空调检漏七种方法

空调检漏七种方法
空调检漏七种方法

空调检漏七种方法

-目测检漏

发现系统某处有油迹时,此处可能为渗漏点。目测检漏简便易行,没有成本,但是有很大缺陷,除非系统突然断裂的大漏点,并且系统泄漏的是液态有色介质,否则目测检漏无法定位,因为通常渗漏的地方非常细微,而且汽车空调本身有很多部位几乎看不到。

-肥皂水检漏

向系统充入10-20kg/cm2压力氮气,再在系统各部位涂上肥皂水,冒泡处即为渗漏点。这种办法是目前路边修理厂最常见的检漏方法,但是人的手臂是有限的,人的视力范围是有限的,很多时候根本看不到漏点。

-氮气水检漏

向系统充入10-20kg/cm2压力氮气,把系统浸入水中,冒泡处即为渗漏点。这种方法和前面的肥皂水检漏方法实质一样,虽然成本低,但有明显的缺点:检漏用的水分容易进入系统,导致系统内的材料受到腐蚀,同时高压气体也有可能对系统造成更大的损害,进行检漏时劳动强度也很大,这样就使维护检修的成本上升。

-卤素灯检漏

点燃检漏灯,手持卤素灯上的空气管,当管口靠近系统渗漏处时,火焰颜色变为紫蓝色,即表明此处有大量泄漏。这种方式有明火产生,不但很危险,而且明火和制冷剂结合会产生有害气体,此外也不易准确地定位漏点。所以这种办法现在几乎没有人使用了,如果您能够看到,那可能是正处在非文明社会阶段。

-气体差压检漏

利用系统内外的气压差,将压差通过传感器放大,以数字或声音或电子信号的方式表达检漏结果。此方法也是只能“定性”地知道系统是否渗漏而不能准确地找到漏点。

-电子检漏

用探头对着有可能渗漏的地方移动,当检漏装置发出警报时,即表明此处有大量的泄漏。电子检漏产品容易损坏,维护复杂,容易受到环境化学品如汽油、废气的影响,不能准确定位漏点。

燃油直喷燃烧技术

汽油直喷燃烧技术(GDI)就能够将内燃机的燃料效率提高20%。这一新技术的基础技术的应用起源于30年代,但长期以来没有得以发展,只是到了近两年,由于电子技术和

其它系统的性能的提高,才使这种新概念有所作为。

目前,一些汽车制造商正在将GDI技术投入实际的制造应用过程。例如Mercury Marine公司就针对其大型发动机开发出了一个采用双重空燃直喷燃烧系统的发动机。从1996年起日本的三菱公司也开始了GDI发动机的开发工作,西门子和雷诺两公司也联手致力将GDI技术应用于雷诺的Megane汽车上。同时,Delphi也宣布将和Orbital发动机制造公司共同投资开发一种火花塞和燃油直喷混合的发动机系统,这个系统只需要一个通往汽缸燃烧室的孔。

开发直喷技术的最初想法是由于在大多数的情况下,发动机的空燃比可以调节到比用化学计算法得出的14.7:1更稀薄的状态,而不会对发动机性能造成负面的影响。然而其局限性却是这样的,稀薄混合气体很难点燃,而且还会随之产生相应的排放物,其主要成分是氮氧化合物(NOX)。

采用直喷技术后,燃油以细微滴状的薄雾方式进入汽缸,而不是以蒸汽的方式。这也就意味着当燃油雾滴吸收热量变为可燃蒸汽时,实际上对发动机的汽缸起到了冷却的作用。这种冷却作用降低了发动机对辛烷的需要,所以其压缩比可以有所增加。而且正如柴油一样,采用较高的压缩比可以提高燃料的效率。

采用GDI技术的另一个优点是它能够加快油气混合气体的燃烧速度,这使得GDI 发动机和传统的化油器喷射发动机相比,可以很好地适应废气再循环工艺。例如,在三菱的发动机上,当怠速运转过程中如果发动机燃烧不稳定,则发动机可以以40:1的空燃比很平稳地运行(如果采用了废气再循环EGR技术,那么发动机的空燃比可以提高到55:1)。

决定一种非常稀薄的混合气体的关键是能否找到一种可靠的点燃它的途径。这就要求在火花塞间隙附近混合气的浓度足够大,以便能点燃。由于火焰的焰心要比火花塞的间隙尺寸大得多,一旦燃烧之后火焰就会向燃烧室内的稀薄气体区域扩散。早期的GDI的开发工作着重于研究能够在炙热状态下,长时间工作点燃可燃物的兆点点火系统。虽然这个系统发出的炙热的、较大的火花能够很容易地将稀薄混合气体点燃,然而由火花塞发出的热量却大大降低了火花塞电极的使用寿命。

采用计算机来模拟进出燃烧室的燃料和空气流的情况是一项突破性的技术。燃烧室和活塞的形状、喷油脉冲的能量和方向、活塞和发动机热量的运动情况都会影响油气混合物雾滴的位置。这项技术采用了关键性的计算机技术来确定空燃流的情况以及空燃喷射器的最佳位置以及火花塞的相关参数。

两个基本的系统

当这项技术应用于GDI时会产生两个基本的系统,它们分别是HPDI 和LPDI。HPDI系统依靠高压(100巴或100个大气压力)来迫使燃料进入已经充满空气的燃烧室。在雷诺的IDE发动机中,西门子采用了一个三活塞的燃油泵来产生燃料喷射所需的高压。同时,由于采用了电磁控制的阀门,使得发动机的控制系统能够根据发动机的运转需要确定进、排气门的正时时间。

Orbital公司的低压直喷系统(LPDI)是对两冲程发动机应用于汽车制造的技术的进一步完善和改进。采用LPDI系统后,一定量的燃油被喷射到位于油气混合气喷射装置顶部的气室内。一个皮带或凸轮传动的空气压缩机用来向空气喷射装置提供大约6.5巴的压力。当空气喷射装置的线圈被启动后,空气压力就会使燃油和空气进入到燃烧室中。这个系统发生作用的关键是进入到燃烧室中的燃料流应该是呈现易燃状态。该系统的一个很主要的特点是由于燃料没有处在非常高的压力下,所以也就不需要使用特殊的燃油泵,燃油供油装置产生开裂和泄漏的危险性也小得多。

HPDI 和LPDI这两个系统都面临着挑战。一是燃油的喷射模式必须十分精确,以便能够以成层的方式正确地将燃料进行分配。在HPDI系统中,这意味着需要更高的喷射压力和更快的喷射速度。西门子公司宣称它目前正在研究高达200巴压力的燃油喷射系统,该系统具有能够在半毫秒内点火的高精度的喷射装置。

要获得较满意的燃空混合气分层就意味着燃烧室和活塞顶部的形状都是非常关键的。这需要对每台发动机使用计算机造型和广泛的测试来确定其最终的形状。这也即是说GDI技术并不能简单地捆绑于现有的发动机上。汽缸和活塞需要进行变动,发动机的电子控制系统的硬件也需要改进。

和传统的发动机燃油泵相比,HPDI系统所需的燃油泵有很大的区别。传统的电动燃油泵需要让燃油流经泵体来保持冷却和润滑。而另一方面,高压HPDI系统的燃油泵却采用了与燃油流隔离开的液压泵组件。为了降低在如此高的压力下运转时发生泄漏的可能性,将这两部分的功能隔离开是很有必要的。PSA标致/雪铁龙公司和西门子公司已经组成了一个合资公司来专门为欧洲市场生产这种新型的燃油泵。

让发动机燃烧非常稀薄的油气混合气体也就意味着其每个燃烧冲程燃烧的燃料量更少,因而产生的功率也就更小。三菱公司的GDI发动机通过采用双重模式的燃烧系统突破了这个局限性。对于在正常情况下的诸如城市市区的低负载驾驶工况,燃油在压缩冲程延迟喷射,这一点和柴油发动机一样。这种方式提供了一种极稀薄的油气混合物分层,从而提高了发动机的燃油经济性。当来自不同的发动机传感器的信息探测到驾驶员希望在高负载或高车速下操纵汽车时,喷射脉冲就会提前在进气冲程进行喷射。

这种技术允许发动机使用正常的空燃比。其关键是发动机的电子系统能够实时确定燃油应在何时以何种方式喷射。

GDI技术对发动机排放的影响

GDI技术对发动机的排放具有很重要的影响。你可以想像得到,当较少的燃料在一个富氧的环境中燃烧时,HC和CO的产生量肯定会大大减少。另一方面,氮氧化物NOX 的产生则是个问题。为了避免这个问题的发生,三菱的GDI发动机采用了30%的EGR比率,并采用了一个新型的稀薄NOX气体催化器。这种催化器是一种储藏型的设备,它能够在需要的情况下吸收多余的NOX,然后将HC排放物引入那部分的催化转换器而重新起作用。由于这个装置位于三元催化器的前面,所需要的用于多余的NOX催化的HC的量在此处应该引起注意。

这项新技术至少需要采用好几个传感器才能够起作用。人们开发出了一种新型的传感器来探测多余的NOX的水平,这种传感器在很多方面与传统的氧传感器很相似,只不过它的固体电极采用了不同的材料,而且它采用了两室的设计结构。传统的氧传感器对于采用非化学计量法得出混合汽体不起作用,所以在这里还需要一些其它的东西。一种被开发用于ULEV发动机的被称为UEGO分线性氧传感器在这种空燃比的情况下能够良好地工作,并被用于三菱公司的发动机系统中。

正如你所知道的那样,GDI发动机与目前车辆上广泛装备的传统的进油口燃油喷射的发动机有很大的不同,而且这种新型的发动机毫无疑问将在不远的将来得到应用。事实上,丰田公司的混合动力轿车Prius上已经装备了一台这样的发动机,而且福特、通用和克莱斯勒公司都正在对这种新型发动机进行研制。一个积淀了70年的概念正在逐步变为实用的产品,这就是让人值得称道的地方。而所有这一切都要归功于车载的传感器和电子控制系统,以及最终使该项技术浮出水面的计算机建模系统

