全液体空分工艺流程说明教学文案

全液体空分工艺流程说明教学文案
全液体空分工艺流程说明教学文案

全液体空分工艺流程说明

液体空分设备通常是指以直接生产液氧、液氮产品的空分设备,这种空分设备一般不生产或少量生产气体产品。

为了要获得大量的液氧和液氮产品,目前大致有二种方法:一是先生产气态产品,然后再根据需要采用液化装置将气态产品液化,这种方法能耗相对较高;另一种方法是直接采用液体空气设备生产液氧和液氮产品,与前者相比该法能耗较低,液体空分设备从流程的组织上来看可以视为是常规气态产品空分设备和液化装置的二者结合体,因此其流程要相对复杂一些。为了降低液体空分设备产品的中耗,应根据用户提出的需求条件,在工艺流程的组织上要进行多个方案的技术比较。

目前液体空分设备根据工作压力的等级不同,一般可分为低压循环和中压循环二大类,在低压循环中按照制冷系统的组织方式不同又分成带增压透平膨胀机制冷和带增压透平膨胀机加低温予冷机制冷的二种流程。在中压循环流程中因采用的制冷循环工质的不同一般分成空气循环和氮气循环,同样在中压循环中按照制冷系统的组织方式不同也分成带增压透平膨胀机加低温予冷机制冷和带高、低温增压透平膨胀机制冷的二种流程。

液体空气设备流程的选择应根据用户提出的液体产品产量、纯度、品种等要求,来选择和确定液体空分设备的工艺流程、单元设备的结构形式和组织方式。一般来说液氧产量小于1000Lh的属小型液体空分设备,目前多数是采用全低压(1.OMPa)利用空气循环制冷的工艺流程。因为液体产量较小,同时为简化流程,达到操作方便,一般在流程中原料空气和制冷循环空气可由一台压缩机提供。这种流程单位产品能耗较高。

当液体产品在2000-3000m立方/h(折成气态)以上时,将属于中大型液体空气设备,由于液体产品数量加大,要求装置必须提供更多的冷量。而在低压流程中气体的液化是通过相变过程来实现的,因为工作压力低,气体膨胀产冷量小,最终气体液化率低,那么为要获得大量的冷量就必须大幅度的提高循环空气量,这样会造成单位产品能耗的大幅度升高。因此在工艺流程上必须由低压循环改为中压制冷循环,由于气体液化工作压力的提高,其相应的液化温度也随之提高,那么单位气体液化所需的冷量就会减少,当气体液化压力超过其临界压力而温度低于临界温度时,气体液化过程中就不存在等温的冷凝过程,而是直接变成液体,这样就能减少中压流程中的循环气量,使单位液体产品能耗大大的降低,这正是中压流程为什么经济性好的重要原因。在中大型液体空分设备中原料空气部分采用低压(0.6MPa),而循环气体为中压(压缩机压力为 2.5-3.OMPa),即分为空气循环和氮气循环二种。关于在制冷循环中如何确定膨胀机的台数和运行方式及其参数,这将取决于用户提供的要求。下面将对儿种工艺流程在组织中的技术问题进行分析讨论。

低压小型液体空分设备工艺流程

现对国内已开发成功的小型全低压液体空分设备在流程组织上的一些技术特点作一分析。

本设备是采用低压带增压透平膨胀机及空气制冷循环的工艺流程。空气经空气过滤器被透平空压机压缩至1.0MPa(G)压力,经末级冷却器冷却后将全部空气送入增压机中增压,经增

压后的空气分别在予冷机组和分予筛纯化器中予冷、净化,然后进入主换热器中冷却。当空气被低温返流气体冷却到某一温度时,空气全部从主换热器中抽出送入低温予冷机组中冷却,冷却后再将全部空气返回主换热器中继续冷却,在达到某一温度后空气被分成二部分大部分空气进入透平膨胀机膨胀制冷,膨胀后的低压空气返回主换热器,经回收冷量后送入空气透平压缩机入口循环使用;另一部分空气继续在主换热器中冷却,在达到一定含湿量时进入下塔。空气在双级精馏塔内精馏最终获得液体氧(氮)产品,液体产品直接排放至冷箱外的液体。贮槽内液体产量不大时,虽然应用全低压流程是合理的、可行的,但是单位产品能耗相对较高。因此当采用这种流程时必须设法降低能耗,为此在该流程中采用了以下几项提高其经济性的措施:

(1)采用全部空气进行增压,该法优于仅对膨胀部分空气进行增压的方法,因为这不尽提高了膨胀前空气压力,更重要的是提高了入塔部分空气的压力,由于入塔空气压力的提高,入塔空气的露点温度即液化温度也相应提高,从而可以提高膨胀前空气的温度,这有利于提高单位膨胀空气的制冷量。如果装置所需的冷量一定时,膨胀空气量就能减少,最终使总的加工空气量下降,经计算分析其能耗一般可下降约2%。

(2)采用常温和低温二级予冷的方法,提高了有效能的利用,从计算得知入塔空气的液化率会有较大幅度的提高,单位液体产品的能耗一般可下降2-3%左右。

(3)流程中采用了全部加工空气先经增压再进入予冷机组和分予筛纯化器的方法,由于工作压力升高,二机组的体积尺寸和分予筛吸附剂用量都将会相应减少,同时又选用了空气下进下出内加温节能型结构的分予筛纯化器。

(4)冷箱内采用先进的保温措施。

另外在这一流程的设计和选择中,曾考虑到空气从压缩机出来去增压的过程中,当环境温度过低时,管道内空气会发生机械水析出影响增压机叶轮寿命的问题。如改用压缩后的空气先经予冷、净化后再去增压或对膨胀部分的空气进行增压的方案,可避免这一问题发生,但经计算分析比较认为后者方案存在以下缺点:a)会引起加工空气和膨胀部分空气入塔温度升高;b)如仅对膨胀

部分空气增压会造成二股入塔空气温度不一致,同时换热器面积加大通道结构相对复什c)予冷、净化机组尺寸,分予筛吸附剂用量相应加大;d)操作不便,单位液体产品能耗高,最终没有被采用。

为了防止带压空气去增压的过程中,因环境温度过低会有机械水析出损坏增压机叶轮的问题,除在流程中增设特殊的水分器外,在工艺配管上又作了多项改进,这一设备在实际运行中,曾因环境温度变化出现过机械水析出,但由于所采用的措施正确,避免了机械水损坏增压机叶轮的问题。经实际运行考验情况良好,备项技术经济指标在同类产品中处于领先水平,这些技术在小型液体空分设备上的应用成功,具有一定的技术创新。

中压空气循环膨胀制冷流程

目前中大型液体空分设备的需求量在不断增长,对于以液氧产品为第一工况的液体空分设备,应用空气循环流程是比较合适的,因为这种流程不仅可以获得液氧和部分液氮产品外,还可以最大限度的提取液氩产品。在中压空气循环流程中,膨胀制冷系统的组织方式现一般

有二种一种是配置高、低温增压透平膨胀机;另一种是低温予冷机组加低温增压透平膨胀机。

这一流程的特点是将分子筛纯化器后的低压空气和高、低温膨胀机膨胀后返回主换机器经冷量回收后的低压空气一起送至中压循环压缩机入口,经压缩后的中压空气分成二部分:一部分空气经主换热器冷却到一定温度后送入高温级增压透平膨胀机膨胀制冷,膨胀后的低压空气经主换热器回收冷量后返回至中压压缩机入口;另一部分空气直接进入高、低温级透平膨胀机的增压机中连续增压,增压后的这部分空气在主换热器中予冷到一定温度后再分成二股一股送入低温级增压透平膨胀机膨胀制冷后按规定量进入下塔;

