静电场与导体

静电场与导体
静电场与导体

第二章 静电场与导体

研究问题:静电学基本规律在有导体存在时的应用。

§2.1 静电场中的导体

一、 导体的静电平衡条件

1、静电平衡状态:带电体系中的电荷静止不动时,称为处于静电平衡状态。

实验表明,通过电荷在导体上的流动以建立新的平衡所需要的时间仅约10-8—10-10S 。

2、静电平衡条件:达到静电平衡时,

(1) 导体内部场强处处为零;

(2) 导体是等势体;

同时:导体外表面附近的场强与导体表面垂直,导体外表面是等势面。

二、导体上的电荷分布

1、达到静电平衡时,导体所带的电荷都分布在导体表面上,导体内部不可

能有未抵消的净电荷。这一结论可以由高斯定理和静电平衡条件证明。

(1) 实心导体。如果导体带电,电荷一定分布于表面上。

(2) 空心导体,电荷分布于导体外表面上,空腔中没有电荷。

(3) 空心导体,空腔中有电荷Q 。内表面感应电荷为-Q

2、电荷在导体外表面的面电荷分布:

(1) 一般情况,与导体形状、所带总电量及周围其它场源产生的电场

有关。

(2) 孤立导体,面电荷分布只与导体形状有关。表面曲率越大的地方,

面电荷密度越大。

三、导体表面的场强

导体表面的场强垂直于导体表面,由高斯定理可求得场强大小为 0

εσ=

E 。由此可知,导体表面电荷面密度越大的地方,电场强度也越大。

四、静电屏蔽

1、静电平衡状态下的导体空腔内的场强为零,因此空腔导体有屏蔽作用。

(1) 导体外表面上的电荷和外界电荷激发的合电场在导体内部为零,

所以放在导体空腔内的物体,将不受外电场的影响。

(2) 要屏蔽一个带电体,使其不影响外界,则必须将其放在接地的空

心导体内部。

2、物理实质:导体在电场作用下,导体中的自由电荷重新分布,导体上感

应电荷产生的场与源电荷产生的场在一特定区域内合场强处处为零,从

而使处在该区域内的物体不受电场作用。

五、尖端效应

1、在带电体尖端处,电荷面密度很大,附近场强也很大(2—3×106V/m ),

以致能使周围的空气局部击穿,产生电晕放电现象。

2、尖端效应的弊端:电晕放电使大量电荷漏失于空气中,浪费电能;对通

信线路造成干扰;电晕放电过程中产生的臭氧对绝缘物、金属等有腐蚀作用;放电时的火花会导致易燃物着火,引起爆炸。因此要设计合适的输电线半径和输电线路布局,尽量减少导线表面曲率,支架高压线的金属部件必须尽可能避免尖锐的角和棱。

3、尖端效应的应用:

(1) 避雷针

(2) 范德格拉夫起电机(空心导体电荷分布于外表面+尖端效应)

(3) 场致发射显微镜

(4) 负氧离子发生器(电晕产生的电子与氧分子结合成负氧离子)

六、 例题

计算导体周围电场——

基本原则:找出导体表面的电荷分布,这种分布使每个导体内部各点的合场

强均为零,每个导体都有一定的电势。

具体方法:通常先假定导体表面的电荷面密度为σ,再根据导体的静电平衡

条件用叠加原理与库仑定律或由高斯定理和环路定理求出σ。

例题1: 带电均匀金属平板,求两表面上的电荷单独产生电场和合场强。 S Q 2=σ 金属板内部 E=0, 外表面 0

εσ=E 例题2: 一板带电,另一板不带电,平行放置,求各表面电荷密度及场强 S Q 221==σσ S

Q 243-=-=σσ

例题3: 用导线连接两个相距甚远大小不等、电量不等的导体球,求静电

平衡时,两导体球上电荷面密度之比。 R

r r R =σσ 可见在题设条件下,面电荷密度与曲率半径成反比。

例题4: 点电荷置于不带电的导体球壳中心(R 1—R 2),求球壳的电势。 2041

R q πε?= 思考题:P96 2-1 —— 2-24

计算题:P99 2-1 —— 2-13

--------------------------------------------------------------------- §2.2 静电场的唯一性定理

一、 问题的提出:在什么条件下,静电场有唯一确定的解?

二、 定理的内容:

1、静电学中的两类典型问题——

(1) 已知每个导体的电势,求场中各点的场强或电势以及导体上电荷

的分布;

(2) 已知每个导体的总电量,求场中各点的场强或电势以及导体上电

荷的分布。

问题的实质是寻找满足边值关系的静电场分布。

2、 唯一性定理:满足边值条件的存在于空间的电场分布是唯一的。

3、 意义:既然在给定条件下静电场的分布是唯一的,那么不论用什么方法

找到的满足边值条件的解,就一定是要寻找的那个唯一真正的解。

--------------------------------------------------------------- §2.4 电容和电容器

一、 孤立导体的电容

1、孤立导体电容的定义: ?q

C = (1F=1C/V )

2、意义:C 与电荷及电势的值无关,而只与导体的大小及几何形状有关,反

映该导体在给定电势的条件下储存电量能力的大小。

二、 电容器及其电容

1、电容器:两个导体组成,两导体间的电势差与电量间的正比关系不受周

围其他带电体或导体的影响。

2、电容器电容的定义: 21??-=q

C

3、意义:电容与带电状态无关,与周围的带电体也无关,完全由电容器的

几何结构决定。电容的大小反映了当电容器两极间存在一定电势差时,极板上贮存电量的多少。

4、说明:

(1) 电容器两极板所带电荷的绝对值不相等,Q 应是用导线将两极板

相连时,自正极板流向负极板的电荷。

(2) 任何两个由电介质或真空隔开的导体面之间都有一定的电容——

分布电容。

三、 电容器电容的计算

1、平行板电容器 d S

C 0ε=

2、球形电容器 A

B B A R R R R

C -=04πε 当R B 》R A 时,A R C 04πε≈ 3、圆柱形电容器 A B R R L C ln 20πε=

四、 电容器电容的串联和并联

1、电容器的串联 特点:两端电压等于各电容器电压之和;

各电容器所带电量相等,

总电容 ∑==n i i

C C 111 2、电容器的并联 特点:电容器所带电量为各电容器电量之和;

各电容器电压相等;

总电容 ∑==n

i i C C 1

思考题:P99 2-25 2-26 2-27 2-28 2-29 2-30

计算题:P102 2-14——2-25

------------------------------------------------------------------- §2.5 静电场的能量

一、 带电导体的静电能

1、导体系的静电能 i i

i Q W ∑=?21 2、电容器的能量 C

Q CU QU W 2

2212121=== 二、 电场的能量

1、电能是电场的能量。静电能分布在静电场中;当电场随时间变化时,场

可以脱离电荷单独存在,以有限的速度在空间传播,形成电磁波。场是能量的携带者。

2、电场的能量密度 2021E ε?=

3、整个电场的能量 dV E W V

?=2021ε (总能量=固有能+相互作用能) 当场随时间变化时,此式依然正确。

三、 静电场对导体的作用力

导体表面任一面元受到的静电场力为 n e dS E dS E F d 202

121εσ== 单位面积所受到的静电场力为 n n e e E dS F d f ?ε===202

1 例题1:由电场能量密度出发计算均匀带电球壳的固有能。 R

q dV W V 2

081πε?==? 例题2:求半径为R ,带电量为q 的球形导体两半球之间的相互排斥力 22

0321R

q dF F F x x πε===? 思考题:P99 2-27 2-28 2-29 2-30

计算题:P104 2-28——2-43

静电场中的导体和电介质习题详解

习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。 设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q Q E U r r εε= = ππ; (B )01 0, 4Q E U r ε==π; (C )00, 4Q E U r ε==π; (D )020, 4Q E U r ε== π。 答案:D 解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得 00 0202 Q Q Q Q U r r r r εεεε-= + += 4π4π4π4π 2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。设地的电势为零,则球上的感应电荷q '为[ ] (A )0; (B )2 q ; (C )2q -; (D )q -。 答案:C 解:导体球接地,球心处电势为零,即000044q q U d R πεπε'=+ =(球面上所有感应电荷到 球心的距离相等,均为R ),由此解得2 R q q q d '=-=-。 3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2 200,44r Q Q E D r r εεε= =ππ; (B )22 ,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )22 00,44Q Q E D r r εε==ππ。 答案:C

电介质中电场

第九章 导体和电介质中的静电场 §9-1静电场中的导体 一.导体的静电平衡条件 1.静电感应现象 a.静电感应:外电场的作用导致导体中电荷重新分布而呈现出带电的现象 b.静电平衡状态:导体内部和表面上都没有电荷的定向移动状态 2.导体的静电平衡条件 (1).静电平衡条件: a.导体内部任何一点的场强为零 b.导体表面上任何一点的场强方向垂直于该点的表面 (2).等价条件: 静电平衡时,导体为等势体. 证:设a 和b 为静电平衡导体上任意两点 单位正电荷由a 移到b ,电场力的功为 b a b a U U l d E -=?? U ?= (1).a 、b 在导体内部: 0=E 0=?∴U (2).a 、b 在导体表面: l d E ⊥0=?∴l d E 即0=?U ----静电平衡的导体是等势体 二.静电平衡导体的电荷分布 1.导体处于静电平衡时,导体内部没有净电荷,电荷只能分布在导体表面上 证:在导体内任一点P 处取一任意小的高斯面S 静电平衡导体内0≡E ?=?∴S S d E 0 →0=∑内 S i q ----体内无净电荷 即电荷只能分布在导体表面上 2.有空腔的导体:设空腔导体带电荷Q 空腔内没有电荷时:导体内部和空腔内表面上都没有净电荷存在,电荷只分布在导体外表面 证:在导体内作一包围空腔的高斯面 S 导体内0≡E ?=?∴S S d E 0 导体的静电感应过程 静电平衡状态 + + + +

即 0=∑内 S i q ----S 内无净电荷存在 问题:会不会出现空腔内表面分布有等量 异号电荷的情况呢? 空腔内有电荷q 时:空腔内表面感应出等值异号电量-q ,导体外表面的电量为导体原带电量Q 与感应电量q 的代数和 由高斯定理和电荷守恒定律可证 3.静电平衡导体,表面附近场强的大小与 该处表面的电荷面密度成正比 证:过紧靠导体表面的P 点作垂直于导体 表面的小圆柱面,下底△S ’在导体内部 ??S S d E ???=S S d E S E ?=0 εσS ??= εσ= ∴E 4.静电平衡导体,表面曲率越大的地方,电荷面密度越大 以一特例说明: 设有两个相距很远的导体球,半径分别 为R 和r (R >r ),用一导线将两球相连 R Q U R 041πε= R R R 02 44πεσπ= εσR R = r q U r 041 πε=r r r 0244πεσπ= 0εσr r = r R R r =∴ σσ 三.导体静电平衡特性的应用 1.尖端放电 年美富兰克首先发明避雷针 2.静电屏蔽 静电屏蔽:隔绝电的相互作用,使内外互不影响的现象. a.对外电场的屏蔽 ++ ++ +