宝马遥控器设定方法

宝马BMW中央门锁遥控器的设定

宝马轿车BMW自1995年起采用可程式化自动设定式遥控器,每当车主重新锁门时,即会自动改变信号,以增加保险功能,也因此每当更换遥控器电池时间超过一分钟或拆除电瓶后,遥控器即需要重新设定程序,该程序也可用来复制新的遥控器。

必须先解除防盗模式才能进行遥控器重新设定及复制。

一、遥控器的设定程序及复制

1、确定电瓶正常,所有车门、引擎盖、行李箱盖关好。

2、将钥匙插入点火开关,并转到第I段,5秒钟内转回到OFF位置。

3、按住钥匙上按键“2”,同时在10秒钟内连续按下按键“1”三次后,再将“2”键放开。

4、此时中央门锁会锁上再开锁,表示设定完成。

5、最多可同时复制4把遥控器,但必须在30秒内完成所有设定。

二、钥匙遥控器作用说明

1、遥控

以钥匙对着车内的接收器(车内后视镜),大约10米内有效。

2、开锁

按下“2”键一次:钥匙上LED亮起后熄灭,门锁系统解除。

按下“2”键后不放:防盗系统解除。

3、上锁

按下“1”键一次:钥匙上LED亮后熄灭,门锁系统及防盗系统设定。

4、上锁后不起动防盗

按下“1”键3次,LED亮起后熄灭,此时车辆可移动、拖吊、撑起。

三、电瓶无电时车门的开启方法

当电瓶无电时,车门开启需如下进行:将车钥匙插入驾驶侧车门,顺时针转30-45°,再将门把拉起,再转动90°,即可打开车门。

电喷车故障自诊断的操作技巧

电子控制燃油喷射汽车发动机的控制电脑ECU,设置了故障自诊断系统,它主要用来监测电子控制系统各部件的工作状态,并且根据电子控制系统的配置情况,确定诊断故障的数量多少。当电喷汽车自诊断系统监测到一个故障时,一方面它启用故障的保护功能,对控制系统进行必要的保护;另一方面,它将该故障以故障代码的形式存储在随机存储器(RAM)中,并且同时点亮故障指示灯(CHECK ENGING)。汽车维修人员可按照一定的操作程序,读取该故障的故障码,再通过查对有关的技术资料,将代码所示故障了解仔细,便可对汽车电控系统故障进行有目的的维修。

就目前而言,汽车用电子控制系统还没有统一的“国际标准”,不同的汽车制造厂,不同的车型,同种车型的不同生产年代,其电子控制系统也是千差万别。同时,制造厂家是不提供控制电脑内部硬件线路原理和软件程序(存储在只读存储器ROM中)的。另外,再加上国内多数汽车维修人员,对电脑控制系统较为陌生,因此,就更进一步增加了对汽车电子控制系统维修的难度和神秘感。实际上,对于汽车维修人员,了解上述问题固然重要,但如果仅从修理和维护的角度来看,由于汽车电子控制系统中的部件,大多采用更换部件的方法进行维修,因此,正确利用自诊断系统进行故障诊断与排除,使车辆尽快恢复良好的技术状态,反而显得更重要。本文将对电喷车自诊断过程中遇到的若干问题进行简要总结,以便对大家有所帮助。

在读取故障码之前应该做好哪些准备工作呢?

检查故障指示灯

在接通点火开关但不启动发动机时,控制电脑便开始进入初始化状态,并对整个控制系统进行自我检查,此时故障指示灯也点亮。如果故障指示灯不亮,则说明故障指示灯线路有故障,应予以检查和修理。接通点火开关片刻或发动机启动后,如果故障指示灯熄灭,则说明控制电脑没有查出电控系统有故障;如果故障指示灯仍点亮不灭,则说明电脑控制系统有故障,此时方可读取故障码。

做好安全工作

目前,汽车电子控制器系统读取故障一般分为静态(如“KOEO”测试模式)和动态(如福特公司的“KOER”测试模式)两种测试模式。在静态测试模式状态下,只需要接通点火开关而不需要启动发动机,便可读取故障;动态测试模式是指在发动机正常运转过程中,进行故障自诊断的一种测试模式。因此,在电控汽车实施动态模式测试时,应当确认汽车制动状态良好,变速杆置于驻车挡或空挡,必要时,可用三角木块将汽车车轮塞住,以防发生不测。

检查机械件的连接

读码前,应直观检视与电子控制系统有关的机械部件的连接情况。例如:导线连接器连接是否有问题;真空管是否脱落、泄漏或者阻塞;空气流量计传感器是否有漏气现象等。在此特别需要注意的是:在上述检查过程中,应关闭点火开关(OFF)以防在导线的插接过程中,因导线连接和断开时,电感器件所产生的感应电动势将控制电脑ECU的个别电子元件烧毁,而导致控制电脑损坏。

检查蓄电池电压

汽车蓄电池电压正常与否,对检测故障码至关重要。对于12V系汽车蓄电池来说,其电压值不应低于11V;对于24V系汽车蓄电池来说,其电压值不应低于23V。

关闭所有辅助电器

读码时,关掉辅助电器设备(如空调、灯光、收放机等)也是很有必要的。因为辅助电器设备不仅要消耗一部分电能,而且还会干扰控制电脑的正常工作。

适时关闭节气门

启动发动机使其怠速运转并暖机,当冷却液温度达到正常范围(85~95℃),便可对电子控制系统进行自诊断监测。在暖机完成之后,在开始检测之前,应完全松开加速踏板,使节气门处于全封闭状态。

在对电控汽车进行了上述准备工作之后,便可读取故障码了。尽管运用控制电脑的自诊断功能,对于读码后的故障排除极为方便迅速,但如果读码过程中操作不当,或者未按特定的程序进行操作,都可能带来不必要的麻烦,如:原排除故障后又出现新的故障码;更换有关故障部件后,故障依然存在或者出现故障越来越多的不良现象。因此,无论是采用人工读码,还是采用专用仪器读码,都应确保操作的正确性,为此您不妨注意以下几点。

正确清除故障码

汽车故障排除后,需要清除故障代码。进行故障代码清除时,应严格按照特定车型所规定的故障代码清除方法来进行,万不可简单随意地用拆除蓄电池负极搭铁线的办法来清除故障代码。否则,可能会造成以下两个方面的麻烦:其一,使某些车型的控制电脑失去“经验记忆”,我们知道,有些车型的控制电脑具有自动记忆功能,拆除蓄电池负极搭铁线后,便会自动清除存储在随机存储器(RAM)中发动机运行的经验数据,从而使汽车在维修后的相当长一段时间内性能不好,或行驶一段后,又重现已清除掉的故障代码;其二,还会造成某些功能的丧失,如音响锁止便是较为常见的例子之一。这时,则需要按照较为烦琐的程序对音响系统进行解密,才能恢复音响系统的正常工作。

控制合适的水温

读码时,发动机达到正常的工作温度后方可进行自诊断测试,特别是水温在85~95℃时读码最为可靠。否则,在读码过程中,有时会出现一串非故障的故障码,如水温、废气再循环、怠速不良等故障码等。经常会使人误以为电子控制系统故障很多或以为自诊断系统出

现了故障。

正确的读码顺序

对具有静态读码(只打开点火开关,不启动发动机)和动态读码(需启动发动机)的电子控制系统而言,应注意二者读码的先后顺序以及有关的转换程序,否则会造成读取故障码的失败,许多车型对这两种读码转换都有严格的程序要求。首先,必须先读静态码(即KOEO 模式),如果静态码读完后,系统未输出代码为“11”的正常故障码,就去读取动态码(即KOER模式),则会出现故障失真,进而造成检修时的误判。这时往往会给维修人员造成一种错觉,好像故障码派不上用场似的。同时,应注意,在读动态码之前,一般需要先清除静态码。在进行动态码自诊断之前,应拆下读静态码时在诊断插座上所连接的跨接线,然后清除静态故障码,接着启动发动机并加速到2000r/min,保持2min以上,以便使发动机达到正常的工作温度,然后关闭点火开关,等待10s以后再将自诊断接头跨接好,并再次启动发动机,此时所显示的故障码便是动态模式下的故障码。

注意读码后的记忆修正

通过对电控汽车进行读码、清码和故障排除之后,如果汽车的加速性能有所下降,有时属于正常现象,但需要维修人员对控制电脑ECU进行正确的行车状况的记忆修正。换言之,就是要恢复控制电脑对汽车现行状况的记忆功能。只要汽车车况正常,连续重复启动、行驶、熄火,达到一定次数后,汽车的相关性能将会逐渐得到恢复。

不必在意的故障码

当读取故障码后,有时会发现故障码所指示的故障与汽车的实际故障完全无关,此时可以认为故障码显示有错误,不必太在意。造成这种情况的原因有:一是上次维修时原故障码未能有效地清除;二是在发动机再运行中,维修人员有意或无意地碰掉了有关传感器的导线连接器。

控制电脑所提供的故障代码,往往仅与所示故障部位对应的内外线路有关,一般而言,它与其他线路和该部位的机械故障无关,而造成电控汽车故障的原因是多方面的。实际上,故障代码仅仅是一个是或否的界定结论,不可能指出故障的具体原因,如需要找出具体的故障部位和原因,还需要根据发动机的故障征兆作进一步的分析和检查才能做到准确无误地排除故障。

宽带型氧传感器的介绍

日前有位朋友询问奥迪A6的氧传感器(6线)的测试方法,提到了宽带型氧传感器,在此我想详细的对其作一叙述。

目前使用的氧传感器大致分两种:氧化锆型氧传感器和宽带型氧传感器。氧化锆型氧传感器有大量的资料介绍在此不多讲,氧化锆传感器安装在排气管前管上,三元催化前。它主要由一个氧化锆制成的陶瓷壳组成。其封闭一端内外表面覆盖一层白金,将陶瓷壳插入一个