另一股空气在主换热器中继续冷却当达到一定含湿量经节流后进入下塔,空气在双级精馏塔内精馏最终获得液体氧(氮)产品,液体产品直接排放至冷箱外的液体贮槽内。在流程中由于没有设置高温级透平膨胀机,那么经计算在流程中必须增设低温予冷机组,否则单位液体产品能耗将会上升。众所周知在流程中设置高温级透平膨胀机或低温予冷机组,其目的都是用来补充主换热器中热段的冷量,最终缩小主换热器热端温差,减少返流气量即循环空气量达到提高流程的经济性。为进一步降低单位产品的能耗,在配套部机的设计和选型中应作如下考虑:

原料空气和中压循环空气压缩机均采用高效定型的透平压缩机;分予筛纯化器应用双层床结构;主换热器为高效、结构紧凑的中低压气体复合型板翅式换热器;上塔使用规整填料塔;氩的提取为全精馏制氩全套装置的控制采用当今较为先进的DCS系统。

中压氮气循环膨胀制冷流程

目前有很多用户要求在生产液氧产品的同时,又能够生产较大量的液氮产品,有的甚至液氮产量要超过液氧产量,在这种情况下为提高其整个液体空分装置的合理性和经济性,在工艺流程的组织上,建议采用氮气循环制冷的流程。

在流程中循环氮气的抽取方法现有二种:一种是从上塔顶部抽取低压产品氮气增压至中压;另一种是从下塔抽取压力氮气再增压至中压。关于制冷循环的组织与空气循环一样,有设置高、低温增压透平膨胀机的制冷循环和低温予冷机加低温增压透平膨胀机的制冷循环。

流程的主要特点是采用由上塔顶出冷箱的低压产品氮气作为循环氮气和液氮产品的原料气,低压氮气经低压和中压二台透平压缩机压缩至2.5~3. OMPa压力,然后将压缩后的中压氮气分成二部分:一部分中压氮气在主换热器中予冷到一定温度后送入高温级增压透平膨胀机,膨胀后的氮气经主换热器回收冷量后返回至中压氮压

缩机入口;另一部分中压氮气直接送入高、低温级透平膨胀机的增压风机中连续增压,经过增压后的这部分压力较高的中压氮气经主换热器予冷到一定温度时再分成二股:一股送入低温级增压透平膨胀机,膨胀后的氮气经主换热器回收冷量后返回至中压氮压缩机入口;另一小股继续冷却经节流后生产液氮,其中一部分液氮作为产品,其余液氮送至下塔作回流液。流程的特点是从下塔抽取压力氮作为循环氮气并设有低温予冷机组。总之这种液体空分装置可以说是由一套全精馏的气体空分设备和一套氮循环的液化设备所组成。该流程完全可以根据用户要求在生产液氧、液氮产品的同时提取高纯氛和高纯氧等产品。

流程组织中应注意的问题

工艺流程的确定依据和原则

液体空分设备的流程确定和组织,完全是针对用户的需求来进行的,其中产品数量、纯度、品种、能耗、控制水平和变工况参数等都是流程确定和组织中应考虑的重点。由于液体空分设备提供的是高品位的低温液体产品,单位产品能耗显然要高于气体空分设备,因此如何降低能耗就成了流程组织中的关键问题,同时液体空分设备的产量又受到产品储存、市场需求等因素的制约,所以在确定其产量规模时必须慎重。为进一步降低单位液体产品的能耗,在设计中应尽量做到选配高效定主主主}J产品,努力提高换热器和精馏设备的传热传质效率。

制冷循环方式的确定

对于只设置一台低温级增压透平膨胀机的中压空气循环和中压氮气循环的这二种流程,我们认为要提高其装置的经济性,降低单位液体产品能耗,经计算分析,在流程中应设置蒸发温度在-35℃了l右的低温予冷机组。

当设置了高、低级膨胀机后,在流程中一般就不再配置低温予冷机组。这里应指出的是无论采用哪种循环流程,因为工作压力的提高,在提供的冷量一定时这将会造成进入膨胀机气体体积流量的减少,使高效透平膨胀机的设计及制造带来一定困难,为此必须对流程进行多个方案的计算比较,以便给膨胀机设计提供最佳的参数。对于液体空分设备中的膨胀机目前均希望能采用气体在含湿条件下工作的高效增压透平膨胀机,要求在该工况条件下能提供更多的为使产品液化的高品位冷量。

精馏系统工况分析

通常在液体空分设备中进入下塔空气中的含湿量是相当大的,这会使下塔的精馏工况发生一定的变化,对于装置要在生产液氧、液氮产品的同时再提取高纯度氮、氧、氛产品,因此在对上、下塔的设计中一定要注意正确的解决好备物料的进出位置、塔板效率和塔板及填料结构等问题。例如在下塔的设计中为改善精馏工况和提高氛的提取率,一般将入下塔空气中的液空部分分离出来,并从入下塔空气位置向上计数的第9~12块塔板处导入为宜。

关于如何提高液体空分设备氛提取率的问题,经计算分析发现氛的提取率与从下塔抽取的液氮产品量有着很大的关系。具体说液氮抽量直接影响到上塔精馏段的液气比大小,产品液氮抽量加大,上塔精馏段液气比减小,氛提取率下降,如果液氮抽量达到入塔空气量的15%左右时,氛的提取率将大幅度下降,这与气体空分设备在提氛过程中,加大入上塔膨胀空气量会使氛提取率下降的影响是相类似的。

关于装置的控制方法问题,对小型不带氩的液体空分设备一般选用PLC加就地控制柜的方法为宜;对中大型液体空分设备因系统组织复什、产品种类多,适宜选用DCS系统控制。

中大型液体空分设备目前国内生产的并不多,但具有良好的发展前景,随着精馏技术的不断提高,单位液体产品能耗的不断降低,因此液体空分设备的设计、制造一定会在不久的将来达到一个新的高度。

空分工艺流程描述

2 工艺流程 2 工艺流程总体概述 2.1 空气过滤及压缩 来自大气中的空气经自洁式过滤器S01101,将空气中大于1卩m的尘埃和机械杂质清除后,送离心式空气压缩机K01101,自洁式空气过滤器采用PLC控制,带自动反吹系统,反吹系统有时间、压差、时间和压差三种控制程序。 流量约168000Nm3/h、常温常压的空气在由电机驱动的单轴离心式空气压缩机K01101中, 经四级压缩,压力被提升到0.632MPa (A)。温度v 105C后进入空气预冷系统。空气流量由 空压机入口导叶B011101 的开度来调节,空压机K01101 采用3组内置段间冷却器冷却压缩空气;并在末级出口还设有一放空阀BV011121 ,在开车、停车期间,部分空气将由BV011121 放空,以防止压缩机喘振。 润滑油系统:空压机和增压机共用一个润滑油站T011101,油系统包括润滑油系统、事故 油系统( 2 个高位油箱和4 个蓄能器,空压机组和增压机组各1 个高位油箱,2 个蓄能器)。润滑油主要对机组各轴承起润滑、冷却及清洗杂质等作用。 油箱内的润滑油经润滑油泵加压后后送入润滑油冷却器E-011101A/B 中冷却,经温度调 节阀控制好油温后进入润滑油过滤器S-011101A/B ,过滤掉油中杂质后进入润滑油总管,然后送到各润滑点经机组润滑后返回油箱;润滑油泵出口有一总管压力调节阀,用于调节润滑油过滤器S- 011101A/B 出口总管油压。 该油路同时为增压机提供润滑油,在空压机供油总管和增压机供油总管上分别设置有蓄能器和高位油箱。以保证在主、辅油泵出现故障情况下向空压机、增压机供油,保证压缩机组的安全。 2.2 空气预冷系统 经空压机压缩后的压力为0.632MPa( A)、温度v 105C的空气由底部进入空冷塔C01201 内;空冷塔的水分循环冷却水和循环冷冻水两路,进入空冷塔的空气首先经循环冷却水泵 P01201A/B送至下塔顶部,流量为452t/h、32C的冷却水洗涤冷却,再经过循环冷冻水泵 P01202A/B送至上塔上部流量为100t/h、8C的冷冻水进行洗涤冷却后由塔顶出来,温度被降 至10C送进入分子筛纯化系统。 循环冷却水流量由V012004 (FIC012002 )控制,空冷塔C01201下塔的液位由V012038 (LIC012001 )控制,循环冷却水流量设有高、低流量连锁,当循环冷却水达到联锁值时将自动启停泵用循环冷却水泵。正常情况下,空冷塔下塔的循环冷却水来自凉水塔,经与空气换热后再回到凉水塔。但是,在凉水塔加药期间,空冷塔发生液泛、拦液情况下,为防止空气将大量带水到分子筛纯化系统,此时,必须将循环冷却水的供水切换至新鲜水补水(新鲜水为补入凉水塔的生产水,来自生产水总管) 。另外,在空冷塔C01202 的底部有个排污阀 V012043,为确保空冷塔的水质良好,可以定期打开排污阀V012043,将部分污水排入地沟。 空冷塔上部的冷冻水为闭式回路,循环冷冻水流量由V012028(FIC012001 )控制,空 冷塔C01201 上塔的液位由V012030 (LIC012003 )控制,循环冷冻水流量设有高、低流量连锁,当循环冷冻水达到联锁值时将自动启停泵用循环冷冻水泵。空冷塔上塔的循环冷冻水来自水冷塔C01202,经与空气换热后回到水冷塔C01202。在水冷塔C01202中,循环冷冻水从顶部向下喷淋,由冷箱来的污氮、纯低压氮气进行冷却,污氮的量由V015105(FIC015105) 控制;水冷塔

