,简称MP模型,这是人类最早对于人脑功能的模仿。他们主要贡献在于结点的并行计算能力很强,为计算神经行为的某此方面提供了可能性,从而开创了神经网络的研究。1958年Frank Rosenblatt提出了感知模型(Pereeptron),用来进行分类,并首次把神经网络的研究付诸于工程实践。1960年Bernard Widrow等提出自适应线形元件ADACINE网络模型,用于信号处理中的自适应滤波、预测和模型识别。 1.1.2人工神经网络低谷时期

神经网络预测控制综述

神经网络预测控制综述 摘要:近年来,神经网络预测控制在工业过程控制中不仅得到广泛的应用,而且其理论研究也取得了很大进展。对当前各种神经刚络预测控制方法的现状及其工业应用进行了较深入地分析,并对其存在的问题和今后可能的发展趋势作了进一步探讨。 关键词:神经网络;预测控制:非线性系统;工业过程控制 Abstract: In recent years, neural network predictive control has not only been widely used in industrial process control, but also has made great progress in theoretical research. The current status of various neural network prediction control methods and their industrial applications are analyzed in depth, and the existing question and possible future development trends are further discussed. Keywords: neural network; predictive control: nonlinear system; industrial process control

20世纪70年代以来,人们从工业过程的特点出发,寻找对模型精度要去不高而同样能实现高质量控制性能的方法,预测控制就是在这种背景下发展起的[1]。预测控制技术最初山Richalet和Cutler提出[2],具有多步预测、滚动优化、反馈校正等机理,因此能够克服过程模型的不确定性,体现出优良的控制性能,在工业过程控制中取得了成功的应用。如Shell公司、Honeywell公司、Centum 公司,都在它们的分布式控制系统DCS上装备了商业化的预测控制软件包.并广泛地将其应用于石油、化工、冶金等工业过程中[3]。但是,预测函数控制是以被控对象的基函数的输出响应可以叠加为前提的,因而只适用于线性动态系统控制。对于实际中大量的复杂的非线性工业过程。不能取得理想的控制效果。而神经网络具有分布存储、并行处理、联想记忆、自组织和自学习等功能,以神经元组成的神经网络可以逼近任意的:线性系统。使控制系统具有智能化、鲁棒性和适应性,能处理高维数、非线性、干扰强、难建模的复杂工业过程。因此,将神经网络应用于预测控制,既是实际应用的需要,同时也为预测控制理论的发展开辟了广阔的前景。本文对基于神经网络的预测控制的研究现状进行总结,并展望未来的发展趋势。 l神经网络预测控制的基本算法的发展[4] 实际中的控制对象都带有一定的菲线性,大多数具有弱非线性的对象可用线性化模型近似,并应用已有的线性控制理论的研究成果来获得较好的控制效果。而对具有强非线性的系统的控制则一直是控制界研究的热点和难点。 就预测控制的基本原理而言,只要从被控对象能够抽取出满足要求的预测模型,它便可以应用于任何类型的系统,包括线性和非线性系统。 由于神经网络理论在求解非线性方面的巨大优势,很快被应用于非线性预测控制中。其主要设计思想是:利用一个或多个神经刚络,对非线性系统的过程信息进行前向多步预测,然后通过优化一个含有这些预测信息的多步优化目标函数,获得非线性预测控制律。在实际应用与理论研究中形成了许多不同的算法。如神经网络的内模控制、神经网络的增量型模型算法控制等,近来一些学者对有约束神经网络的预测控制也作了相应的研究。文献[5]设计了多层前馈神经网络,使控制律离线求解。文献[6]采用两个网络进行预测,但结构复杂,距离实际应用还有一定的距离,文献[7]利用递阶遗传算法,经训练得出离线神经网络模型.经多步预测得出对象的预测模型,给出了具有时延的非线性系统的优化预测控制。将神经网络用于GPC的研究成果有利用Tank.Hopfield网络处理GPC矩阵求逆的算法,基于神经网络误差修正的GPC算法、利用小脑模型进行提前计算的GPC 算法、基于GPC的对角递归神经网络控制方法以及用神经网络处理约束情形的预