保护管内,再将其放入金属壳内,金属壳起保护作用,陶瓷氧化锆体外表面与废气接触。原理是:当温度高于300度时,氧化锆能使通过其中的氧分离出氧离子,如果氧传感器两侧的含氧量不同,将在两侧产生电位差,将这个电位差测量就得到两个环境中(空气一侧和废气一侧)含氧量差U异,然后将信息传给ECU。由于不同的电压对应的空燃比,ECU就可控制喷油嘴的喷油量,对混合气进行调节,使混和气的空燃比尽可能接近理论值,实行闭环空制。在断油和全负荷工况下,氧传感器不起作用,这种工作状态叫开环状态。

此氧传感器为加热型传感器,加热可使其尽早的进入工作状态,正常工作时氧传感器的电压在0。1—0。9伏(实测0。2—0。8)之间周期变化。读数据流:01—08---33的第二区,中心线为0。45伏。

宽带型氧传感器的产生是基于稀薄燃烧的理论:稀薄燃烧效率高,损耗小。缺点是NOX 增多造成燃烧不稳定,失火增加,HC排放量增加发动机的转矩变动大,发动机运行性能变差。近年来随着汽车技术的快速发展,NOX还原催化剂的发现,好多厂家生产出=1。5的发动机。这种发动机对氧传感器的要求很高,因此产生了宽带型氧传感器。

大众奥迪车系故障码大全

00000 没有查询到任何故障

00001 制动器控制单元

00002 变速器控制单元

00003 控制单元

00224 碟型天线需要重新校准

00237 ABS 电磁阀: 左前( N59 )

00238 ABS 电磁阀: 右前( N58 )

00239 ABS 电磁阀: 左后( N57 )

00240 ABS 电磁阀: 右后( N56 )

00241 驱动防滑压力调节阀( N238 )

00242 发动机节气门阀( N237 )

00243 发动机制动器

00244 ABS 阀供给电压: 右前+左后

00245 ABS 阀供给电压: 左前+右后

00246 ABS 阀接地: 右前+左后

00247 ABS 阀接地: 左前+右后

00248 变速器开关( E206 )

00250 分动器开关( E207 )

00254 驱动防滑调节错误

00255 ABS 电磁阀

00257 ABS 进油阀: 左前( N101 )

00258 电磁阀1: ( N88 )

00259 ABS 进油阀: 右前( N99 )

00260 电磁阀2: ( N89 )

00261 进油阀: ABS后部( N103 )

00262 电磁阀3: ( N90 )

00263 变速器

00264 电磁阀4: ( N91 )

00265 ABS 出油阀: 左前( N102 )

00266 电磁阀5: ( N92 )

00267 ABS 出油阀: 右前( N100 )

00268 电磁阀6: ( N93 )

00269 ABS 出油阀: 后部( N104 )

00270 电磁阀7: ( N94 )

00271 参见维修组1

00273 ABS 进油阀: 右后( N133 )

00274 ABS 进油阀: 左后( N134 )

00275 ABS 出油阀: 右后( N135 )

00276 ABS 出油阀: 左后( N136 )

00277 ABS 进油阀/出油阀: 左前( N137 )

00278 ABS 主阀: ( N105 )

00279 差速锁阀-1-: ( N125 )

00280 差速锁阀-2-: ( N126 )

00281 车速传感器( G68 )

00282 节气门位置调节器( V60 )

00283 ABS 转速传感器: 左前( G47 )

00284 ABS 进油阀/出油阀: 右前( N138 )

00285 ABS 转速传感器: 右前( G45 )

00286 ABS 进油阀/出油阀: 左后( N139 )

00287 ABS 转速传感器: 右前( G44 )

00289 ABS 进油阀/出油阀: 右后( N140 )

00290 ABS 转速传感器: 右前( G46 )

00291 ABS 压力警报开关/液面报警开关( F116/F117 ) 00292 液压供给压力油位

00293 多功能开关( F125 )

00294 变速器压力状态开关1( F174 )

00295 变速器压力状态开关2( F175 )

00296 强制低档开关( F8 )

00297 变速器转速传感器( G38 )

00298 后桥差速锁开关( E121 )

00299 变速器换档范围程序开关( E122 )

00300 变速器油温度传感器( G93 )

00301 ABS 回流泵( V39 )

00302 ABS 电磁阀继电器( J106 )

00303 功能选择器开关( E91 )

00305 燃油消耗指示信号

00306 二次空气喷射缸体左侧

00307 二次空气喷射缸体右侧

00309 洗涤液计量泵( V135 )

00310 催化转换器温度传感器1 ( G20 )

00312 催化转换器温度传感器2 ( G132 )

00313 催化转换器

00314 废气内部循环双路阀( N161 )

00347 电磁阀8

00348 电磁阀9

00349 电磁阀10

00350 Mass Recirc. Modulation Valve

00351 中间轴转速传感器( G265 )

00369 EPC 继电器负荷

00438 燃料供给传感器2( G169 )

00439 燃料供给传感器3( G237 )

00440 燃料供给传感器辅助油箱( G292 )

00441 燃料供给传感器辅助油箱( G293 )

00442 燃油泵接线柱87F

00443 燃油泵保险丝: 辅助油箱( S266 )

00444 燃油泵控制: 辅助油箱

00445 Pump for Haldex-Coupling ( V181 )

00446 Precharge Pump ON

00447 Precharge Pump OFF

00448 AWD 全轮驱动离合器接合

00449 AWD 全轮驱动离合器分离

00450 发动机过热导致功能限制

00454 AWD 全轮驱动监控器

00455 控制单元: 存取和开始控制: 舒适系统CAN ( J518 ) 00456 控制单元: 存取和开始控制( J518 )

00457 控制单元: 网络接口( J519 )

00458 控制单元: 电瓶监控( J367 )

00459 控制单元: 显示和输入: 前( J523 )

00460 控制单元: 显示和输入: 后( J524 )

00461 控制单元: 坐椅存储器: 乘客侧( J521 )

00462 控制单元: 坐椅存储器: 后部( J522 )

00463 控制单元: DSP ( J525 )

00464 控制单元: 收音机/导航系统显示( J503 )

00465 控制单元: 电话/通讯( J526 )

00466 控制单元: 转向电器( J527 )

00467 TV 调谐器( R78 )

00468 CD-ROM 驱动器( R92 )

00469 显示数据总线

00470 舒适系统数据总线

00471 控制单元: Elect. Regulated Dampers ( J250 )

00472 控制单元: 制动助力( J539 )

00473 控制单元: 电子制动/手制动( J540 )

00474 控制单元: 电子防盗器

00475 控制单元: 滑动车门

00476 控制单元: 燃油泵( J538 )

00477 控制单元: 显示和输入: 舒适系统CAN: 前( J523 ) 00478 控制单元: 显示和输入: 舒适系统CAN: 后( J524 ) 00479 控制单元: 遥控/中央门锁( J276 )

00480 控制单元: 仪表板信息系统CAN ( J285 )

常用的几种氦质谱检漏方法(1)

书山有路勤为径,学海无涯苦作舟 常用的几种氦质谱检漏方法(1) 氦质谱检漏方法比较多,根据被检件的测量目的可以分为两种类型,一种是漏点型,另一种是漏率型;在实际检验过程中要根据检验的目的选用最合理的方法, 要以被检器件的具体情况而定,灵活运用各种检漏方法。 1、测定漏点型氦质谱检漏方法确定漏点型既是确定要检部件的具体漏点或漏孔的位置,在大部件或大型部件中较为常见,如卫星、导弹弹体、弹头、输气管道、气罐、油罐、锅炉等。 1.1、喷氦法氦质谱检漏方法这是最常用的一种方法,通常用于检测体积相对较小的部件,将被检器件和仪器连通,在抽好真空后,在被检器件可能存在漏孔的地方(如密封接头,焊缝等) 用喷枪喷氦,如图4 所示,假如被检器件某处有漏孔,当氦喷到漏孔上时,氦气立即会被吸入到真空系统,从而扩散到质谱室中,氦质谱检漏仪的输出就会立即有响应,使用这种方法应注意:氦气是较轻的惰性气体,在喷出后会自动上升,为了准确的在漏孔位置喷氦,喷氦时应自上而下,由近至远(相对检漏仪位置) ,这是因为在喷下方时氦气有可能被上方漏孔吸入,就很难确定漏孔的位置; 再者漏孔离质谱室的距离检漏仪反应时间也不同,因此喷氦应先从靠近检漏仪的一侧开始由近至远来进行。 图4 喷氦法检漏示意图 在检测较大部件时要借助机械泵进行真空预抽,就可以提高检漏效率和时间,如图5 所示,喷氦法在检查那些结构比较复杂的,密封口和焊缝又比较多而且挤在一起的小容器时,由于氦喷出后会很快扩散开来,往往不容易准确地确定漏隙所在的部位,要采取从不同角度喷氦,仔细观察反应时间上的差别和将已发现的漏孔用真空封泥暂时封起来等办法,就可以把漏孔逐个检出。