空分工艺流程说明学习资料

2.2.2 工艺流程简述 2.2.2.1 压缩、预冷 原料空气通过空气过滤系统,去除灰尘和机械杂质。过滤后的空气由多级压缩机压缩到工艺所需压力,然后进入空冷塔进行冷却。压缩过程中产生的冷凝疏水在厂房内凝液罐中汇集后,由凝液泵加压送入循环回水管线。 空气自下而上穿过空冷塔,以对流形式被循环冷却水和低温冷冻水分段冷却,同时也得到了清洗。 在空冷塔底部,空气被由冷却水泵送入的循环冷却水预冷。 在顶部,空气由冷冻水泵送入的冷冻水进一步冷却。 低温冷冻水是在水冷塔中产生,其产生的原理是利用从冷箱来的干燥的污氮气汽化小部分循环冷却水,水在汽化过程中吸收热量,同时使冷却水的温度降低。 空气离开空冷塔的温度越低,对于下游空气纯化单元的负荷就越小。 空气中的少量化学杂质也被冷却水吸收。 空冷塔和水冷塔为填料塔,在空冷塔顶部设置有除沫器以去除空气中的水雾。 2.2.2.2 吸附净化 空气纯化单元包括两台交替运行的分子筛吸附器,压缩空气通过吸附器时,水、CO、氮氧化合物和绝大多数碳氢化合物都被吸附。 吸附器交替循环,即一只吸附器吸附杂质而另一只吸附器被再生。吸附和再生过程顺序自动控制以保证装置连续运行。采用来自冷箱的污氮对吸附器进行再生。再生时吸附器与吸附流程隔离,再生气放空。与吸附流程隔离的吸附器先卸压,然后先用经蒸汽加热器加热的低压污氮进行再生,然后用从蒸汽加热器旁路来的冷低温氮气对吸附器进行冷却,之后再用吸附后的空气对吸附器升压并返

回吸附流程。再生循环主要有下面几个组成部分: 泄压-加热-冷却-增压单台吸附器的设计切换周期不少于4 小时。法液空流程的纯化单元设置特殊再生加热器,必要时可用特殊再生加热器进行特殊再生。 针对厂区空气中CO含量波动大的特点,在分子筛吸附器空气出口设有CO在线分析仪,可以随时监测吸附器的运行工况,从而保证出口的CO组分满足工艺要求。 净化后的空气分为两股:其中一股进入低压换热器;另一股去空气增压机增压。 2.2.2.3 空气精馏 净化后的空气分为两部分:一部分净化空气主气流直接进入冷箱,并在低压主换热器中与返流产品进行热交换而冷却至接近于露点。这股气流然后进入中压塔底部作首次分离。上升气体和下降液体接触后氮的含量升高。中压塔顶部的氮气在主冷凝蒸发器中被沸腾液氧冷凝成液氮作为中压塔的回流液。 另一部分净化空气经增压机压缩后部分送入透平膨胀机的增压端中增压后送入冷箱,在冷箱的高压主换热器中与高压氧换热被液化,然后经过高压节流阀节流后作为回流液进入中压塔和低压塔。 剩余部分增压空气在高压主换热器中冷却至适当温度抽出,然后经透平膨胀机膨胀端膨胀后送入中压塔。 从上到下,中压塔产出如下产品:液氮产品、低压氮气产品(下游MTO装置启动时的氮气)、中压氮气产品、污氮回流液、富氧 液空。 液氮产品经过过冷器后作为液体产品输出,部分送入贮槽。 中压氮气在低压主换热器中被汽化并复热作为氮气产品输出。在进低压主换热器前,中压塔抽出来的液氮已经过液氮泵压缩至中压氮气产品压力。

空分原理概述

一、空气分离的几种方法 1、低温法(经典,传统的空气分离方法) 压缩膨胀液化(深冷)精馏 低温法的核心 2、吸附法:利用固体吸附剂(分子筛、活性炭、硅胶、铝胶)对气体混合物中某些特定的组分吸附能力的差异进行的一种分离方法。 特点:投资省、上马快、生产能力低、纯度低(93%左右)、切换周期短、对阀的要求或寿命影响大。 3、膜分离法:利用有机聚合膜对气体混合物的渗透选择性。 穿透膜的速度比快约4-5倍,但这种分离方法生产能力更低,纯度低(氧气纯度约25%~35%) 二、学习的基本内容 1、低温技术的热力学基础——工程热力学:主要有热力学第一、第二定律; 传热学:以蒸发、沸腾、冷凝机理为主; 流体力学:伯努利方程、连续性方程; 2、获得低温的方法 绝热节流 相变制冷 等熵膨胀 3、溶液的热力学基础 拉乌尔定律、康诺瓦罗夫定律(1、2 ,空分的核心、精馏的核心) 4、低温工质的一些性质:(空气、O、N、Ar) 5、液化循环(一次节流、克劳特、法兰德、卡皮查循环等) 6、气体分离(结合设备) 三、空分的应用领域 1、钢铁:还原法炼铁或熔融法炼铁(喷煤富氧鼓风技术); 2、煤气化:城市能源供应的趋势、煤气化能源联合发电; 3、化工:大化肥、大化工企业,电工、玻璃行业作保护气; 4、造纸:漂白剂; 5、国防工业:氢氧发动机、火箭燃料; 6、机械工业; 四、空分的发展趋势 ○ 现代工业——大型、超大型规模; ○ 大化工——煤带油:以煤为原料生产甲醇; ○ 污水处理:富氧曝气; ○ 二次采油; 第一章空分工艺流程的组成 一、工艺流程的组织 我国从1953年,在哈氧第一台制氧机,目前出现的全低压制氧机,这期间经历了几代变革:第一代:高低压循环,氨预冷,氮气透平膨胀,吸收法除杂质;