静电场静电场中的导体(精)

静电场、静电场中的导体 判断题 (×)1. 静电场中电场线可以是闭合的。 (×)2. 电场是标量场,电势是矢量场。 (×)3.静电场的高斯定理i S 01E dS q ε?=∑?中E 取决于高斯面内部的电荷。 (×)4.高斯面上的电场强度是仅仅由高斯面包围的电荷产生的。 选择题 1、关于静电场的电场线,以下说法错误的是 C (A )静电场的电场线总是从正电荷出发,到负电荷终结; (B )静电场的任何两条电场线不会相交; (C )沿静电场的电场线方向电场强度的大小减小; (D )静电场的电场线的切线方向就是该点电场强度的方向。 2、下列关于高斯定理∑??=?i S q S d E 0 1ε 说法正确的是 D (A) 若闭合曲面S 内电荷的代数和为零,则面上任一点的电场强度为零; (B) 若0=???S S d E ,则闭合曲面内一定没有电荷; (C) 由高斯定理可知,静电场的电场线是有起点和终点的; (D) 由高斯定理可知,静电场是保守力场。 3、一平行板空气电容器,极板面积为S ,极板间的距离为d ,充电至带电Q 后与电源断开,然后用力缓缓地把两极板拉开到d 2。电容器的能量( B ) (A)不变 (B )增大 (C )减小 (D )不可确定 4、在静电场中,下列说法正确的是(无答案) A 、 电势为零处,场强必为零。 B 、 场强为零处,电势必为零。 C 、 场强大小相等处,电势必相等。 D 、电势处处相等处,场强必为零。

5、关于静电场中的高斯定理??∑=?i q s d E 01ε ,下列说法正确的是( D ) A 、E 为高斯面内电荷所产生的场强,∑i q 为高斯面内电荷的代数和。 B 、E 为高斯面内电荷所产生的场强,∑i q 为高斯面内外电荷的代数和。 C 、E 为高斯面内外电荷所产生的场强,∑i q 为高斯面内自由电荷代数和。 D 、E 为高斯面内外电荷所产生的场强,∑i q 为高斯面内电荷的代数和。 7. 下列说法正确的是(B ) A 、闭合曲面上各点的电场强度都为零时,曲面内一定没有电荷 B 、闭合曲面上各点的电场强度都为零时,曲面内电荷的代数和必为零 C 、闭合曲面的电通量为零时,曲面上各点的电场强度必为零 D 、闭合曲面的电通量不为零时,曲面上任一点的电场强度都不可能为零 填空题 1.边长为a 正方体中心放置一个电荷Q ,则通过任一个正方体侧面的电通量为 0 6εQ 。 2.半径为R 的球面均匀带电,所带总电量为q ,则球内距球心距离为r (r

静电场中的导体和电介质作业

第6章 静电场中的导体和电介质 一、选择题 1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场.此后将该点电荷移至距球心r /2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪一 种情况? [ ] (A)对球壳内外电场无影响 (B)球壳内外电场均改变 (C)球壳内电场改变, 球壳外电场不变 (D)球壳内电场不变, 球壳外电场改变 2. 当一个导体带电时, 下列陈述中正确的是 [ ](A)表面上电荷密度较大处电势较高(B)表面上曲率较大处电势较高 (C)表面上每点的电势均相等(D)导体内有电力线穿过 3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ](A)导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C)导体内的电势与导体表面的电势相等 (D)导体内的场强大小和电势均是不为零的常数 4. 当一个带电导体达到静电平衡时 [ ](A)导体内任一点与其表面上任一点的电势差为零 (B)表面曲率较大处电势较高 (C)导体内部的电势比导体表面的电势高 (D)表面上电荷密度较大处电势较高 5. 一点电荷q 放在一无限大导体平面附近, 相距d , 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A) 2q (B)2 q -(C)q (D)q - 6. 在一个绝缘的导体球壳的中心放一点电荷q , 则球壳内、外表面上电荷均匀分布.若 使q 偏离球心, 则表面电荷分布情况为 [ ] (A)内、外表面仍均匀分布(B) 内表面均匀分布, 外表面不均匀分布 (C)内、外表面都不均匀分布 (D)内表面不均匀分布, 外表面均匀分布 7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来.若大球半径为m , 小球半径为n , 当静电平衡后, 两球表面的电荷密度之比σm /σn 为 [ ] (A)n m (B)m n (C)22n m (D)22m n 8. 真空中有两块面积相同的金属板, 甲板带电q , 乙板带电Q .现 将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A)0(B)-q (C)2Q q +-(D)2 Q q + T6-1-1图 T6-1-5图 T6-1-8图

第八章 静电场中的导体和电介质

103 第八章 静电场中的导体和电介质 一、基本要求 1.理解导体的静电平衡,能分析简单问题中导体静电平衡时的电荷分布、场强分布和电势分布的特点。 2.了解两种电介质极化的微观机制,了解各向同性电介质中的电位移和场强的关系,了解各向同性电介质中的高斯定理。 3.理解电容的概念,能计算简单几何形状电容器的电容。 4.了解电场能量、电场能量密度的概念。 二、本章要点 1.导体静电平衡 导体内部场强等于零,导体表面场强与表面垂直;导体是等势体,导体表面是等势面。 在静电平衡时,导体所带的电荷只能分布在导体的表面上,导体内没有净电荷。 2.电位移矢量 在均匀各向同性介质中 E E D r εεε0== 介质中的高斯定理 ∑??=?i i s Q s d D 自 3.电容器的电容 U Q C ?= 电容器的能量 C Q W 2 21= 4.电场的能量 电场能量密度 D E w ?= 2 1 电场能量 ? = V wdV W 三、例题 8-1 下列叙述正确的有(B) (A)若闭合曲面内的电荷代数和为零,则曲面上任一点场强一定为零。 (B)若闭合曲面上任一点场强为零,则曲面内的电荷代数和一定为零。