真空检漏常用方法和技巧

真空检漏1 一、概述1.概漏的基本概念真空检漏就是检测真空系统的漏气部位及其大小的过程。漏气也叫实漏,是气体通过系统上的漏孔或间隙从高压侧流到低压侧的现象。虚漏,是相对实漏而言的一种物理现象。这种现象是由于材料放气、解吸、凝结气体的再蒸发、气体通过器壁的渗透及系统内死空间中气体的流出等原因引起真空系统中气体压力升高的现象。气密性是表征真空系统器壁防止气体渗透的性能,它包括通过漏孔(或间隙)的漏气和材质的渗气。最小可检漏率是指某种检漏方法能够检测出的漏率的最小值。最佳灵敏度是指检漏仪器或检漏方法在最佳条件下所能检测出的最小漏率。对于检漏仪器来讲,最佳灵敏度又称作仪器灵敏度。检漏灵敏度是指在具体条件下,某种检漏方法所能检测出的最小漏率。检漏灵敏度又称作有效灵敏度。反应时间,即从检漏方法开始实施(如开始喷吹示漏气体)到指示方法(如仪表)做出反应的时间。消除时间,即从检漏方法停止(如停止喷吹且开始抽出示漏气体)到指示方法的指示消失的时间。漏率,即单位时间内流过漏孔(包括间隙)的气体量。2.漏孔、漏率及其单位真空技术中所指的漏孔,由于尺寸微小、形状复杂、形式多样(如图1所示),无法用几何尺寸表示其大小。所以一般用等效流导或漏气速率(简称为漏率)表示漏孔的大小。用漏率表示漏孔大小时,如果不加特殊说明,则是指在漏孔入口压力为×105Pa,出口压力低于×103Pa,温度为296士3K的标准条件下,单位时间内流过漏孔的露点温度低于248K的空气的气体量。漏率的单位是帕斯卡×立方米/秒,记为Pam3/s。为了方便,有时用帕斯卡×升/秒,记为PaL/s。3.最大容许漏率真空系统漏气是绝对的,不漏气是相对的在真空检漏技术中所指的“漏”是和最大容许漏率的概念联系在一起的。对于动态真空系统,只要其平衡压力能够达到所要求的真空度,这时即使存在着漏孔,也可以认为该系统的漏率是容许的,该情况下系统的漏率称为最大容许漏率。动态真空系统的最大容许漏率qLmax应满足qLmax≤1/10PwS (1) 式中Pw----系统工作压力S----系统的有效抽速对于静态真空系统,要求在一定时间内,其压力维持在容许的压力以下,这时即使存在着漏孔,同样叮以认为该系统的漏率是容许的,该情况下系统的漏率称为最大容许漏率。如果要求在时间t内,容积为V的系统的压力由p 升至pt,则其最大容许漏率qLmax应满足qLmax≤(pt-p)V/t (2) 各种真空设备的

制冷系统泄露的原因分析与处理办法

制冷系统泄露的原因分析与处理办法 制冷系统是制冷剂流经的设备与管道的总称,包括压缩机、冷凝器、节流装置、蒸发器、管道及附属设备,它是空气调节设备,冷却、冷藏设备的主要组成系统。 制冷系统泄漏是空调制冷设备运行中较为常见的故障,一旦发生不仅会影响设备的正常使用,而且还可能造成压缩机的严重故障,本文从制冷系统的密封方式入手分析了导致制冷系统密封失效的原因,以及不同工况下制冷系统泄漏的判断方法,在此基础上提出了一种处理制冷系统泄漏故障的作业方法及作业程序。 1、制冷系统的密封方式与气密性失效 制冷系统泄漏是指系统的气密性失效,导致系统内制冷剂外溢,外界空气和水分通过泄漏点进入制冷系统,造成制冷系统无法正常工作的一种故障现象。制冷系统泄漏是空调、制冷设备运行中一种较为常见的故障,故障发生的初期表现为机组制冷量下降,进而会造成机组频繁停机,若不及时处理会造成压缩机烧毁的严重后果。要想避免制冷系统在运行过程中发生泄漏,必须了解制冷系统的密封方式,只有密封方式出了问题才会导致制冷系统泄漏。以下列出了制冷系统中各部位的密封方式及发生泄漏的原因。 1)制冷系统的密封方式及泄漏的原因 2)密封方式常见部位泄漏的原因 3)焊接系统配管裂纹、砂眼、松脱、断裂 4)螺纹连接压力检测与控制设备接口松动,密封面氧化,喇叭口开裂 5)橡胶密封各类针阀的密封橡胶老化,破损,变形

6)金属薄膜密封电磁阀膜片破损 7)填料密封各类截止阀松动,磨损 8)在现场检修中,维修人员往往把检查的重点放在系统配管焊缝上,容易忽视,甚至不知道对其他密封方式的检查,造成漏检。维修质量达不到要求造成重复性修理,严重影响空调设备的正常使用。 2、制冷系统泄漏的判定方法 空调机组运用过程中可以通过以下两种方法来判断制冷系统是否发生了泄漏。 1)观察法:停机状态下检查制冷系统焊缝、螺纹连接部位、各类阀件密封部是否漏油(积尘),若上述部位有油渍(积尘)即可判定该部位有泄漏。 2)测量法:机组运行状态下,机组低压低于2公斤,或压缩机的运行电流小于额定电流的70%也可判定是制冷系统泄漏。 3、制冷系统泄漏的处理程序 制冷系统泄漏的处理程序是: 1)先检漏找出泄漏点; 2)针对不同的密封方式对泄漏点进行处理。 在维修工作中,我们通常用压力检漏的方法来查找泄漏点,所谓压力检漏是向制冷系统中充注一定压力的干燥、安全气体来查找漏点的操作方法。 按充注气体成分不同压力检漏分为:氮气检漏和混合气体检漏(氮气+少量制冷剂),前者适用于用肥皂水来查找系统的漏点,后者适用于用肥皂水或电子检漏仪来查找系统的漏点。按充注气体的压力高低不同压力检漏又可分为高压系统检漏、低压系统检漏、高低压混合检漏。

桩基检测的7种方法

桩基检测的7种方法 桩基检测,分为桩基施工前和施工后的检测:施工前,为设计提供依据的试验桩检测,主要确定单桩极限承载力;施工后,为验收提供提供依据的工程桩检测,主要进行单桩承载力和桩身完整性检测。 桩基检测的7种方法 1单桩竖向抗压静载试验 单桩竖向静载荷试验是指将竖向荷载均匀的传至建筑物基桩上,通过实测单桩在不同荷载作用下的桩顶沉降,得到静载试验的Q—s曲线及s—lgt等辅助曲线,然后根据曲线推求单桩竖向抗压承载力特征值等参数。 目的确定单桩竖向抗压极限承载力;判定竖向抗压承载力是否满足设计要求;通过桩身应变、位移测试,测定桩侧、桩端阻力,验证高应变法的单桩竖向抗压承载力检测结果。 2单桩竖向抗拔静载试验

在桩顶部逐级施加竖向抗拔力,观测桩顶部随时间产生抗拔位移,以确定相应的单桩竖向抗拔承载力的试验方法。 目的确定单桩竖向抗拔极限承载力;判断竖向抗拔承载力是否满足设计要求;通过桩身应变、位移测试,测定桩的抗拔侧阻力。 3单桩水平静载试验 采用接近水平受力桩的实际工作条件的方法确定单桩水平承载力和地基土水平抗力系数或对工程桩水平承载力进行检验和评价的试验方法。单桩水平载荷试验宜采用单向多循环加卸载试验法,当需要测量桩身应力或应变时宜采用慢速维持荷载法。 目的确定单桩水平临界和极限承载力,推定土抗力参数;判定水平承载力或水平位移是否满足设计要求;通过桩身应变、位移测试,测定桩身弯矩。 4钻芯法 钻孔取芯法主要是采用钻孔机(一般带10mm内径)对桩基进行抽芯取样,根据取出芯样,可对桩基的长度、混凝土强度、桩底沉渣厚度、持力层情况等作清楚的判断。

目的测检灌注桩桩长、桩身混凝土强度、桩底沉渣厚度,判断或鉴别桩端持力层岩土性状,判定桩身完整性类别。 5低应变法 低应变检测法是使用小锤敲击桩顶,通过粘接在桩顶的传感器接收来自桩中的应力波信号,采用应力波理论来研究桩土体系的动态响应,反演分析实测速度信号,频率信号,从而获得桩的完整性。 目的检测桩身缺陷及其位置,判定桩身完整性类别。 6高应变法 高应变检测法是一种检测桩基桩身完整性和单桩竖向承载力的方法,该方法是采用锤重达桩身重量10%以上或单桩竖向承载力1%以上的重锤以自由落体击往桩顶,从而获得相关的动力系数,应用规定的程序,进行分析和计算,得到桩身完整性参数和单桩竖向承载力,也称为Case法或Cap-wape法。 目的判定单桩竖向抗压承载力是否满足设计要求;检测桩身缺陷及其位置,判定桩身完整性类别;分析桩侧和桩端土阻力;进行打桩过程监控。 7声波透射法

空调制冷系统压力的检查..说课材料

空调制冷系统压力的检查 一、内容及目的 1、将压力表组正确安装并连接到制冷系统,正确检测制冷系统高、低压力。 2、能根据检测的压力确定系统工作状况,分析系统可能存在的故障。 二、技术标准及要求 1、当发动机预热后,在下列条件达到稳定时,可从压力表组读取压力值。 1)将开关设定在内循环状态下,空气进口处温度为30—35℃; 2)发动机在1250r/min下运转: 3)鼓风机速度控制开关位于高速(Ⅲ)位置; 4)温度控制开关位于最冷(COOL)位置。 2、R134a制冷系统功能正常时的表读数为:低压侧0.15—0.25MPa;高压侧l.37—1.57MPa。 三、器材和用具 空调系统性能良好的实车若干辆、压力表组若干套。 四、注意事项 1、R12与R134a不可使用同一个压力表组。 2、检查过程中应注意旋转件,以免受伤。 3、压力表组的高、低压管位置不能接反。 五、操作步骤 1、卸掉系统高、低压管路上的检修阀护帽。 2、压力表组高、低压侧手动阀都关闭,蓝色的低压侧软管接低压检修阀,红色的高压侧软管接高压检修阀。 3、起动发动机,调整发动机转速至1250r/min,启动空调器,将有关控制器调至最凉位置(风机亦应在最高速),按需要使发动机温度正常(约运行5—l0min)后,进行检测。 4、压力表的读数,高、低压侧压力均很低,说明制冷剂不足。如空调系统工作一段时间出现