空分流程简述

空分流程简述 KDNOAr-10000/8000/390型空分装置 第一章精馏 一、进塔流程: 进塔流程(如图:1-1所示) (图:1-1) 二、精馏过程: 1、什么叫精馏: 简单的说:精馏就是利用两种不同物质(气体)的沸点不同,多次地进行混合蒸气的部分冷凝和混合液体的部分蒸发的过程就叫做精馏。 2、进塔空气的作用: 空气从纯化系统来经冷箱换热与膨胀后的空气混合后进入下塔底部,这部分气体做为下塔的上升蒸气;经高压节流的液空被送往下塔中部作为下塔的部分冷凝液; 3、精馏---下塔液氮的分离: 精馏塔下部的上升蒸气温度要比上部下流的液体温度高,所以膨胀空气进入下塔后空气温度会比上塔下流的温度高,当下塔的气体每穿过一块塔板就会遇到比它温度低的液体,这时,气体的温度会下降,并不断的被冷凝成液体,液体被部分气化;由于氧的液化温度最高,所以氧被较多的冷凝下来,剩下的蒸气含氮浓度就会有所提高。就这样,一次,又一次的循环下去,到塔顶后,蒸气中的氧大部分被冷凝到液体中去了;从而得到了蒸气中含氮纯度达到99.9%的高纯氮;这部分气体被引入主冷,被上塔的液氧冷凝成液氮后部分做为回流液回流下塔再次精馏(如图:1-2所示),部分被送往上塔作为上塔的回流液。同时下塔液空纯度也得到了含氧36%的液空。 (图:1-2)

4、上塔精馏: 将下塔液空经节流降压后送到上塔中部,作为上塔精馏原料;而从主冷部分抽出的液氮则成为上塔的回流液;与下塔精馏原理相同,液体下流时,经多次部分蒸发和冷凝,氮气较多 的蒸发出来,于是下流液体中含氧浓度不断提高,到达上塔底部时,可以获得含氧99.9%的 液氧;部分液氧作为产品抽出;由于下塔上升蒸气(纯氮气),被引入主冷冷凝,所以它将热 量较多的传给了液氧,致使液氧复热蒸发作为上塔的上升气;在上升过程中,一部分蒸气冷 凝成液体流下,另一部分蒸气随着不断上升,氮含量不断增加;到塔顶时,可得到99%以上 的氮气。 第二章开车步骤 一、启动步骤: 1、空气压缩机; 2、空气预冷系统; 3、空气纯化系统; 4、空气增压机; 5、空气膨胀机; 6、分馏塔系统操作。 二、准备工作: 1、启动冷却水系统; 2、启动仪表空气系统,检查所有设备、仪表和阀门(正常复位参照第三章正常停车阀 门动作)性能完好,并具备作用条件; 3、检察所有冷却水阀有无打开,并注意流量、压力是否满足; 4、启动空压机、增压机油泵,油温低时开加热器,检察油压。 三、启动 (一)、启动空气压缩机: 按“DCS集散控制系统启动要求”满足条件后启动; 按下电源,电机开始转动,注意事项: 1、启动时应注意电流变化; 2、密切注意各振动点和轴移位有无超高现象; 3、润滑油总管压力大于0.22Mpa延时30秒,辅油泵应停止; 4、预热结束后加载空气压缩机; 5、加载时注意各级压力、振动、轴移位变化。 (二)、预冷启动: 1、预冷和分子筛所有阀门复位; 2、空压机加载完必后就将空气缓慢导入预冷和分子筛进行充气; 3、当预冷出口压力等于空压机出口压力时(≥0.45MPa),充气结束; 4、启动常、低温水泵,并调至正常流量; 5、缓慢打开空气进水冷塔旁通阀(V1135)(根据出口水温调整阀门开度大小)。 (三)、启动分子筛: 1、缓慢开空气旁通至分子筛阀(V1250),并调整至正常流量; 2、将分子筛透入自动运行程序;

空分工艺流程

第三部分空分工艺流程的组成 一、工艺流程的组织 我国从1953年,在哈氧第一台制氧机,目前出现的全低压制氧机,这期间经历了几代变革: 第一代:高低压循环,氨预冷,氮气透平膨胀,吸收法除杂质; 第二代:石头蓄冷除杂质,空气透平膨胀低压循环; 第三代:可逆式换热器; 第四代:分子筛纯化; 第五代:,规整填料,增压透平膨胀机的低压循环; 第六代:内压缩流程,规整填料,全精馏无氢制氩; ○全低压工艺流程:只生产气体产品,基本上不产液体产品; ○内压缩流程:化工类:5~8 :临界状态以上,超临界; 钢铁类:3.0 ,临界状态以下; 二、各部分的功用

净化系统压缩冷却纯化分馏(制冷系统,换热系统,精馏系统) 液体:贮存及汽化系统; 气体:压送系统; ○净化系统:除尘过滤,去除灰尘和机械杂质; ○压缩气体:对气体作功,提高能量、具备制冷能力; (热力学第二定律) ○预冷:对气体预冷,降低能耗,提高经济性 有预冷的一次节流循环比无预冷的一次节流循环经济,增加了制冷循环,减轻 了换热器的工作负担,使产品的冷量得到充分的利用; ○纯化:防爆、提纯; 吸附能力及吸附顺序为: ; ○精馏:空气分离 换热系统:实现能量传递,提高经济性,低温操作条件; 制冷系统: 维持冷量平衡

液化空气 膨胀机 方法 节流阀 膨胀机制冷量效率高:膨胀功W; 冷损:跑冷损失 Q1 复热不足冷损 Q2 生产液体产品带走的冷量Q3 第一节净化系统 一、除尘方法: 1、惯性力除尘:气流进行剧烈的方向改变,借助尘粒本身的惯性作用分离; 2、过滤除尘:空分中最常用的方法; 3、离心力除尘:旋转机械上产生离心力; 4、洗涤除尘:

空分工艺流程说明

2.2.2 工艺流程简述 2.2.2.1压缩、预冷 原料空气通过空气过滤系统,去除灰尘和机械杂质。过滤后的空气由多级压缩机压缩到工艺所需压力,然后进入空冷塔进行冷却。压缩过程中产生的冷凝疏水在厂房内凝液罐中汇集后,由凝液泵加压送入循环回水管线。 空气自下而上穿过空冷塔,以对流形式被循环冷却水和低温冷冻水分段冷却,同时也得到了清洗。 在空冷塔底部,空气被由冷却水泵送入的循环冷却水预冷。 在顶部,空气由冷冻水泵送入的冷冻水进一步冷却。 低温冷冻水是在水冷塔中产生,其产生的原理是利用从冷箱来的干燥的污氮气汽化小部分循环冷却水,水在汽化过程中吸收热量,同时使冷却水的温度降低。 空气离开空冷塔的温度越低,对于下游空气纯化单元的负荷就越小。 空气中的少量化学杂质也被冷却水吸收。 空冷塔和水冷塔为填料塔,在空冷塔顶部设置有除沫器以去除空气中的水雾。 2.2.2.2 吸附净化 、氮氧化合物和绝大多数碳氢化合物都被吸附。 空气纯化单元包括两台交替运行的分子筛吸附器,压缩空气通过吸附器时,水、CO 2 吸附器交替循环,即一只吸附器吸附杂质而另一只吸附器被再生。吸附和再生过程顺序自动控制以保证装置连续运行。采用来自冷箱的污氮对吸附器进行再生。再生时吸附器与吸附流程隔离,再生气放空。与吸附流程隔离的吸附器先卸压,然后先用经蒸汽加热器加热的低压污氮进行再生,然后用从蒸汽加热器旁路来的冷低温氮气对吸附器进行冷却,之后再用吸附后的空气对吸附器升压并返