人工神经网络综述

目录 1 人工神经网络算法的工作原理 (3) 2 人工神经网络研究内容 (4) 3 人工神经网络的特点 (5) 4 典型的神经网络结构 (6) 4.1 前馈神经网络模型 (6) 4.1.1 自适应线性神经网络(Adaline) (6) 4.1.1.1网络结构 (6) 4.1.1.2学习算法步骤 (7) 4.1.1.3优缺点 (7) 4.1.2单层感知器 (8) 4.1.2.1网络结构 (8) 4.1.2.2学习算法步骤 (9) 4.1.2.3优缺点 (9) 4.1.3多层感知器和BP算法 (10) 4.1.3.1网络结构: (10) 4.1.3.2 BP算法 (10) 4.1.3.3算法学习规则 (11) 4.1.3.4算法步骤 (11) 4.1.3.5优缺点 (12) 4.2反馈神经网络模型 (13) 4.2.1 Hopfield神经网络 (13) 4.2.1.1网络结构 (13) 4.2.1.2 学习算法 (15) 4.2.1.3 Hopfield网络工作方式 (15) 4.2.1.4 Hopfield网络运行步骤 (15) 4.2.1.5优缺点 (16) 4.2.2海明神经网络(Hamming) (16) 4.2.2.1网络结构 (16) 4.2.2.2学习算法 (17) 4.2.2.3特点 (18) 4.2.3双向联想存储器(BAM) (19) 4.2.3.1 网络结构 (19) 4.2.3.2学习算法 (19) 4.2.3.4优缺点 (21) 5.人工神经网络发展趋势以及待解决的关键问题 (22) 5.1 与小波分析的结合 (22) 5.1.1小波神经网络的应用 (23) 5.1.2待解决的关键技术问题 (23) 5.2混沌神经网络 (23) 5.2.1混沌神经网络的应用 (24) 5.2.2待解决的关键技术问题 (24)

深度神经网络知识蒸馏综述

Computer Science and Application 计算机科学与应用, 2020, 10(9), 1625-1630 Published Online September 2020 in Hans. https://www.360docs.net/doc/fe4943817.html,/journal/csa https://https://www.360docs.net/doc/fe4943817.html,/10.12677/csa.2020.109171 深度神经网络知识蒸馏综述 韩宇 中国公安部第一研究所,北京 收稿日期:2020年9月3日;录用日期:2020年9月17日;发布日期:2020年9月24日 摘要 深度神经网络在计算机视觉、自然语言处理、语音识别等多个领域取得了巨大成功,但是随着网络结构的复杂化,神经网络模型需要消耗大量的计算资源和存储空间,严重制约了深度神经网络在资源有限的应用环境和实时在线处理的应用上的发展。因此,需要在尽量不损失模型性能的前提下,对深度神经网络进行压缩。本文介绍了基于知识蒸馏的神经网络模型压缩方法,对深度神经网络知识蒸馏领域的相关代表性工作进行了详细的梳理与总结,并对知识蒸馏未来发展趋势进行展望。 关键词 神经网络,深度学习,知识蒸馏 A Review of Knowledge Distillation in Deep Neural Networks Yu Han The First Research Institute, The Ministry of Public Security of PRC, Beijing Received: Sep. 3rd, 2020; accepted: Sep. 17th, 2020; published: Sep. 24th, 2020 Abstract Deep neural networks have achieved great success in computer vision, natural language processing, speech recognition and other fields. However, with the complexity of network structure, the neural network model needs to consume a lot of computing resources and storage space, which seriously restricts the development of deep neural network in the resource limited application environment and real-time online processing application. Therefore, it is necessary to compress the deep neural network without losing the performance of the model as much as possible. This article introduces

相关文档
最新文档