5、压力表的读数,高、低压侧压力均过高,很可能是制冷剂过多引起,应从低压侧放出一部分制冷剂,直到压力表显示规定压力为止。如开始时正常,后来出现上述现象,这是由于冷凝器散热差造成的。可检查冷凝器散热片是否堵塞、风扇传动带是否过松,风扇转速是否正常,如是应于排除。 6、经上述方法排除后,高、低压侧压力还是高,可能是加注制冷剂过程中没有将空气抽尽,系统内有空气,可更换干燥剂,清洁冷冻润滑液,重新加注制冷剂。 7)压力表读数其低压侧偏高,高压侧偏低,如增加发动机转速,高低压变化都不大,这种情况一般是压缩机工作不良造成。应检查压缩机内阀片是否损坏,活塞及环是否磨损,并予以排除。 8)压力表读数其低压侧出现真空,高压侧压力过低,这种情况多出现在膨胀阀感温包内的制冷剂完全泄漏,使膨胀阀打不开,制冷剂不流动,系统不能制冷。排除的办法是更换或拆修膨胀阀。 9)检测完毕后,将发动机熄火,卸掉压力表组,把检修阀的护帽旋回。

精编【汽车行业类】汽车空调制冷系统的检漏

【汽车行业类】汽车空调制冷系 统的检漏

制冷系统一般维修方法——汽车空调制冷系统的检漏 瑞风商务车空调培训手册 - 68 - 汽车空调制冷系统的检漏 1.制冷系统常见泄漏部位 汽车空调系统工作条件比较恶劣,其制冷系统一 直随汽车工作在振动的工况工作,极易造成部件、管 道损坏和接头松动,使制冷剂发生泄漏。 汽车空调系统泄漏的常发部位 部 件 泄漏常发部位 部 件 泄漏常发部位 冷凝器 ① 冷凝器进管和出管连接处 ② 冷凝器盘管 制冷剂管道 ① 高、低压软管 ② 高、低压软管各接头处 蒸发器 ① 蒸发器进气管和出口管连接处 ② 蒸发器盘管 ③ 膨胀阀 压缩机 ① 压缩机油封 ② 压缩机吸排气阀处 ③ 前后盖密封处 ④ 与制冷剂管道接头处 储液干燥瓶 ① 熔塞 ② 道接头喇叭口处 2.制冷系统常见检漏方法 制冷剂的检漏有目测检漏、肥皂水检漏、卤化物 检漏仪检漏、电子检漏仪检漏、染料检漏、真空检漏和加压检漏等方法。其中卤化物检漏仪只能用于R12、R22等制冷剂的检漏,对R134a 、R123等不

含氯离子的新型制冷剂无效果。电子检漏仪有三种,适用R12、适用R134 a、同时适用R12与R134 a (可分两档使用),使用时要注意。 维修阀泄漏和丢失维修阀的保护帽是导致制冷剂泄漏的重要原因之一。在一般轿车中,若丢失维修阀保护帽,每年从维修阀处漏失的制冷剂可能有0.45kg之多,故应对维修阀进行检漏,并且维修阀一定要盖紧保护帽。

制冷系统一般维修方法——汽车空调制冷系统的检漏 瑞风商务车空调培训手册 - 68 - ? 目测检漏 因为汽车空调中所采用的压缩机油(冷冻油)是与制冷剂互溶的,因而可根据制冷系统及其连接软管等零件的表面和连接处出现油迹,判断有制冷剂逸出。 ? 肥皂水检漏 要想确定细微漏点,皂泡是个比较有效的方法。有些漏点局部凹陷,试漏灯或电子检测器械很难进入,要想确定泄漏的准确位置,应采用皂泡检漏。 将有一定浓度的肥皂水(可用肥皂削碎,也可用肥皂粉)涂布在受检处。若零件表面有油迹,要事先擦净。若检查接头处,要整圈均匀涂上。仔细全面地观察,若有气泡或鼓泡,则可判为有泄漏。在制冷系统低压侧管道检漏,必须使压缩机不作;在高压侧检漏时,就不受限制。关键是肥皂水的浓度要掌握好,太稀、太浓都不行。这种方法比较经济、实用,适用于暴露在外表,人眼能看得到的部位,但精度较差,不能检查微漏,对找出针眼大小的泄漏最有效。 ? 卤化物检漏仪检漏。 只能测氟里昂制冷剂(如R12),不能用于 R134a 。该方法比较经济(检漏仪的外观详见汽车空 调常用维修工具章节)。 首先是调整好试漏灯,具体步骤是: 打开节气门,点燃气体,调节火焰,高 度应在反应板之上12.7mm 左右为宜; 此火焰高度应烧至铜反应板变为樱红 色为止; 降低火焰高度,使其在反应板之上 6.3mm 或和反应板持平。 其次应根据火焰颜色,判定泄漏程度;如 有制冷剂出现,反应板之上的火焰颜色应 发生变化; 淡蓝色表明无制冷剂泄漏; 火焰的边缘出现淡黄,是轻微泄漏的象 征; 黄色,表示有少量的泄漏; 红紫→蓝色,制冷剂大量泄漏; 紫色,制冷剂严重泄漏,其泄漏量过大时, 可使火焰熄灭。 最后是查找漏点,方法是:

3汽车空调制冷系统的检漏

3汽车空调制冷系统的检漏1.制冷系统常见泄漏部位 汽车空调系统工作条件比较恶劣,其制冷系统一直随汽车工作在振动的工况工作,极易造成部件、管道损坏和接头松动,使制冷剂发生泄漏。 汽车空调系统泄漏的常发部位 2.制冷系统常见检漏方法 制冷剂的检漏有目测检漏、肥 皂水检漏、卤化物检漏仪检漏、电子检漏仪检漏、染料检漏、真空检漏和加压检漏等方法。其中卤化物检漏仪只能用于R12、R22等制冷剂的检漏,对R134a、R123等不含氯离子的新型制冷剂无成效。电子检漏仪有三种,适用R12、适用R1 34 a、同时适用R12与R134 a(可分两档使用),使用时要注意。 修理阀泄漏和丢失修理阀的爱护帽是导致制冷剂泄漏的重要缘故之一。在一样轿车中,若丢失修理阀爱护帽,每年从修理阀处漏失的制冷剂可能有0.45kg之多,故应对修理阀进行检漏,同时修理阀一定要盖紧爱护帽。

目测检漏 因为汽车空调中所采纳的压缩机油(冷冻油)是与制冷剂互溶的,因而可按照制冷系统及其连接软管等零件的表面和连接处显现油迹,判定有制冷剂逸出。 肥皂水检漏 要想确定细微漏点,皂泡是个比较有效的方法。有些漏点局部凹陷,试漏灯或电子检测器械专门难进入,要想确定泄漏的准确位置,应采纳皂泡检漏。 将有一定浓度的肥皂水(可用肥皂削碎,也可用肥皂粉)涂布在受检处。若零件表面有油迹,要事先擦净。若检查接头处,要整圈平均涂上。认真全面地观看,若有气泡或鼓泡,则可判为有泄漏。在制冷系统低压侧管道检漏,必须使压缩机不作;在高压侧检漏时,就不受限制。关键是肥皂水的浓度要把握好,太稀、太浓都不行。这种方法比较经济、有用,适用于暴露在外表,人眼能看得到的部位,但精度较差,不能检查微漏,对找出针眼大小的泄漏最有效。 卤化物检漏仪检漏。 只能测氟里昂制冷剂(如R1 2),不能用于R134a。该方法比较经济(检漏仪的外观详见汽车空调常用修理工具章节)。 第一是调整好试漏灯,具体步骤是: 打开节气门,点燃气体,调剂火焰,高度应在反应板之上12.7m m左右为宜; 此火焰高度应烧至铜反应板变为樱红色为止; 降低火焰高度,使其在反应板 之上6.3mm或和反应板持平。 其次应按照火焰颜色,判定泄漏程度;如有制冷剂显现,反应板之上的火焰颜色应发生变化; 淡蓝色表明无制冷剂泄漏; 火焰的边缘显现淡黄,是轻微泄漏的象征; 黄色,表示有少量的泄漏; 红紫→蓝色,制冷剂大量泄漏; 紫色,制冷剂严峻泄漏,其泄漏量过大时,可使火焰熄灭。 最后是查找漏点,方法是: 移动导漏软管,使其开口依次放在系统各个接头下部,还要检查密封和操纵器;