回吸附流程。再生循环主要有下面几个组成部分: 泄压-加热-冷却-增压 单台吸附器的设计切换周期不少于4小时。 法液空流程的纯化单元设置特殊再生加热器,必要时可用特殊再生加热器进行特殊再生。 针对厂区空气中CO 2含量波动大的特点,在分子筛吸附器空气出口设有CO 2 在线分析仪,可以随时监测吸附器的运行工况,从而保 证出口的CO 2 组分满足工艺要求。 净化后的空气分为两股:其中一股进入低压换热器;另一股去空气增压机增压。 2.2.2.3 空气精馏 净化后的空气分为两部分: 一部分净化空气主气流直接进入冷箱,并在低压主换热器中与返流产品进行热交换而冷却至接近于露点。 这股气流然后进入中压塔底部作首次分离。上升气体和下降液体接触后氮的含量升高。中压塔顶部的氮气在主冷凝蒸发器中被沸腾液氧冷凝成液氮作为中压塔的回流液。 另一部分净化空气经增压机压缩后部分送入透平膨胀机的增压端中增压后送入冷箱,在冷箱的高压主换热器中与高压氧换热被液化,然后经过高压节流阀节流后作为回流液进入中压塔和低压塔。 剩余部分增压空气在高压主换热器中冷却至适当温度抽出,然后经透平膨胀机膨胀端膨胀后送入中压塔。 从上到下,中压塔产出如下产品:液氮产品、低压氮气产品(下游MTO装置启动时的氮气)、中压氮气产品、污氮回流液、富氧液空。 液氮产品经过过冷器后作为液体产品输出,部分送入贮槽。

全液体空分工艺流程说明

全液体空分工艺流程说明 液体空分设备通常是指以直接生产液氧、液氮产品的空分设备,这种空分设备一般不生产或少量生产气体产品。 为了要获得大量的液氧和液氮产品,目前大致有二种方法:一是先生产气态产品,然后再根据需要采用液化装置将气态产品液化,这种方法能耗相对较高;另一种方法是直接采用液体空气设备生产液氧和液氮产品,与前者相比该法能耗较低,液体空分设备从流程的组织上来看可以视为是常规气态产品空分设备和液化装置的二者结合体,因此其流程要相对复杂一些。为了降低液体空分设备产品的中耗,应根据用户提出的需求条件,在工艺流程的组织上要进行多个方案的技术比较。 目前液体空分设备根据工作压力的等级不同,一般可分为低压循环和中压循环二大类,在低压循环中按照制冷系统的组织方式不同又分成带增压透平膨胀机制冷和带增压透平膨胀机加低温予冷机制冷的二种流程。在中压循环流程中因采用的制冷循环工质的不同一般分成空气循环和氮气循环,同样在中压循环中按照制冷系统的组织方式不同也分成带增压透平膨胀机加低温予冷机制冷和带高、低温增压透平膨胀机制冷的二种流程。 液体空气设备流程的选择应根据用户提出的液体产品产量、纯度、品种等要求,来选择和确定液体空分设备的工艺流程、单元设备的结构形式和组织方式。一般来说液氧产量小于1000Lh的属小型液体空分设备,目前多数是采用全低压(1.OMPa)利用空气循环制冷的工艺流程。因为液体产量较小,同时为简化流程,达到操作方便,一般在流程中原料空气和制冷循环空气可由一台压缩机提供。这种流程单位产品能耗较高。 当液体产品在2000-3000m立方/h(折成气态)以上时,将属于中大型液体空气设备,由于液体产品数量加大,要求装置必须提供更多的冷量。而在低压流程中气体的液化是通过相变过程来实现的,因为工作压力低,气体膨胀产冷量小,最终气体液化率低,那么为要获得大量的冷量就必须大幅度的提高循环空气量,这样会造成单位产品能耗的大幅度升高。因此在工艺流程上必须由低压循环改为中压制冷循环,由于气体液化工作压力的提高,其相应的液化温度也随之提高,那么单位气体液化所需的冷量就会减少,当气体液化压力超过其临界压力而温度低于临界温度时,气体液化过程中就不存在等温的冷凝过程,而是直接变成液体,这样就能减少中压流程中的循环气量,使单位液体产品能耗大大的降低,这正是中压流程为什么经济性好的重要原因。在中大型液体空分设备中原料空气部分采用低压(0.6MPa),而循环气体为中压(压缩机压力为 2.5-3.OMPa),即分为空气循环和氮气循环二种。关于在制冷循环中如何确定膨胀机的台数和运行方式及其参数,这将取决于用户提供的要求。下面将对儿种工艺流程在组织中的技术问题进行分析讨论。 低压小型液体空分设备工艺流程 现对国内已开发成功的小型全低压液体空分设备在流程组织上的一些技术特点作一分析。 本设备是采用低压带增压透平膨胀机及空气制冷循环的工艺流程。空气经空气过滤器被透平空压机压缩至1.0MPa(G)压力,经末级冷却器冷却后将全部空气送入增压机中增压,经增

工业制氧原理及流程

工业制氧原理及流程 空气中含氮气78%,氧气21%。由于空气是取之不尽的免费原料,因此工业制氧/制氮通常是将空气中的氧气和氮气分离出来。制氧氧气用来炼钢;氮气用来搅拌钢水,氧气和氮气均是重要的冶金原料。本专题将详细介绍制氧/制氮的工艺流程,主要工艺设备的工作原理等信息。 【制氧/制氮目的】:制氧氧气用来炼钢;氮气用来搅拌钢水,氧气和氮气均是重要的冶金原料。 【制氮原理简介】:以空气为原料,利用物理的方法,将其中的氧和氮分离而获得。工业中有三种,即深冷空分法、分子筛空分法(PSA)和膜空分法。 A:深冷空分制氮 深冷空分制氮是一种传统的制氮方法,已有近几十年的历史。它是以空气为原料,经过压缩、净化,再利用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同(在1大气压下,前者的沸点为-183℃,后者的为-196℃),通过液空的精馏,使它们分离来获得氮气。深冷空分制氮设备复杂、占地面积大,基建费用较高,设备一次性投资较多,运行成本较高,产气慢(12~24h),安装要求高、周期较长。综合设备、安装及基建诸因素,3500Nm3/h以下的设备,相同规格的PSA装置的投资规模要比深冷空分装置低20%~50%。深冷空分制氮装置宜于大规模工业制氮,而中、小规模制氮就显得不经济。 B:分子筛空分制氮 以空气为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,通称PSA制氮。此法是七十年代迅速发展起来的一种新的制氮技术。与传统制氮法相比,它具有工艺流程简单、自动化程度高、产气快(15~30分钟)、能耗低,产品纯度可在较大范围内根据用户需要进行调节,操作维护方便、运行成本较低、装置适应性较强等特点,故在1000Nm3/h以下制氮设备中颇具竞争力,越来越得到中、小型氮气用户的欢迎,PSA制氮已成为中、小型氮气用户的首选方法。 C:膜空分制氮 以空气为原料,在一定压力条件下,利用氧和氮等不同性质的气体在膜中具有不同的渗透速率来使氧和氮分离。和其它制氮设备相比它具有结构更为简单、体积更小、无切换阀门、维

空分工艺流程描述

空分工艺流程描述 2 工艺流程 2工艺流程总体概述 2.1空气过滤及压缩 来自大气中的空气经自洁式过滤器S01101,将空气中大于1μm的尘埃和机械杂质清除后,送离心式空气压缩机K01101,自洁式空气过滤器采用PLC控制,带自动反吹系统,反吹系统有时间、压差、时间和压差三种控制程序。 3流量约168000Nm/h、常温常压的空气在由电机驱动的单轴离心式空气压缩机K01101中,经四级压缩,压力被提升到0.632MPa(A)。温度,105?后进入空气预冷系统。空气流量由空压机入口导叶B011101的开度来调节,空压机K01101采用3组内置段间冷却器冷却压缩空气;并在末级出口还设有一放空阀BV011121,在开车、停车期间,部分空气将由BV011121放空,以防止压缩机喘振。 润滑油系统:空压机和增压机共用一个润滑油站T011101,油系统包括润滑油系统、事故油系统(2个高位油箱和4个蓄能器,空压机组和增压机组各1个高位油箱,2个蓄能器)。润滑油主要对机组各轴承起润滑、冷却及清洗杂质等作用。 -011101A/B中冷却,经温度调油箱内的润滑油经润滑油泵加压后后送入润滑油冷却器E 节阀控制好油温后进入润滑油过滤器S-011101A/B,过滤掉油中杂质后进入润滑油总管,然后送到各润滑点经机组润滑后返回油箱;润滑油泵出口有一总管压力调节阀,用于调节润滑油过滤器S-011101A/B出口总管油压。 该油路同时为增压机提供润滑油,在空压机供油总管和增压机供油总管上分别设置有蓄能器和高位油箱。以保证在主、辅油泵出现故障情况下向空压机、增压机供油,保证压缩机组的安全。