104 (C)若闭合曲面内的点电荷的位置变化,则曲面上任一点的场强一定会改变。 (D)若闭合曲面上任一点的场强改变,则曲面内的点电荷的位置一定有改变。 (E)若闭合曲面内任一点场强不为零,则闭合曲面内一定有电荷。 解:选(B )。由高斯定理??∑=?0/εi i q s d E ,由 ∑=?=00φq ,但场强则 不一定为零,如上题。 (C )不一定,受静电屏蔽的导体内部电荷的变动不影响外部场强。 (D )曲面上场强由空间所有电荷产生,改变原因也可能在外部。 (E )只要通过闭曲面电通量为0,面内就可能无电荷。 8-2 如图所示,一半径为R的导体薄球壳,带电量为-Q1,在球壳的正上方距球心O距离为3R的B点放置一点电荷,带电量为+Q2。令∞处电势为零,则薄球壳上电荷-Q1在球心处产生的电势等于___________,+Q2在球心处产生的电势等于__________,由叠加原理可得球心处的电势U0等于_____________;球壳上最高点A处的电势为_______________。 解:由电势叠加原理可得,球壳上电荷-Q1在O 点的电势为 R Q U 0114πε- = 点电荷Q2在球心的电势为 R Q R Q U 02 0221234πεπε= ?= 所以,O 点的总电势为 R Q Q U U U 01 2210123ε-= += 由于整个导体球壳为等势体,则 0U U A =R Q Q 01 2123ε-= 8-3 两带电金属球,一个是半径为2R的中空球,一个是半径为R的实心球,两球心间距离r(>>R),因而可以认为两球所带电荷都是均匀分布的,空心球电势为U1,实心球电势为U2,则空心球所带电量Q1=___________,实心球所带电Q2=___________。若用导线将它们连接起来,则空心球所带电量为______________,两球电势为______________。 解:连接前,空心球电势R Q U 2401 1πε= ,所以带电量为

第二章有导体时的静电场(8学时)

第二章有导体时的静电场(8学时) 一、目的要求 1.深刻理解导体静电平衡的条件和特点; 2.了解导体平衡时的讨论方法; 3.掌握电容、电容器及电容的计算方法; 4.了解带电体系的静电能。 二、教学内容 1.静电场中的导体(2学时) 2.封闭金属壳内外的(2学时) 3.电容器及其电容(2学时) 4.带电体系的静电能(2学时) 三、本章思路 本章主要研究导体在静电场中的特性,其基本思路是:导体的电结构→ 静电平衡条件→静电场中导体的特性→静电场中导体特性的应用→电容、静电屏蔽、尖端放电。 四、重点难点 重点:导体静电平衡的特性 五、讲课提纲 §2.1 静电场中的导体 一、教学内容 (1)静电平衡 (2)带电受到的静电力 (3)孤立导体形状对电荷分布的影响 (4)导体静电平衡时的讨论方法 (5)平行板导体组举例 二、教学方式 讲授 三、讲授提纲 (一)导体的静电平衡 1.导体的特性 导体内存在着大量的自由电荷,它们在电场作用下可以移动。 中性导体:导体若不受外场作用,又不带净电荷,则自由电子均匀地迷漫于正离子点阵 ρ; 间,从宏观上看,导体处处电中性,即净电荷体密度0 = 带电导体:净余电量不为零的导体;

孤立导体:距其它物体无限远的导体。 电荷的分布和电场的分布相互影响、相互制约。 2.导体的静电平衡 (1)静电平衡的定义 导体中的电荷不作宏观运动,因而电场分布不随时间而变的状态。 (2)静电平衡条件 导体内部的场强处处为零。 即所有场源(包括分布在导体上的电荷)产生的电场在导体内部处处抵消,即0=i E ? 。 [反证] 若导体内某点场强不为零,则该点的自由电荷将在电场力的作用下作定向运动,导体便没有达到静电平衡,与定义矛盾。 (3)导体的静电感应 中性导体无外电场作用时,自由电荷只作微观热运动,无宏观电量的迁移,处于静电平衡。 当加上外电场0E ?(施感外场)时,0E ? 推动导体内的自由电荷作定向运动,引起自由电荷重新分布,在导体表面出现等量异号电荷,这种现象叫静电感应,导体表面上出现的电荷称感 应电荷。这些感应电荷产生的附加场'E ?在导体内与外场0E ?反向。当E '? <0 E ? 时,0≠E ρ,自 由电荷将继续运动,导体表面的感应电荷增多,E '? 增大,总有一个时候使得导体内部00='+=E E E ???(E '? 与0 E ?在导体内完全抵消)时,无净电力作用于电荷,则它停止定向运动,电荷重新分布过程结束——达到新的静电平衡。 可见:导体处在电场中达静电平衡时,导体上总有一定感应电荷分布,否则无E '? ; 导体上感应电荷产生的场与外电场的合场强在导体内处处为零,导体内不能有电场线穿越。 [示例]:导体球置于均匀外电场0 E ? 中。图2-1(a)为原问题,图2-1(b)为静电平衡时的情 形:导体内0 E ?与E '? 反方,至0 =内E ?止;导体外0 E ?与E '? 叠加,场发生畸变,成为E E E '+=???0。 (a) (b) 图2-1 (4)导体静电平衡时的性质 ① 导体静电平衡时,导体是等势体、导体表面是等势面。 ∵ 导体内处处0=E ? , 设P 、Q 是导体上任意两点(包括表面) ∴ 导体上任两点电势差? =?=Q P PQ l d E U 0? ?,即 Q P U U = 。 ②静电平衡时,导体所带电荷只能分布在导体表面上