加工中心定位精度检测的七种方式

加工中心定位精度检测的七种方式 数控加工中心定位精度,是指机床各坐标轴在数控装置控制下运动所能达到的位置精度。数控加工中心的定位精度又可以理解为机床的运动精度。普通机床由手动进给,定位精度主要决定于读数误差,而数控机床的移动是靠数字程序指令实现的,故定位精度决定于数控系统和机械传动误差。机床各运动部件的运动是在数控装置的控制下完成的,各运动部件在程序指令控制下所能达到的精度直接反映加工零件所能达到的精度,所以,定位精度是一项很重要的检测内容。 1、直线运动定位精度检测 直线运动定位精度一般都在机床和工作台空载条件下进行。按国家标准和国际标准化组织的规定(ISO标准),对数控机床的检测,应以激光测量为准。在没有激光干涉仪的情况下,对于一般用户来说也可以用标准刻度尺,配以光学读数显微镜进行比较测量。但是,测量仪器精度必须比被测的精度高1~2个等级。 为了反映出多次定位中的全部误差,ISO标准规定每一个定位点按五次测量数据算平均值和散差-3散差带构成的定位点散差带。 2、直线运动重复定位精度检测 检测用的仪器与检测定位精度所用的相同。一般检测方法是在靠近各坐标行程中点及两端的任意三个位置进行测量,每个位置用快速移动定位,在相同条件下重复7次定位,测出停止位置数值并求出读数最大差值。以三个位置中最大一个差值的二分之一,附上正负符号,作为该坐标的重复定位精度,它是反映轴运动精度稳定性的最基本指标。 3、直线运动的原点返回精度检测 原点返回精度,实质上是该坐标轴上一个特殊点的重复定位精度,因此它的检测方法完全与重复定位精度相同。 4、直线运动的反向误差检测 直线运动的反向误差,也叫失动量,它包括该坐标轴进给传动链上驱动部位(如伺服电动机、伺趿液压马达和步进电动机等)的反向死区,各机械运动传动副的反向间隙和弹性变形等误差的综合反映。误差越大,则定位精度和重复定位精度也越低。 反向误差的检测方法是在所测坐标轴的行程内,预先向正向或反向移动一个距离并以此停止位置为基准,再在同一方向给予一定移动指令值,使之移动一段距离,然后再往相反方向移动相同的距离,测量停止位置与基准位置之差。在靠近行程的中点及两端的三个位置分别进行多次测定(一般为7次),求出各个位置上的平均值,以所得平均值中的最大值为反向误差值。 5、回转工作台的定位精度检测

油罐检漏检测

油罐检漏离线检测 油罐检漏离线检测 一. 油罐底板试漏方法 油罐底板在建成和维修以后必须进行检漏。常用的方法有:真空箱试漏法、漏磁扫描探伤、气体检漏和充水试压等方法。 1.真空试漏法 用薄板做成无底的长方形盒子(图),盒顶部严密地镶嵌一块厚玻璃,盒底四周边沿包有不透气的海绵橡胶,使盒子严密地扣在底板上。盒内用反光的白漆涂刷。盒子上装抽气短管和进气阀。试验焊缝时,先在焊缝上涂肥皂水,再将真空盒扣上,用真空泵将盒内抽成55kPa的真空度,观察盒内有无气泡出现,如有气泡,应作出标志加以焊补。 常被用来检查焊缝,特别是圆周焊接部分,不常用于整个罐底。 2. 气体检测方法 氦检漏仪也被用于埋地管线和罐底的检漏,它检测埋地管线时,不用清扫油品。罐底的检测步骤为,首先将氦气注入到罐底以下,然后在罐内侧检测是否存在氦气。这种办法被证明在泄漏点定位十分有效。但是它需要在罐底钻孔以注入气体。最重要的问题是气体必须能够扩散到罐底的所有区域,但是由于阻碍和渗透的不均匀性,这是不可能的。气体的扩散会遇到两个难题:①罐壁的重量会使气体往罐边缘部分的扩散很困难,②当一种粘性产品曾经在罐底渗漏,它会阻止气体的运动。气体扩散的难题会导致不能检测出所有的泄漏点。 3.氨气渗漏法 ①沿罐底板周围用粘土将底板与基础间的间隙堵死,但应对称地留出4~6个孔,以检查氨气的分布情况。②在底板中心及周围应均匀地开出3~5个直径18~20mm的孔,焊上直径20~25mm的钢管,用胶管接至氨气瓶的分气缸。③在底板焊缝上涂以酚酞—酒精溶液。其成分(质量比)为:酚酞4%,工业酒精40%,水56%。天气寒冷时,应适当提高酒精浓度。④向底板下通入氨气,用试纸在粘土圈上的孔洞处检查,验证氨气在底板下已分布均匀后即开始检查焊缝表面,此时在焊缝上刷酚酞—酒精溶液,如呈现红色,即表示有氨气漏出,用铅油标出漏处。⑤底板通氨气时,附近严禁动火。底板补焊前,须用压缩空气将氨气吹净,并经检查合格后方可进行补焊。 4. 水压试验中的泄漏检测 水压试验是一种结构试验,仅仅是在靠近罐壁的地方进行了大维修时才用。染料可以用来帮助人们定位泄漏点。但是即使在水里添加了染料,也不能当作检漏。大部分罐底的泄漏渗透不到罐壁以外,而是渗透到罐底土壤下面,在罐外根本看不出来。在水压试验中进行质量测量使其变成一种有效的检漏方法。用2~3天的时间,就可以确定油罐是否存在泄漏。水压试验中可仅用6~10英尺的水。 5. 漏磁扫描探伤 金属储罐底板的腐蚀状况,可用专用的检测仪器——磁涡流扫描仪,其原理是漏磁法,仪器上装有强磁铁,磁铁之间装有磁场强渡传感器,当底板有缺陷时,磁场分布就会发生变化,传感器就能检测到这种磁场变化。该仪器能够准确测定腐蚀的深度、面积以及裂纹的长度。

最新制冷系统检漏方案

最新制冷系统检漏方案—氮氢检漏 该帖被浏览了538次| 回复了1次 氢气检漏法是一种新型的低成本检漏技术,本文介绍了其工作原理,与目前普遍使用的氦气检漏技术的对比,以及该技术在国内外制冷、空调行业的应用现状与 展望。 一、氢气检漏法的基本原理 1、氢气检漏法的基本原理 氢气检漏法是一种用5%的氢气和95%的氮气的混合气作为示踪气体进行检漏,称作氢氮混合气检漏法,或氢气检漏法。5%氢气与95%氮气的混合气体是不可燃的(ISO10156国际标准),无毒性和腐蚀性,也不会对设备和环境产生不利影响。氢气作为检漏使用的示踪元素,有着很多独一无二的优点。 氢的分子量与氦气相近,是所有化学元素中,分子量最小、最轻的元素,有很好的扩散性,逃逸性很强,吸附及粘滞性很低。由于氢分子移动速度要高于其他分子,因此使用安全的低浓度氢气作为示踪气体,可以有着更快的响应速度和更好的检漏精度。基本工作原理是使用专门开发的氢气传感器,它只对氢气有响应信号,而对其他气体没有响应,属于唯一性检漏性检漏方法。一旦出现信号响应,说明有氢气通过漏孔进入被检件中,从而指示漏孔的位置与大小。同时由于氢气在一般环境中的含量浓度都非常低,所以不会因本底污染而导致误报警。 2、氢气检漏法主要设备 (1)、检漏仪: 采用上述工作原理制造的专用氢气检漏仪,由于氢气的上述性质,其灵敏度可以达到与氦检相同水平。 德国VULKAN LOKRING公司最新款台式氮氢检漏仪MGLD3000 (2)、示踪气体充注控制器:对于批量生产的用户,最好采用示踪气体充注控制器进行抽真空/充气/排气操作,可以完成对检测管道的充气和排气过程自 动化控制。 3、氢气检漏法工艺和方法 批量生产的用户采用上述控制器进行示踪气体的充注,达到收到压力后控制器会给出提示,这时操作人员即可进行检漏操作,然后通过控制器把气体排出。

高效过滤器检漏方法及标准(最全版)

高效过滤器检漏方法及标准大全 阅读目录: 1.高效过滤器的检漏方法 1.1.钠焰法 1.1. 2.测试原理 1.2.计数扫描法 1.2.3 .实际存在的问题 1.2.5.DOP粒子扫描正压检漏法 1.3.油雾法 1.4 .粒子计数器法 2.高效过滤器PA0检漏方法的简介 2.1.目的和原理 2.2.发烟的方法 2.3.两种发烟方法的比较 24检测PA0气溶胶浓度仪器 2.5.PAO气溶胶 26安装完后的高效过滤器PA0检漏操作的解析 3.高效过滤器的使用寿命 4.公司简介 5.相关阅读 摘要 本文主要介绍了高效过滤器检漏的方法和原理,分为钠焰法、计数扫描法、油雾法、粒子计数器法以及重点介绍高效过滤器PAO检漏方法和检测PAO气溶胶浓度的仪器,并介绍高效过滤器的使用寿命与洁净室综合评定测试。 关键词 高效过滤器检漏检测方法PAO检漏DOP钠焰法计数扫描法油雾 法粒子计数器气溶胶 1.高效过滤器的检漏方法

1.1.钠焰法 1.1.1.原理: 钠焰法原理是将氯化钠水溶液喷雾、干燥形成质量中值直径约为0.4呻的氯化钠气溶胶作为试验尘。在被测高效滤料的前后进行含尘空气采样,并引到钠火焰光度计内,测出与含尘浓度相关的光电流值,从而算出滤料的透过率。 1.1. 2.测试原理 试验尘源为单分散相氯化钠盐雾,“量'’为含盐雾时氢气火焰的亮度,主要仪器为火焰光度计。盐水在压缩空气的搅动下飞溅,经干燥形成微小盐雾并进入风道。在过滤器前后分别采样,含盐雾气样使氢气火焰的颜色变蓝、亮度增加。以火焰亮度来判断空气的盐雾浓度,并以此确定过滤器对盐雾的过滤效率。国家标准规定的盐雾颗粒平均直径为0.4^m,但对国内现有实测结果为0.5呻。欧洲对实际试验盐雾颗粒中径的测量结果为0.65呻。随着其他检测方法的普及,欧洲已经不再使用钠焰法。国内有关部门正在修订原来的国家标准,是废止还是继续使用钠焰法,意见还没有等到落实。 1.2 .计数扫描法 1.2.1.《洁净室施工及验收规范》(JGJ71-90)中规定,被检高效过滤器必须已检测过风量,并设计风速80%-120%之间运行,对于被检高效过滤器上风侧的颗粒浓度对受控粒径对于20.5呻粒子的浓度,必须>3.5x104pc/L,对受控粒径>0.1 gm的粒子浓度,必须>3.5x106- 3.5x107pc/L。使用最小采样量>1L/min的粒子计数器扫描法,对高效过滤器安装接缝和主断面进行扫描检测,检测点应距被测表面20-30mm,测头以5-20mm/s的速度移动,对被检过滤器整个断面、封胶头和安装框架处进行扫描。 1.2.2.在《洁净室施工及验收规范》中规定,由高效过滤器下风侧泄漏浓度换算成的穿透率来衡量是否合格,其合格标准如下。对于高效过滤器: k,=1_n k=c2/c1 k'表示高效过滤器的额定透过率;n表示高效过滤器的额定效率;k表示高效过滤器的实际泄漏率;C1表示上风侧含尘浓度;c2表示高效过滤器下风侧含尘浓度。 规范规定,高效过滤器的实际泄漏率不得大于额定透过率的2倍,即k<2 k'… 1.2.3 .实际存在的问题