2.2空气预冷系统 经空压机压缩后的压力为0.632MPa(A)、温度,105?的空气由底部进入空冷塔 C01201内;空冷塔的水分循环冷却水和循环冷冻水两路,进入空冷塔的空气首先经循环冷却水泵P01201A/B送至下塔顶部,流量为452t/h 、32?的冷却水洗涤冷却,再经过循环冷冻水泵P01202A/B送至上塔上部流量为100t/h 、8?的冷冻水进行洗涤冷却后由塔顶出来,温度被降至10?送进入分子筛纯化系统。 循环冷却水流量由V012004(FIC012002)控制,空冷塔C01201下塔的液位由 V012038(LIC012001)控制,循环冷却水流量设有高、低流量连锁,当循环冷却水达到联锁值时将自动启停泵用循环冷却水泵。正常情况下,空冷塔下塔的循环冷却水来自凉水塔,经与空气换热后再回到凉水塔。但是,在凉水塔加药期间,空冷塔发生液泛、拦液情况下,为防止空气将大量带水到分子筛纯化系统,此时,必须将循环冷却水的供水切换至新鲜水补水(新鲜水为补入凉水塔的生产水,来自生产水总管)。另外,在空冷塔C01202的底部有个排污阀V012043,为确保空冷塔的水质良好,可以定期打开排污阀V012043,将部分污水排入地沟。 空冷塔上部的冷冻水为闭式回路,循环冷冻水流量由V012028(FIC012001)控制,空冷塔C01201上塔的液位由V012030(LIC012003)控制,循环冷冻水流量设有高、低流量连锁,当循环冷冻水达到联锁值时将自动启停泵用循环冷冻水泵。空冷塔上塔的循环冷冻水来自水冷塔C01202,经与空气换热后回到水冷塔C01202。在水冷塔C01202中,循环冷冻水从 顶部向下喷淋,由冷箱来的污氮、纯低压氮气进行冷却,污氮的量由 V015105(FIC015105)控制;水冷塔C01202的液位由 LIC012004控制调节阀V012033的补水量来实现的。在水冷塔C01202的底部有个排污阀V012051,为确保水冷塔的水质良好,可以定期打开排污阀V012051,将部分污水排入地沟。

全液体空分工艺流程说明

全液体空分工艺流程说 明 Revised by Chen Zhen in 2021

全液体空分工艺流程说明 液体空分设备通常是指以直接生产液氧、液氮产品的空分设备,这种空分设备一般不生产或少量生产气体产品。 为了要获得大量的液氧和液氮产品,目前大致有二种方法:一是先生产气态产品,然后再根据需要采用液化装置将气态产品液化,这种方法能耗相对较高;另一种方法是直接采用液体空气设备生产液氧和液氮产品,与前者相比该法能耗较低,液体空分设备从流程的组织上来看可以视为是常规气态产品空分设备和液化装置的二者结合体,因此其流程要相对复杂一些。为了降低液体空分设备产品的中耗,应根据用户提出的需求条件,在工艺流程的组织上要进行多个方案的技术比较。 目前液体空分设备根据工作压力的等级不同,一般可分为低压循环和中压循环二大类,在低压循环中按照制冷系统的组织方式不同又分成带增压透平膨胀机制冷和带增压透平膨胀机加低温予冷机制冷的二种流程。在中压循环流程中因采用的制冷循环工质的不同一般分成空气循环和氮气循环,同样在中压循环中按照制冷系统的组织方式不同也分成带增压透平膨胀机加低温予冷机制冷和带高、低温增压透平膨胀机制冷的二种流程。 液体空气设备流程的选择应根据用户提出的液体产品产量、纯度、品种等要求,来选择和确定液体空分设备的工艺流程、单元设备的结构形式和组织方式。一般来说液氧产量小于1000Lh的属小型液体空分设备,目前多数是采用全低压利用空气循环制冷的工艺流程。

因为液体产量较小,同时为简化流程,达到操作方便,一般在流程中原料空气和制冷循环空气可由一台压缩机提供。这种流程单位产品能耗较高。 当液体产品在2000-3000m立方/h(折成气态)以上时,将属于中大型液体空气设备,由于液体产品数量加大,要求装置必须提供更多的冷量。而在低压流程中气体的液化是通过相变过程来实现的,因为工作压力低,气体膨胀产冷量小,最终气体液化率低,那么为要获得大量的冷量就必须大幅度的提高循环空气量,这样会造成单位产品能耗的大幅度升高。因此在工艺流程上必须由低压循环改为中压制冷循环,由于气体液化工作压力的提高,其相应的液化温度也随之提高,那么单位气体液化所需的冷量就会减少,当气体液化压力超过其临界压力而温度低于临界温度时,气体液化过程中就不存在等温的冷凝过程,而是直接变成液体,这样就能减少中压流程中的循环气量,使单位液体产品能耗大大的降低,这正是中压流程为什么经济性好的重要原因。在中大型液体空分设备中原料空气部分采用低压,而循环气体为中压(压缩机压力为即分为空气循环和氮气循环二种。关于在制冷循环中如何确定膨胀机的台数和运行方式及其参数,这将取决于用户提供的要求。下面将对儿种工艺流程在组织中的技术问题进行分析讨论。 低压小型液体空分设备工艺流程 现对国内已开发成功的小型全低压液体空分设备在流程组织上的一些技术特点作一分析。

空分设备及深冷空分工艺流程(精品资料).doc

【最新整理,下载后即可编辑】 空分设备就是以空气为原料,通过压缩循环深度冷冻的方法把空气变成液态,再经过精馏而从液态空气中逐步分离生产出氧气、氮气及氩气等惰性气体的设备。 目前我国生产的空分设备的形式、种类繁多。有生产气态氧、氮的装置,也有生产液态氧、氮的装置。但就基本流程而言,主要有四种,即高压、中压、高低压和全低压流程。我国空分设备的生产规模已经从早期只能生产20m3/h(氧)的制氧机,发展到现在具有生产20000 m3/h、30000 m3/h和50000 m3/h(氧)的特大型空分设备的能力。 空分设备从工艺流程来说可以分为5个基本系统: 1 杂质的净化系统:主要是通过空气过滤器和分子筛吸收器等装置,净化空气中混有的机械杂质、水分、二氧化碳、乙炔等。 2 空气冷却和液化系统:主要由空气压缩机、热交换器、膨胀机和空气节流阀等组成,起到使空气深度冷冻的作用。 3空气精馏系统:主要部件为精馏塔(上塔、下塔)、冷凝蒸发器、过冷器、液空和液氮节流阀。起到将空气中各种组分分离的作用 4 加温吹除系统:用加温吹除的方法使净化系统再生。 5仪表控制系统:通过各种仪表对整个工艺进行控制。 深冷空分制氮 深冷空分制氮以空气为原料,经过压缩、净化、用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同,通过精馏,使它们分离来获得氮气。 1. 深冷制氮的典型工艺流程 整个流程由空气压缩及净化、空气分离、液氮汽化组成。 1.1 空气压缩及净化 空气经空气过滤器清除灰尘和机械杂质后进入空气压缩机,压缩至所需压力,然后送入空气冷却器,降低空气温度。再进入空气干燥净化器,除去空气中的水份、二氧化碳、乙炔及其它碳氢化合物。 1.2 空气分离 净化后的空气进入空分塔中的主换热器,被返流气体(产品氮气、废气)冷却至饱和温度,送入精馏塔底部,在塔顶部得到氮气,液空经节流后送入冷凝蒸发器