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 02 00π4 . D ) (π4 . C π4 . B π4 .A R) (a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='= ' = 'q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε= '+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 2 . D . C 2 . B 2 .A εd E= εE= E E σσεσ εσ= = 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0 εσ= E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

第13章静电场中的导体和电介质

思考题 13-1 尖端放电的物理实质是什么? 答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。 13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球 A ,试判断下列说法是否正确?并说明理由。 (1) B 球电势高于A 球。 答: 正确。不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。 (2) 以无限远为电势零点,A 球的电势: V A < 0 答: 不正确。若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。所以,V A >0。 13-3 怎样能使导体净电荷为零 ,而其电势不为零? 答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有 ∑=0q 而导体的电势V ≠0。 图13-37 均匀带电球体的电场能

13-4 怎样理解静电平衡时导体内部各点的场强为零? 答:必须注意以下两点: (1)这里的“点”是指导体内的宏观点,即无限小体积元。对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零; (2)静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。 13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比? 答:不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S?σ产生的。实际上这个场强是导体表面上全部电荷所贡献的合场强。如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。 13-6为什么不能使一个物体无限制地带电? 答:所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。所以一个物体不能无限制地带电。如尖端放电现象。 13-7 感应电荷的大小和分布怎样确定? 答:当施感电荷Q接近于一导体时,导体上出现等量异号的感应电荷±q′。其分布一方面与导体的表面形状有关,另一方面与施感电荷Q有关,导体靠近Q的一端,将出现与

第三章静电场中的电介质

第 三 章 静电场中的电介质(6学时) 一、目的要求 1.掌握电介质极化机制,熟悉极化强度、极化率、介电常数等概念。 2.会求解极化强度和介质中的电场。 3.掌握有介质时的场方程。 4.理解电场能量、能量密度概念,会求电场的能量 。 二、教学内容与学时分配 1.电介质与偶极子( 1学时) 2.电介质的极化(1学时) 3.极化电荷(1学时) 4.有电介质时的高斯定理(1学时) 5.有介质的场方程(1学时) 6.电场的能量(1学时) 三、本章思路 本章主要研究电介质在静电场中的特性,其基本思路是:电介质与偶极子→电介质的极化→电介质的极化规律 →有介质的静电场方程 →静电场的能量。 四、重点难点 重点:有介质的静电场方程 难点:电介质的极化规律。 五、讲授要点 §3.1 电介质与偶极子 一、教学内容 1.电介质概述 2.电介质与偶极子 3.偶极子在外电场中受到的力矩 4.偶极子激发的静电场 二、教学方式、 讲授 三、讲课提纲 1.电介质概述 电介质是绝缘材料,如橡胶、云母、玻璃、陶瓷等。 特点:分子中正负电荷结合紧密,处于束缚状态,几乎没有自由电荷。 当导体引入静电场中时,导体对静电场有很大的影响,因静电感应而出现的感应电荷 产生的静电场在导体内部将原场处处抵消,其体内00='+=E E E ,且表现出许多特性,如导体是等势体、表面是等分为面、电荷只能分布在表面等;如果将电介质引入电场中情况又如何呢?实验表明,电介质对电场也有影响,但不及导体的影响大。它不能将介质内

部的原场处处抵消,而只能削弱。介质内的电场00≠'+=E E E 。 2.电介质与偶极子 (1)电介质的电结构 电介质原子的最外层电子不像金属导体外层电子那样自由,而是被束缚在原子分子上,处于事缚状态。一般中性分子的正负电荷不止一个,且不集中于一点,但它们对远处一点的影响可以等效为一个点电荷的影响,这个等效点电荷的位置叫做电荷“重心”。分子中电荷在远处一点激发的场近似等于全部正负电荷分别集中于各自的“重心”时激发的场,正负电荷“重心”重合在一起的称无极分子,如 H ,N ,CO 等。正负电荷“重心”不重合在一起的称有极分子,像SO ,H O,NH 等。这样一个分子等效为一个偶极子。 (2)偶极子 两个相距很近,带等量异号电量的电荷系统叫做偶极子 ①偶极子在外场中受到的力矩 均匀外场中,0=∑F 但受到一个力矩:θθθsin sin *2*sin *2*qLE L F L F T =+= 定义:L q P = 称为偶极子的偶极矩,上式可写为: E P T ?= 满足右手螺旋关系 Q 、L 可以不同。但只要其乘积qL 相同,力矩便相同。此力矩总是企图使偶极距转到 外电场的方向上去; 非均匀外场中,0≠∑F ∑≠0T 如摩擦事的笔头吸引纸屑,其实质就是纸屑在笔头电荷的非均匀电场中被极化,等效为偶极子,偶极子受到非均匀电场的作用力(指向场强增大的方向)而向笔头运动。 ②偶极子的场 中垂面上一点的场强:场点到的距离相等,产生的场强大小相等为: 但它们沿垂线方向分量互相抵消,在平行于连线方向分量 相等,故有: 延长线上一点的场强 向右,向左,故总场强大小为 偶极子在空间任一点的场强 4 412 20l r q E E + = =-+πε2322 )4(41 2l r ql COS E E πεθ+==+⊥20)2(41l r q E -= +πεE =-3 02220220//42]) 4 (241 )2(1 )2(1 [4r P l r qlr l r l r q E E E πεπεπε≈-=+--=-=-+ 图3-3 图3-4 +q -q 图3-1 图 3-2