供水管道检漏的几种方法

供水管道检漏的几种方法作者:管道修补器,管道连接器发表时间:2010-2-26 18:26:25 地市级相当一部分在改变为主动检漏法,目前我国大城市已基本采用主动检漏法。但县市级大部分仍在采用主动检漏法。检漏方法之中绝大部分都使用音听检漏法,或相关检漏法,有些水司也采用了漏水声自动监测法或分区检漏法,随着供水管网管理的规范和技术的进行,许多水司会逐步引进更为先进的检漏仪器和采用更为有效和快速的检漏法,这对快速降低漏失,控制漏耗将起到积极的作用。 音听检漏法 前者用于查找漏水的线索和范围,音听检漏法分为阀栓听音和地面听音两种。简称漏点预定位;后者用于确定漏水点位置,简称漏点精确定位。 根据使用仪器的不同,漏点预定位是指听漏棒、电子听漏仪或噪声自动记录仪来探测供水管道漏水范围的方法。操作的方法也不尽相同,目前止,实用的有效诉,本钱低的预定位技术主要有阀栓听音法,当然类同于GPL99GPL95包括PA RMA LOGA等方法,虽然也能用当其综合效果不好,而且本钱高。 1阀栓听音法 从而确定漏水管道,阀栓跌间法是用听漏棒或电子放大听漏仪直接在管道表露点(如消火检、阀门及暴露的管道等)听测由漏水点产生的漏水声。缩小漏水检测范围。金属管道漏水声频率一般在3002500Hz 之间,而非金属管道漏水声频率在100700Hz 之间。听测点距漏水点位置越近,听测到漏水声越大;反之,越小。 2地面听音法 用电子放大听漏仪在地面听测地下管道的漏水点,当通过预定位方法确定漏水管段后。并进行精确定位。听测方式为沿着漏水管道走向以一定间距逐点听测比较,当地面拾音器靠近漏水点时,听测到漏水声越强,漏水点在上方达到最大。

第7讲_真空检漏

42  真 空 V acuum2V acuum T echno logy and M aterial 第5期 1997年10月 真空技术及应用系列讲座 东北大学真空工程博士点,博士导师杨乃恒先生主持 第一讲:真空科学的发展及其应用李云奇 95(2) ………………………………………… 第二讲:真空物理基础张世伟 95(3) ……………………………………………………… 第三讲:机械真空泵(一)(二)(三)(四)(五)(六)…张以忱95(4)、(5)、(6)、96(1)、(2)、(3) 第四讲:蒸汽流真空泵姚民生 96(4) ……………………………………………………… 第五讲:气体捕集式真空泵徐成海 96(5) ………………………………………………… 第六讲:真空测量刘玉岱 96(6)、97(1)、(2)、(3)、(4) …………………………………… 第七讲:真空检漏 关奎之 (东北大学) 一、概述 11概漏的基本概念 真空检漏就是检测真空系统的漏气部位及其大小的过程。 漏气也叫实漏,是气体通过系统上的漏孔或间隙从高压侧流到低压侧的现象。 虚漏,是相对实漏而言的一种物理现象。这种现象是由于材料放气、解吸、凝结气体的再蒸发、气体通过器壁的渗透及系统内死空间中气体的流出等原因引起真空系统中气体压力升高的现象。 气密性是表征真空系统器壁防止气体渗透的性能,它包括通过漏孔(或间隙)的漏气和材质的渗气。 最小可检漏率是指某种检漏方法能够检测出的漏率的最小值。 最佳灵敏度是指检漏仪器或检漏方法在最佳条件下所能检测出的最小漏率。对于检漏仪器来讲,最佳灵敏度又称作仪器灵敏度。 检漏灵敏度是指在具体条件下,某种检漏方法所能检测出的最小漏率。检漏灵敏度又称作有效灵敏度。 反应时间,即从检漏方法开始实施(如开始喷吹示漏气体)到指示方法(如仪表)做出反应的时间。 消除时间,即从检漏方法停止(如停止喷吹且开始抽出示漏气体)到指示方法的指示消失的时间。 漏率,即单位时间内流过漏孔(包括间隙)的气体量。 21漏孔、漏率及其单位 真空技术中所指的漏孔,由于尺寸微小、形状复杂、形式多样(如图1所示),无法用几何尺寸表示其大小,所以一般用等效流导或漏气速率(简称为漏率)表示漏孔的大小。

供水管道检漏的主要方法和仪器

谈我国供水管道检漏的主要方法和仪器 高伟(埃德尔集团) 水世界-中国城镇水网发布时间:2006-12-22 【进入论坛】 一﹑前言 淡水是人类生存最基本的条件之一,水资源贫乏和环境污染是制约城镇供水的主要因素。供水管道漏水是对宝贵水源的浪费,他不仅增加了净水成本,而且还额外地增大了供水设施的投资费用,同时,也导致一些次生灾害。因此,保护水源,节约用水,检漏降损,已成为全人类的共识。 二﹑我国供水管道漏失状况 据中国水协1998统计,我国城市水司平均漏失率为12~13%,如果按单位管长单位时间的漏水量统计,则我国的漏水量远大于经济发达国家,具体数字见表一: 表一:单位比漏水量统计表 其中,漏失率=漏水量/供水量×100%; 单位比漏水量=年漏水量/(365×24×管长), m3/h/km,即为单位管长单位时间的漏水量。 目前我国多数城市采用被动检漏法或以此法为主,而地下管道漏水的规律是由暗漏到明漏,有时暗漏的水流入河道、下水道或电缆沟后始终成不了明漏,因此我国城市水司降低漏耗的潜力还相当大。做好检漏工作可极大地提高有效供水能力,对节约用水,提高水司的社会效益和经济效益具有重大意义。

三﹑供水管道漏水声的种类及传播 供水管道担负的任务是将净水输送到用户,以满足人们最基本的需要。然而,供水管道也会发生漏水情况,当发生时,喷出管道的水与漏口摩擦,以及与周围介质等撞击,会产生不同频率的振动,由此产生漏水声。漏水声的种类通常可分为三种: (1)漏口摩擦声:是指喷出管道的水与漏口摩擦产生的声音,其频率通常为300~2500Hz,并沿管道向远方传播,传播距离通常与水压﹑管材﹑管径﹑接口﹑漏口等有关,在一定范围内,可在闸门﹑消火栓等暴露点听测到漏水声。 (2)水头撞击声:是指喷出管道的水与周围介质撞击产生的声音,并以漏斗形式通过土壤向地面扩散,可在地面用听漏仪听测到,其频率通常为100~800 Hz之间。 (3)介质摩擦声:是指喷出管道的水带动周围粒子(如土粒,沙粒等)相互碰撞摩擦产生的声音,其频率较低,当把听音杆插到地下漏口附近时,可听测到,这为漏点最终确认提供了依据。 四﹑供水管道检漏的主要方法 由于人类对供水管道漏水的共识,先后研究了一些检漏方法,也研制一些仪器,例如,在德国﹑英国等经济发达国家通常采用的检漏方法有:音听检漏法,相关检漏法,漏水声自动监测法和分区检漏法等。前三种检漏法是靠漏口产生的声音来探测漏点的,这对无声的泄漏就没有办法了。而分区检漏法是通过计量管道流量及压力来判别有无漏水存在,就是所谓的最小流量法。目前我国通常采用被动检漏法,音听检漏法或相关检漏法,有些水司也采用了漏水声自动监测法或分区检漏法,随着供水管网管理的规范和技术的进步,许多水司会逐步引进漏水声自动监测法或分区检漏法,这对快速降低漏失,控制漏耗将起到积极的作用。 1.音听检漏法 音听检漏法分为阀栓听音和地面听音两种,前者用于查找漏水的线索和范围,简称漏点预定位;后者用于确定漏水点位置,简称漏点精确定位。 漏点预定位是指听漏棒、电子听漏仪及噪声自动记录仪来探测供水管道漏水的方法,

轿车空调检漏的方法及修复

轿车空调检漏的方法及修复 摘要:汽车空调产生制冷不足或不制冷的故障现象,大多是由制冷剂泄漏所引起的,在检漏过程中要有一个好的诊断思维和方法以外,还要做到认真、细致方可找到泄漏原因和泄漏位置,彻底完全地排除故障。 关键词:轿车空调检漏方法修复 一、前言 现在轿车都基本上都有装有空调器,在不同季节都能给驾驭员提供了一个车内舒适的环境,但当空调在长时间的工作之后也会出现各种各样的故障,尤其是制冷剂泄漏的这种现象也较为多见,所以今天我就想与大家来探讨汽车空调原理及轿车空调检漏的方法及修复。 轿车空调作为空调技术在汽车上的应用,它能创造车内环境的舒适性,保持车室内空气温度、湿度、流速、洁净度、噪声和余压等在舒适的标准范围内,不仅有利于保护乘车人员的身心健康,提高其工作效率和生活质量,而且还对增加汽车行驶安全性具有积极作用。因而,轿车空调技术正成为提高汽车市场竞争能力的重要手段之一,也成人们生活水平提高和汽车工业发展的重要标志。 二、空调工作原理 轿车空调制冷系统由压缩机、冷凝器、贮液干燥器、膨胀阀、蒸发器和鼓风机等组成。如图 1-1所示,各部件之间采用铜管(或铝管)和高压橡胶管连接成一个密闭系统。制冷系统工作时,制冷记忆不同的状态在这个密闭系统内循环流动,每个循环又分四个基本过程:

1-1汽车空调制冷系统 1、压缩过程:压缩机吸入蒸发器出口处的低温抵压的制冷剂气体,把它压缩成高温高压的气体排除压缩机。 2、放热过程:高温高压的过热制冷剂气体进入冷凝器,由于压力及温度的降低,制冷剂气体冷凝成液体,并放出大量的热。 3、节流过程:温度和压力较高的制冷剂液体通过膨胀装置后体积变大,压力和温度急剧下降,以雾状(细小液滴)排除膨胀装置。 4、吸热过程:雾状制冷剂液体进入蒸发器,因此时制冷剂沸点远低于蒸发器内温度,故制冷剂液体蒸发成气体。在蒸发过程中大量吸收周围的热量,而后低温低压的制冷剂蒸气又进入压缩机。 上述过程周而复始的进行下去,便可达到降低蒸发器周围空气温度的目的。 三、轿车空调制冷系统常发生泄漏的部位

谈我国供水管道检漏的主要方法和仪器

谈我国供水管道检漏的主要方法和仪器 2012-02-08 15:00:07 资讯来源: 一﹑前言 淡水是人类生存最基本的条件之一,水资源贫乏和环境污染是制约城镇供水的主要因素。供水管道漏水是对宝贵水源的浪费,他不仅增加了净水成本,而且还额外地增大了供水设施的投资费用,同时,也导致一些次生灾害。因此,保护水源,节约用水,检漏降损,已成为全人类的共识。 二﹑我国供水管道漏失状况 据中国水协1998统计,我国城市水司平均漏失率为12~13%,如果按单位管长单位时间的漏水量统计,则我国的漏水量远大于经济发达国家,具体数字见表一: 表一:单位比漏水量统计表 其中,漏失率=漏水量/供水量×100%; 单位比漏水量=年漏水量/(365×24×管长), m3/h/km,即为单位管长单位时间的漏水量。 目前我国多数城市采用被动检漏法或以此法为主,而地下管道漏水的规律是由暗漏到明漏,有时暗漏的水流入河道、下水道或电缆沟后始终成不了明漏,因此我国城市水司降低漏耗的潜力还相当大。做好检漏工作可极大地提高有效供水能力,对节约用水,提高水司的社会效益和经济效益具有重大意义。 三﹑供水管道漏水声的种类及传播 供水管道担负的任务是将净水输送到用户,以满足人们最基本的需要。然而,供水管道也会发生漏水情况,当发生时,喷出管道的水与漏口摩擦,以及与周围介质等撞击,会产生不同频率的振动,由此产生漏水声。漏水声的种类通常可分为三种: (1)漏口摩擦声:是指喷出管道的水与漏口摩擦产生的声音,其频率通常为300~2500Hz,并沿管道向远方传播,传播距离通常与水压﹑管材﹑管径﹑接口﹑漏口等有关,在一定范围内,可在闸门﹑消火栓等暴露点听测到漏水声。 (2)水头撞击声:是指喷出管道的水与周围介质撞击产生的声音,并以漏斗形式通过土壤向地面扩散,可在地面用听漏仪听测到,其频率通常为100~800 Hz之间。 (3)介质摩擦声:是指喷出管道的水带动周围粒子(如土粒,沙粒等)相互碰撞摩擦产生的声音,其频率较低,当把听音杆插到地下漏口附近时,可听测到,这为漏点最终确认提供了依据。 四﹑供水管道检漏的主要方法 由于人类对供水管道漏水的共识,先后研究了一些检漏方法,也研制一些仪器,例如,在德国﹑英国等经济发达国家通常采用的检漏方法有:音听检漏法,相关检漏法,漏水声自动监测法和分区检漏法等。前三种检漏法是靠漏口产生的声音来探测漏点的,这对无声的泄漏就没有办法了。而分区检漏法是通过计量管道流量及压力来判别有无漏水存在,就是所谓的最小流量法。目前我国通常采用被动检漏法,音听检漏法或相关检漏法,有些水司也采用了漏水声自动监测法或分区检漏法,随着供水管网管理的规范和技术的进步,许多水司会逐步引进漏水声自动监测法或分区检漏法,这对快速降低漏失,控制漏耗将起到积极的作用。1.音听检漏法 音听检漏法分为阀栓听音和地面听音两种,前者用于查找漏水的线索和范围,简称漏点预定位;后者用于确定漏水点位置,简称漏点精确定位。

汽车空调制冷剂泄漏七种简易检测方法

【摘要】:夏季,制冷剂泄漏是空调使用中最为常见的故障。制冷剂有的需要一年添加一次,有的可能2个月添加一次。制冷剂泄漏容易造成环境污染,另外增加车主维护车辆的费用和时间。 汽车空调制冷剂泄漏 目测检漏 发现系统某处有油迹时,此处可能为渗漏点。目测检漏简便易行,没有成本,但是有很大缺陷,除非系统突然断裂的大漏点,并且系统泄漏的是液态有色介质,否则目测检漏无法定位,因为通常渗漏的地方非常细微,而且汽车空调本身有很多部位几乎看不到。 肥皂水检漏 向系统充入10-20kgcm2压力氮气,再在系统各部位涂上肥皂水,冒泡处即为渗漏点。这种办法是目前路边修理厂最常见的检漏方法,但是人的手臂是有限的,人的视力范围是有限的,很多时候根本看不到漏点。 氮气水检漏 向系统充入10-20kgcm2压力氮气,把系统浸入水中,冒泡处即为渗漏点。这种方法和前面的肥皂水检漏方法实质一样,虽然成本低,但有明显的缺点:检漏用的水分容易进入系统,导致系统内的材料受到腐蚀,同时高压气体也有可能对系统造成更大的损害,进行检漏时劳动强度也很大,这样就使维护检修的成本上升。 卤素灯检漏 点燃检漏灯,手持卤素灯上的空气管,当管口靠近系统渗漏处时,火焰颜色变为紫蓝色,即表明此处有大量泄漏。这种方式有明火产生,不但很危险,而且明火和制冷剂结合会产生有害

气体,此外也不易准确地定位漏点。所以这种办法现在几乎没有人使用了,如果您能够看到,那可能是正处在非文明社会阶段。 气体差压检漏 利用系统内外的气压差,将压差通过传感器放大,以数字或声音或电子信号的方式表达检漏结果。此方法也是只能“定性”地知道系统是否渗漏而不能准确地找到漏点。 接车后连接丰田专用诊断仪DST-II,启动发动机,打开空调开关,发动机系统数据流显示空调开关信号及电磁离合器继电器信号一直处于OFF状态。打开前机舱盖,发现压缩机不工作,但是空调控制面板A/C指示灯并没有闪烁。该车空调诊断系统没有设计与诊断连接器(DLC)通讯,只能通过控制面板自诊断功能所提供的故障代码进行判断。 如图1所示,同时按下空调控制面板的AUTO开关和进气控制开关,将点火开关拧至ON,控制面板内的所有的运行显示器和温度设臵功能显示都应点亮,在1秒内亮灭4次后,进行记录故障输出,故障码为:11-车内温度传感器电路故障;13-蒸发器温度传感器电路故障;21-日光传感器(乘客侧)电路故障;24-日光传感器(驾驶员侧)电路故障;32-进气口(风挡位臵)传感器电路故障;33-模式(风挡位臵)传感器电路故障;43-模式控制伺服电机电路故障。清除故障码,所有故障代码都不能清除。出风口只能吹前风挡玻璃位臵和脚部位臵,面部位臵一直不能出风。 客户反映,该车已在多家维修站进行过维修,但前后历时两个多月时间始终未能确定故障原因。其他维修人员都怀疑是A/C控制面板总成故障,但是很难找到同一型号的A/C控制面板总成供他们互换,所以不敢拿出肯定的结论。 根据出现多个故障码且不能清除,初步判断主要原因可能

通风及空调系统检测验收报告单(全)

目录 通风与空调工程材料、设备出厂合格证汇总表 (3) 设备进场验收记录 (4) 设备基础验收记录 (5) 隐蔽工程验收记录 (6) 风机盘管水压试验检验记录 (8) 风管强度检验记录 (9) 风管系统漏风量测试记录 (10) 风管系统漏光检验记录 (11) 现场组装除尘器、空调机组漏风量检验记录 (13) 水系统管道强度(严密性)检验记录 (14) 空调水系统管道和冷剂管道冲(吹)洗记录 (16) 冷凝水管道通水试验记录 (17) 制冷系统气密性试验记录 (18) 净化空调系统风管清洗记录 (19) 设备单机试运转记录 (21) 阀门试验记录 (22) 风管与配件制作检验批质量验收记录表 (23) 风管与配件制作检验批质量验收记录表 (25) 风管部件与消声器制作检验批质量验收记录表 (27) 风管系统安装检验批质量验收记录表 (28) 风管系统安装检验批质量验收记录表 (30)

风管系统安装检验批质量验收记录表 (32) 通风机安装检验批质量验收记录表 (33) 风与空调设备安装检验批质量验收记录表 (35) 通风与空调设备安装检验批质量验收记录表 (37) 通风与空调设备安装检验批质量验收记录表 (38) 空调制冷系统安装检验批质量验收记录表 (40) 空调水系统安装检验批质量验收记录表 (41) 空调水系统安装检验批质量验收记录表 (42) 空调水系统安装检验批质量验收记录表 (44) 工程系统调试验收记录表 (45)

通风与空调工程材料、设备出厂合格证 及进场检验(试验)报告汇总表 B-4-1 技术负责人:质检员:年月日

设备进场验收记录 B-4-2

相关文档
最新文档