FDA空分制氮机的操作规程

FDA 空分制氮机得操作规程 一、启动前得准备 (一)检查所有工作系统是否处于待开机状态(按FDA 空分制氮设备系统工艺流程图)。 1.所有阀门处于关闭待用状态。 2.所有电源关闭待用状态。 3.冷却水处于关闭待用状态。 4.所有设备外壳均应可靠接地。 (二)接通总电源。 1点动空压机启动按钮,并立即按停止按钮,以检查空压机主机转向是否正确并确认电源相位是否正确。(祥见压缩机操作手册) 2按动冷冻干燥机电源开关,确认压缩机正常工作后立即关闭电源.(祥见冷冻干燥机操作手册). 3按动FDA 空分制氮机电源开关,确认控制柜中程序控制器正常转换后关闭电源. 二、 FDA 空分制氮设备操作规 1.系统操作规程: 参见附图二(FDA空分制氮设备系统开机操作流程图)和附图四(FDA空分制氮设备工艺流程图). 2.开机程序 3.关机程序:

4.操作前的准备及启动 a.检测空气贮罐排空阀门V1应处于关闭状态。 b.检测氮气贮罐排空阀排空阀门V2应处于关闭状态。 c.打开消声器5的截止阀V5。 d.启动制氮机程序控制器。 e.按以下图表检查气动阀门工况,无误执行F步骤,否则安排故方法排除故障。 图:FDA空制氮上阀组示意图图:FDA空制氮下阀组示意图

表:FDA空分制氮机阀位工作程序表 f.打开空气贮罐出口总气源阀v3,制氮机进入工作状态. g.按下表检查本机工况无误执行步骤H,反之安排故方法排除故障. 表:FDA空分制氮机工况显示表 h.当吸附塔达吸附压力0.6~0.75MPa时,打开氮气贮槽入口阀门V6。 i.当氮气贮槽与吸附塔压力达到平衡时,打开流量计出口阀门V8。 j.打开氮气排空阀V9。 k.调节氮气出口减压阀J2 达用户使用压力,调节范围0.55~0.55MPa。 l.调节流量计出口阀门V8开度使流量达用户额定流量。 5.采样检测: 设备运行30分钟后检测氧含量. a.打开检测阀门CI,使流量达检测仪要求; b.调整测氧仪至零点; c.检测氮气含量0 2≤1%;

(工艺流程)空分工艺流程描述

2 工艺流程 2工艺流程总体概述 2.1空气过滤及压缩 来自大气中的空气经自洁式过滤器S01101,将空气中大于1μm的尘埃和机械杂质清除后,送离心式空气压缩机K01101,自洁式空气过滤器采用PLC控制,带自动反吹系统,反吹系统有时间、压差、时间和压差三种控制程序。 流量约168000Nm3/h、常温常压的空气在由电机驱动的单轴离心式空气压缩机K01101中,经四级压缩,压力被提升到0.632MPa(A)。温度<105℃后进入空气预冷系统。空气流量由空压机入口导叶B011101的开度来调节,空压机K01101采用3组内置段间冷却器冷却压缩空气;并在末级出口还设有一放空阀BV011121,在开车、停车期间,部分空气将由BV011121放空,以防止压缩机喘振。 润滑油系统:空压机和增压机共用一个润滑油站T011101,油系统包括润滑油系统、事故油系统(2个高位油箱和4个蓄能器,空压机组和增压机组各1个高位油箱,2个蓄能器)。润滑油主要对机组各轴承起润滑、冷却及清洗杂质等作用。 油箱内的润滑油经润滑油泵加压后后送入润滑油冷却器E-011101A/B中冷却,经温度调节阀控制好油温后进入润滑油过滤器S-011101A/B,过滤掉油中杂质后进入润滑油总管,然后送到各润滑点经机组润滑后返回油箱;润滑油泵出口有一总管压力调节阀,用于调节润滑油过滤器S-011101A/B出口总管油压。 该油路同时为增压机提供润滑油,在空压机供油总管和增压机供油总管上分别设置有蓄能器和高位油箱。以保证在主、辅油泵出现故障情况下向空压机、增压机供油,保证压缩机组的安全。 2.2空气预冷系统 经空压机压缩后的压力为0.632MPa(A)、温度<105℃的空气由底部进入空冷塔C01201内;空冷塔的水分循环冷却水和循环冷冻水两路,进入空冷塔的空气首先经循环冷却水泵P01201A/B送至下塔顶部,流量为452t/h 、32℃的冷却水洗涤冷却,再经过循环冷冻水泵P01202A/B送至上塔上部流量为100t/h 、8℃的冷冻水进行洗涤冷却后由塔顶出来,温度被降至10℃送进入分子筛纯化系统。 循环冷却水流量由V012004(FIC012002)控制,空冷塔C01201下塔的液位由V012038(LIC012001)控制,循环冷却水流量设有高、低流量连锁,当循环冷却水达到联锁值时将自动启停泵用循环冷却水泵。正常情况下,空冷塔下塔的循环冷却水来自凉水塔,经与空气换热后再回到凉水塔。但是,在凉水塔加药期间,空冷塔发生液泛、拦液情况下,为防止空气将大量带水到分子筛纯化系统,此时,必须将循环冷却水的供水切换至新鲜水补水(新鲜水为补入凉水塔的生产水,来自生产水总管)。另外,在空冷塔C01202的底部有个排污阀V012043,为确保空冷塔的水质良好,可以定期打开排污阀V012043,将部分污水排入地沟。 空冷塔上部的冷冻水为闭式回路,循环冷冻水流量由V012028(FIC012001)控制,空冷塔C01201上塔的液位由V012030(LIC012003)控制,循环冷冻水流量设有高、低流量连锁,当循环冷冻水达到联锁值时将自动启停泵用循环冷冻水泵。空冷塔上塔的循环冷冻水来自水冷塔C01202,经与空气换热后回到水冷塔C01202。在水冷塔C01202中,循环冷冻水从

空分设备及深冷空分工艺流程资料

空分设备就是以空气为原料,通过压缩循环深度冷冻的方法把空气变成液态,再经过精馏而从液态空气中逐步分离生产出氧气、氮气及氩气等惰性气体的设备。 目前我国生产的空分设备的形式、种类繁多。有生产气态氧、氮的装置,也有生产液态氧、氮的装置。但就基本流程而言,主要有四种,即高压、中压、高低压和全低压流程。我国空分设备的生产规模已经从早期只能生产20m3/h(氧)的制氧机,发展到现在具有生产20000 m3/h、30000 m3/h和50000 m3/h(氧)的特大型空分设备的能力。 空分设备从工艺流程来说可以分为5个基本系统: 1 杂质的净化系统:主要是通过空气过滤器和分子筛吸收器等装置,净化空气中混有的机械杂质、水分、二氧化碳、乙炔等。 2 空气冷却和液化系统:主要由空气压缩机、热交换器、膨胀机和空气节流阀等组成,起到使空气深度冷冻的作用。 3空气精馏系统:主要部件为精馏塔(上塔、下塔)、冷凝蒸发器、过冷器、液空和液氮节流阀。起到将空气中各种组分分离的作用 4 加温吹除系统:用加温吹除的方法使净化系统再生。 5仪表控制系统:通过各种仪表对整个工艺进行控制。 深冷空分制氮 深冷空分制氮以空气为原料,经过压缩、净化、用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同,通过精馏,使它们分离来获得氮气。 1. 深冷制氮的典型工艺流程 整个流程由空气压缩及净化、空气分离、液氮汽化组成。 1.1 空气压缩及净化 空气经空气过滤器清除灰尘和机械杂质后进入空气压缩机,压缩至所需压力,然后送入空气冷却器,降低空气温度。再进入空气干燥净化器,除去空气中的水份、二氧化碳、乙炔及其它碳氢化合物。 1.2 空气分离 净化后的空气进入空分塔中的主换热器,被返流气体(产品氮气、废气)冷却至饱和温度,送入精馏塔底部,在塔顶部得到氮气,液空经节流后送入冷凝蒸发器蒸发,同时冷凝由精馏塔送来的部分氮气,冷凝后的液氮一部分作为精馏塔的回流液,另一部分作为液氮产品出空分塔。 由冷凝蒸发器出来的废气经主换热器复热到约130K进膨胀机膨胀制冷为空分塔提供冷量,膨胀后的气体一部分作为分子筛的再生和吹冷用,然后经消音器排入大气。 1.3 液氮汽化 由空分塔出来的液氮进液氮贮槽贮存,当空分设备检修时,贮槽内的液氮进入汽化器被加热后,送入产品氮气管道。 深冷制氮可制取纯度≧99.999%的氮气。 2. 主要设备简介 2.1 空气过滤器 为减少空气压缩机内部机械运动表面的磨损,保证空气质量,空气在进入空气压缩机之前,必须先经过空气过滤器以清除其中所含的灰尘和其他杂质。目前空气压缩机进气多采用粗效过滤器或中效过滤器。 2.2 空气压缩机 按工作原理,空气压缩机可分为容积式和速度式两大类。目前空气压缩机多采用往复活塞式空气压缩机、离心式空气压缩机和螺杆式空气压缩机。 2.3 空气冷却器 是用来降低进入空气干燥净化器和空分塔前压缩空气的温度,避免进塔温度大幅度波动,并可析出压缩空气中的大部分水分。通常采用氮水冷却器(由水冷却塔和空气冷却塔组成:水冷塔是用空分塔内出来的废气冷却循环水,空冷塔是用水冷塔出来的循环水冷却空气)、氟里昂空冷器。 2.4 空气干燥净化器