静电场中的导体

第七章 静电场中的导体、电介质 一、选择题: 1. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ,如图所示,则板外两侧的电场强度的大小为:[ ] (A )E=0 2εσ (B )E=02εσ (C )E=0εσ (D )E=02d εσ 2. 两个同心薄金属体,半径分别为R 1和R 2(R 2>R 1),若分别带上电量为q 1和q 2的电荷,则两者的电势分别为U 1和U 2(选无穷远处为电势零点),现用导线将两球壳相连接,则它们的电势为[ ] (A )U 1 (B )U 2 (C )U 1+U 2 (D )2 1 (U 1+U 2) 3.如图所示,一封闭的导体壳A 内有两个导体B 和C ,A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是[ ] (A )U A =U B =U C (B )U B > U A =U C (C )U B >U C >U A (D )U B >U A >U C 4.一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板的距离均为h 的两点a 、b 之间的电势差为: [ ] (A )零 (B )02εσ (C )0εσh (D )0 2εσh 5. 当一个带电导体达到静电平衡时: [ ] (A) 表面上电荷密度转大处电势较高

(B) 表面曲率较大处电势。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。 6. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一内、 外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: [ ] (A )E= r Q U r Q 02 04,4πεπε= (B )E=0, 1 04r Q πε (C )E=0, r Q 04πε (D )E=0,2 04r Q πε 7. 设有一个带正电的导体球壳,若球壳内充满电介质,球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;若球壳内、外均为真空时,壳外一点的场强大小和电势用E 2、U 2表示,则两种情况下,壳外同一处的场强大小和电势大小的关系为: [ ] (A )E 1=E 2, U 1=U 2 (B )E 1=E 2, U 1>U 2 (C )E 1>E 2, U 1>U 2 (D )E 1

静电场中的导体和电介质

第十章 大学物理辅导 静电场中的导体和电介质 ~53 ~ 第十章 静电场中的导体和电介质 一、教材的安排与教学目的 1、教材安排 本章的教材安排,讲授顺序可概括为以下五个方面: (1)导体的静电平衡; (2)电介质的极化规律; (3)电位移矢量和有介质时的高斯定理; (4)电容和电容器; (5)电容器的储能和电场的能量。 2、教学目的 本章的教学目的是: (1)使学生确切理解并掌握导体的静电平衡条件及静电平衡导体的基本性质; (2)使学生了解电介质极化的机构,了解极化规律;理解电位移矢量的定义和有介质时的高斯定理; (3)使学生正确理解电容概念,掌握计算电容器的方法。 (4)使学生掌握电容器储能公式,并通过电容器的储能了解电场的能量。 二、教学要求 1、掌握导体的静电平衡条件,明确导体与电场相互作用的大体图象; 2、了解电介质的极化规律,清楚对电极化强度矢量是如何定义的,明确极化强度由总电场决定,并且'=σθP cos ; 3、理解电位移矢量的定义,注意定义式 D E P =+ε0是普遍适用的,明确 D 是一个 辅助矢量; 4、掌握有介质时的高斯定理; 5、掌握电容和电容器的概念,掌握电容器电容的计算方法; 6、了解电容器的储能和电场能量 三、内容提要 1、导体的静电平衡条件 (1)导体的静电平衡条件是导体内部场强处处为零。所谓静电平衡,指的是带电体系中的电荷静止不动,因而电场分布不随时间而变化。导体的特点是体内存在着自由电荷,它们在电场作用下可以移动从而改变电荷的分布。电荷分布的改变又会影响到场的分布。这样互相影响,互相制约,最后达到静电平衡。 (2)从导体的静电平衡条件出发,可以得出三个推论 导体是个等势体,表面是个等势面; 导体表面外侧的场强方向处处垂直于表面,并且有导体内部无净电荷,即电荷体密度,电荷只分布在导体表面。 ;E =??? ??? =σερ00 2、电介质的极化规律

第十章 静电场中的电介质

第九章 静电场中的导体 9.1 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为 (A) 3 2r U R . (B) R U 0. (C) 2 0r RU . (D) r U 0 . [ C ] 9.2如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离 板面距离均为h 的两点a 、b 之间的电势差为: (A) 0. (B) 2εσ . (C) 0εσh . (D) 0 2εσh . [ A ] 9.3 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定 一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B) d q 04επ. (C) R q 04επ-. (D) )1 1(4 R d q -πε. [ D ] 9.4 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此 点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变. (D) 球壳内、外场强分布均改变. [ B ] 9.5在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:

(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀. (D) 内表面不均匀,外表面也不均匀. [ B ] 9.6当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高. (D) 导体内任一点与其表面上任一点的电势差等于零. [ D ] 9.7如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势. 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q . (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 a dq U q 04επ= ?-a q 04επ-= (3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ= a q 04επ- b q Q 04επ++ )111(40b a r q +-π=εb Q 04επ+ 9.8有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求: (1) 导体板面上各点的感生电荷面密度分布. (2) 面上感生电荷的总电荷.