空分工艺流程说明

2.2.2 工艺流程简述2.2.2.1压缩、预冷 原料空气通过空气过滤系统,去除灰尘和机械杂质。过滤后的空气由多级压缩机压缩到工艺所需压力,然后进入空冷塔进行冷却。压缩过程中产生的冷凝疏水在厂房内凝液罐中汇集后,由凝液泵加压送入循环回水管线。 空气自下而上穿过空冷塔,以对流形式被循环冷却水和低温冷冻水分段冷却,同时也得到了清洗。 在空冷塔底部,空气被由冷却水泵送入的循环冷却水预冷。 在顶部,空气由冷冻水泵送入的冷冻水进一步冷却。 低温冷冻水是在水冷塔中产生,其产生的原理是利用从冷箱来的干燥的污氮气汽化小部分循环冷却水,水在汽化过程中吸收热量,同时使冷却水的温度降低。空气离开空冷塔的温度越低,对于下游空气纯化单元的负荷就越小。 空气中的少量化学杂质也被冷却水吸收。 空冷塔和水冷塔为填料塔,在空冷塔顶部设置有除沫器以去除空气中的水雾。2.2.2.2 吸附净化 空气纯化单元包括两台交替运行的分子筛吸附器,压缩空气通过吸附器时,水、CO、氮氧化合物和绝大多数碳氢化合物都被吸附。2吸附器交替循环,即一只吸附器吸附杂质而另一只吸附器被再生。吸附和再生过程顺序自动控制以保证装置连续运行。采用来自冷箱的污氮对吸附器进行再生。再生时吸附器与吸附流程隔离,再生气放空。与吸附流程隔离的吸附器先卸压,然后先用经蒸汽加热之后再用吸附后的空气对吸附器升压并返器加热的低压污氮进行再生,然后用从蒸汽加热器旁路来的冷低温氮气对吸附器进行冷却, 回吸附流程。再生循环主要有下面几个组成部分: 泄压-加热-冷却-增压 单台吸附器的设计切换周期不少于4小时。 法液空流程的纯化单元设置特殊再生加热器,必要时可用特殊再生加热器进行特殊再生。 针对厂区空气中CO含量波动大的特点,在分子筛吸附器空气出口设有CO在线分析仪,可以随时监测吸附器的运行工况,从而保22证出口的CO组分满足工艺要求。2净化后的空气分为两股:其中一股进入低压换热器;另一股去空气增压机增压。 2.2.2.3 空气精馏 净化后的空气分为两部分: 一部分净化空气主气流直接进入冷箱,并在低压主换热器中与返流产品进行热交换而冷却至接近于露点。 这股气流然后进入中压塔底部作首次分离。上升气体和下降液体接触后氮的含量升高。中压塔顶部的氮气在主冷凝蒸发器中被沸腾液氧冷凝成液氮作为中压塔的回流液。 另一部分净化空气经增压机压缩后部分送入透平膨胀机的增压端中增压后送入冷箱,在冷箱的高压主换热器中与高压氧换热被液化,然后经过高压节流阀节流后作为回流液进入中压塔和低压塔。 剩余部分增压空气在高压主换热器中冷却至适当温度抽出,然后经透平膨胀机膨胀端膨胀后送入中压塔。

空分装置工艺流程及仪表简介

空分装置工艺流程及仪表简介 一、10000NM3/h空分工艺流程及仪控系统 1、工艺流程简图: 2、空压机工作原理: 空气经过滤器进入空透压缩机,进入叶轮的气体在叶轮的作用下,高速旋转产生离心力,在离心力的作用下气体被甩出,并获得很大的速度,在扩压器等元件中将速度能转化为压力能。这样通过逐段的多级压缩,使气体达到规定的压力,送至空分系统。 3、空压机仪控系统: (1)、温度:8个轴温测量(TIAS1.10~TIAS1.17)

8个进出口温度测量(TI1.1~TI1.2) (2)、压力:入口压力:PI1.1. 出口压力调节:PIC1.2. (3)、流量:出口空气流量:FI1.2 4、空气预冷系统及测量仪表组成: (1)、空冷塔的作用:进塔空气洗涤和冷却。 (2)、仪表控制:1空冷塔液位:LICAS101(700~900mm)。2空冷塔出口空气压力:PIAS101(≤0.35Mpa报警≤0.30Mpa停车)。3空冷塔出口空气温度:TIAS104-1-2(≥50℃报警≥55℃停车)。 5、板式换热器(可逆式换热器)的作用及仪表控制原理: (1)、作用:空气冷却和清除水分、二氧化碳。 (2)、仪表控制(切换系统)原理:

工作原理:由十台切换阀及对应二位五通电磁阀组成两大组,DCS 输出控制信号,按照程序使阀门开关动作。每三分钟切换空气进口和污氮气出口通道,达到清除管道内水份和二氧化碳的作用。 6、空分塔主要设备及作用:空分塔的作用,是为压缩岗位提供纯度≥ 99.2%的氧气和纯度≥99.99%的氮气。 (1)、分馏塔:包括上塔、下塔、付塔、冷凝蒸发器等。主要作用为分离氧气、氮气。仪表有液位、压力、阻力等测量。 (2)、液氧吸附器、液空吸附器:各两台。主要作用是吸附液氧、液空中的乙炔(正常0.01ppm)及碳氢化合物。仪表有压力和温度测量。(3)、液化器:包括氧液化器、氮液化器、污氮液化器。主要作用是通过换热使气体变成液体。仪表主要测量各介质进出口温度。(4)、过冷器:包括氮过冷器、液空污液氮过冷器。主要作用是通过热交换使气体变成过冷气体。仪表主要测量各介质进出口温度。 6、膨胀机的作用及仪表组成: (1)、作用:制冷、维持空分塔内冷量平衡。 (2)、仪表:内、外轴承温度,油压,膨胀机转速,间隙压差等。7、氮气透平压缩机工作原理及仪表组成: (1)、从分馏塔来的3Kpa低压氮气,进入氮气透平压缩机,进入叶轮的气体在叶轮的作用下,高速旋转产生离心力,在离心力的作用下气体被甩出,并获得很大的速度,在扩压器等元件中将速度能转化为压力能。这样通过逐段的多级压缩(共五段十级),使气体达到规定的压力(2.2Mpa),外供至后系统。

相关文档
最新文档