第9章_静电场中的导体和电介质

第9章静电场中的导体和电介质 什么是导体什么是电介质 静电场中的导体静电平衡 9.1.1 静电感应静电平衡 金属导体:金属离子+、自由电子- 1、静电感应:在外电场作用下,导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。(感应电荷与外加电场相互影响,比如金属球置于匀强电场中,外电场使电荷重新分布,感应电荷的分布使均匀电场在导体附近发生弯曲。) 2、导体静电平衡条件 不受外电场影响时,无论对整个导体或对导体中某一个小部分来说,自由电子的负电荷和金属离子的正电荷的总量是相等的,正负电荷中心重合,导体呈现电中性。

若把金属导体放在外电场中,比如把一块金属板放在电场强度为0E r 的匀强电场中,这时导体中的自由电子在作无规则热运动的同时,还将在电场力作用下作宏观定向运动,自由电子逆着电场方向移动,从而使导体中的电荷重新分布。电荷重新分布的结果使得金属板两侧会出现等量异号的电荷。这种在外电场作用下,引起导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。 感应电荷在金属板的内部建立起一个附加 电场,其电场强度'E r 和外在的电场强度0E r 的方向相反。这样,金属板内部的电场强度E r 就是0 E r 和'E r 的叠加。开始时0'E E <,金属板内部的 电场强度不为零,自由电子会不断地向左移动, 从而使'E r 增大。这个过程一直延续到金属板内部的电场强度等于零,即0'0E E E =+=r r r 时为止。这时,导体上没有电荷作定向运动,导体处于静电平衡 状态。 当导体处于静电平衡状态时,满足以下条件:

填空与选择(有导体存在时的静电场)

导体中的静电场 一.选择题: 1*.有一点电荷q 及金属球A ,且A 处于静电平衡状态。下列说法中正确的是 ( ) (A )金属球A 内E = 0, 点电荷 q 不在金属球A 内产生电场; (B )金属球A 内E ≠0, 点电荷 q 在金属球A 内产生电场; (C )金属球A 内E = 0, 点电荷 q 在金属球A 内产生电场; (D )金属球A 内E ≠0, 点电荷 q 不在金属球A 内产生电场。 2*.将一个带负电的物体M 靠近一个不带电的导体N ,在N 的左端感应出正电荷, ( ) 右端感应出负电荷。若将导体N 的左端接地(如图所示),则 (A )N 上的负电荷入地; (B )N 上的正电荷入地; (C )N 上的所有电荷入地; (D )N 上所有的感应电荷入地。 3*.孤立金属导体球带有电荷Q ,由于它不受外电场作用,则 ( ) (A )孤立导体电荷均匀分布,导体内电场强度不为零; (B )电荷只分布于导体球表面,导体内电场强度不为零; (C )导体内电荷均匀分布,导体内电场强度为零; (D )电荷分布于导体表面,导体内电场强度为零。 4*.当一个带电导体达到静电平衡时,下列说法中正确的是 ( ) (A )表面上电荷面密度较大的地方电势较高; (B )表面曲率半径较大的地方电势较高; (C )导体内部的电势比表面的电势高; (D )导体内任意一点与其表面处的电势差为零。 5. 如图所示,绝缘的带电导体上有a 、b 、c 三点,三点处的电荷密度 ( ) (A )a 点最大; (B )b 点最大; (C )c 点最大; (D )一样大。 二.填空题: 1*.如图所示,将一个电荷量为q 的点电荷放在一个半径为R 的不带电的 导体球附近,点电荷距导体球球心为d ,设无穷远处为零电势, 则导体球球心O 点处的电场强度E = ;电势U = 。 2*.一孤立带电导体球,其表面附近处电场强度的方向 ;当将另一带电体 放在这个导体附近时,该导体球表面附近处电场强度的方向 。 3*.球状导体A 外罩一同心球壳B ,A 的带电量为+Q ,B 不带电,达到静电平衡后球壳B 内表面上所带的电量为 ;外表面上所带的电量为 。 4*.点电荷 -q 向一不带电的孤立导体靠近,如图所示。则导体内的 场强 ,导体内的电势 (填升高、不变或降低)。 图中各点的电势 U a ′ U a U b U b ′(填 >,<,= )。 注:加“*”的为必做题! -q a ′ ′ 题3图 a M + - N

大学物理课后答案第七章静电场中的导体和电介质(精)

习题7 27-2 三个平行金属板A,B和C的面积都是200cm,A和B相距4.0mm,A与 C相距2.0 mm.B,C都接地,如题7-2图所示.如果使A板带正电3.0×-710C,略去边缘效应,问B板和C板上的感应电荷各是多少?以地的电势为零,则A板的电势是多少? 解: 如题7-2图示,令A板左侧面电荷面密度为σ1,右侧面电荷面密度为σ 2 题7-2图 (1)∵ UAC=UAB,即 ∴ EACdAC=EABdAB ∴ σ1EACdAB===2 σ2EABdAC qA S且σ1+σ2= 得σ2=qA2q, σ1=A 3S3S 而 qC=-σ1S=-2qA=-2?10-7C 3 qB=-σ2S=-1?10-7C (2) UA=EACdAC= σ1dAC=2.3?103V ε0 7-3 两个半径分别为R1和R2(R1<R2)的同心薄金属球壳,现给内球壳带电+q,试计算: (1)外球壳上的电荷分布及电势大小; (2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电+q;球壳内表面带电则为-q,外表面带电为+q,且均匀分布,其电势

题7-3图 U=?∞ R2 ∞E?dr=?qdrq= R24πεr24πε0R0 (2)外壳接地时,外表面电荷+q入地,外表面不带电,内表面电荷仍为-q.所以球壳电势由内球+q与内表面-q产生: U=q 4πε0R2-q4πε0R2=0 (3)设此时内球壳带电量为q';则外壳内表面带电量为-q',外壳外表面带电量为-q+q' (电荷守恒),此时内球壳电势为零,且 UA=q' 4πε0R1-q'4πε0R2+-q+q'=0 4πε0R2 得 q'= 外球壳上电势 R1q R2 -q+q'(R1-R2)q= 24πε0R24πε0R2UB=q'4πε0R2-q'4πε0R2+ 7-4 半径为R的金属球离地面很远,并用导线与地相联,在与球心相距为d=3R 处有一点电荷+q,试求:金属球上的感应电荷的电量. 解: 如题8-24图所示,设金属球感应电荷为q',则球接地时电势U O=0 7-4图

第二章 静电场

第二章 静电场 习题2.1 真空中有一密度为2πnC/m 的无限长电荷沿y 轴放置,另有密度分别为0.1nC/m 2和-0.1nC/m 2 的无限大带电平面分别位于z =3m 和z =-4m 处。求点 P (1,7,2)的电场强度E 。 z=-4 x y z z=3 τ O 图2.1 题意分析: 题目中给出了3 个不同类型电荷的位置与大小,计算空间中一点的电场强度E 。可 以先分别计算每个电荷在场点产生的电场强度,然后采用叠加原理得出总的场强。考虑平面电荷与直线电荷的电场共同产生电场,选用用直角坐标系进行计算比较合适,如图2.1所示,对圆柱坐标系中计算出的直线电荷电场,需要转换成直角坐标下的形式,再进行矢量叠加求总电场。 解: (1)计算无限大平板在P 点产生的电场强度 在计算无限大平板在P 点产生的电场强度时,建立图2.1所示的直角坐标系,则位 于z =3m 处的无穷大带电平板在P 点产生的电场强度1σE 为: Z e E 0 21.01εσ-= (1) 位于z =-4m 的无穷大带电平板在P 点产生的电场强度为: Z e E 0 21.02εσ-= (2)

因此,2个无穷大带电板在P 点产生的合成场强1E 为: Z e E 11.0ε-= (3) (2)计算无穷长直电荷产生的电场强度 对于圆柱坐标系中位于z 轴上的长直电荷产生的电场强度至于场点的ρ坐标有关,其电场强度的表达式为: ρ ρ πετ e E 02- = z=-4 x y z z=3 τ O z' ρ O' 图2.2 因此图2.2中所示在沿y 轴放置的无穷长线电荷产生的电场2E 为: ρ ρ πετ e E 022- = 式中 2 2 x z ρ= + z x e z x z e z x x e 2 2 2 2 ++ += ρ ∴ () z x z x e z e x z x e z x z e z x x z x E ++=???? ??++ ++= 2 2 02 22 2 220 21 1 122επεπ 所以,P 点(1,7,2)的电场强度E 为:

静电场中的导体和电介质

静电场中的导体和电介质 引文: 产生静电场的源电荷通常来自金属导体上的自由电荷和绝缘介质上的极化电荷,当然还有一种空间电荷,它不依赖于任何载体。 静电场的基本规律是普适的,与源电荷的来源和产生机制无关。 一.导体 1.导体中自由电子气概念:经典电子论;原子实按一定秩序构成晶格,价电子 做共有化运动,充满自由电子气 2.导体达到静电平衡状态后,在导体外部,由原外场和附加场叠加而成的总场 一般呈现复杂的分布,这相当程度上源于附加场的复杂性。(附加场不仅在导体内部起到抵消原外场的作用,在导体外部也必定产生场强) 3.导体静电平衡条件 a.静电平衡导体内部体电荷密度处处为零 b.带电的或电中性的导体,其电荷分布于表面,这种自由电荷面分布来保证导体内部合场强为零 注:对于导体静电平衡条件的论证通常总是反证法思辩之。即若其中一条特性不被满足,则必有或违背静电场的高斯定理,或违背的静电场的环路定理,或违背已知的导体静电平衡条件 4. 解决导体静电问题的理论基础:静电平衡条件静电场的高斯定理和环路定理 5. 导体静电平衡的唯一性定理:当导体系中各导体的电量(或电势)被给定,则满足导体静电平衡条件的电荷分布(或电量分布)是唯一的,从而空间电场分布也是唯一的 当然,同任何数学上或物理上的唯一性定理一样,导体静电平衡的唯一性定理仅指明其解是唯一的,并不回答这唯一的解是什么,求解结果有赖于导体静电平衡条件及其他相关的物理定理求得。当然,也可以凭借经验和对称性分析而给出一试探解,若其满足导体内部合场强为零,则这试探解就是唯一正确的解,要注意这种思维方式的运用。 6. 单一导体表面不可能出现异号电荷分布;单一导体表面曲率半径越小处,表面电荷密度越大,其外侧场强越大 7. 一类空腔导体和静电屏蔽的第一种含义:空腔内没有电荷或其他带电体 一类空腔导体静电平衡特性: a.内表面电荷密度处处为零,电荷全部分布在外表面 b.在空腔区域和导体内部(实心区域)合场强为零 c.先前确定的有关导体静电平衡的所有条件 注:一类空腔导体在空腔区域和导体内部(实心区域)合场强为零是依赖其外表面电荷分布来实现的,这与无空腔的实心导体无异。换言之,若在实心导体中挖除一个空腔,则无论其空腔大小,形状和位置如何,都不会改变导体原面电荷分布。 静电屏蔽的第一种含义:一类空腔导体通过自身外表面自由电荷的重新分布,而屏蔽了空间其他带电体对空腔内部场强的影响,使合场强为零得以保证,即

相关文档
最新文档