综合 解一元二次方程—换元法

综合  解一元二次方程—换元法
综合  解一元二次方程—换元法

2.2.5《解一元二次方程—换元法》典例解析与同步训练

【知识要点】

1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.

换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.

2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.

【典例解析】

例1.用适当方法解下列方程:

(1)2x2﹣5x﹣3=0

(2)16(x+5)2﹣9=0

(3)(x2+x)2+(x2+x)=6.

例题分析:本题考查了一元二次方程的几种解法:①公式法;②直接开平方法;③换元法(1)用公式法解一元二次方程,先找a,b,c;再求△;再代入公式求解即可;

(2)用直接开平方法解一元二次方程,先将方程化为(x+5)2=,直接开方即可;

(3)设t=x2+x,将原方程转化为一元二次方程,求解即可.

解:(1)∵a=2,b=﹣5,c=﹣3,△=b2﹣4ac=(﹣5)2﹣4×2×(﹣3)=25+24=49,

∴x===,

∴x1=3,x2=﹣;

(2)整理得,(x+5)2=,

开方得,x+5=±,

即x1=﹣4,x2=﹣5,

(3)设t=x2+x,将原方程转化为t2+t=6,

因式分解得,(t﹣2)(t+3)=0,

解得t1=2,t2=﹣3.

∴x2+x=2或x2+x=﹣3(△<0,无解),

∴原方程的解为x1=1,x2=﹣2.

例2.解方程:(1)(x+3)(x﹣1)=5

(2).

例题分析:本题主要考查了解一元二次方程的方法和解分式方程.解一元二次方程时,要注意选择合适的解题方法,这样才会达到事半功倍的效果.还要注意换元思想的应用.

(1)先去括号,将方程化为一般式,然后再运用二次三项式的因式分解法进行求解.(2)先设x2﹣x=y,采用换元法,然后解方程即可.

解:(1)x2+2x﹣8=0,

(x+4)(x﹣2)=0

∴x1=﹣4,x2=2.

(2)设x2﹣x=y

∴原方程化为y﹣=1

∴y2﹣2=y

∴y2﹣y﹣2=0

∴(y+1)(y﹣2)=0

∴y1=﹣1,y2=2

∴x2﹣x=﹣1或x2﹣x=2

解x2﹣x=﹣1知:此方程无实数根.

解x2﹣x=2知x1=2,x2=﹣1;

∴原方程的解为:x1=2,x2=﹣1.

例3.解下列方程:

(1)2x2+5x﹣3=0

(2)(3﹣x)2+x2=9

(3)2(x﹣3)2=x(x﹣3)

(4)(x﹣1)2﹣5(x﹣1)+6=0

例题分析:本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后,方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的式子的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.

(1)方程左边可以利用十字相乘法进行因式分解,因此应用因式分解法解答.

(2)先移项,然后把x2﹣9因式分解为(x+3)(x﹣3),然后再提取公因式,因式分解即可.(3)先移项,然后用提取公因式法对左边进行因式分解即可.

(4)把(x﹣1)看作是一个整体,然后套用公式a2±2ab+b2=(a±b)2,进行进一步分解,故用因式分解法解答.

解:(1)因式分解,得(2x﹣1)(x+3)=0,

所以2x﹣1=0或x+3=0,

解得,x=或x=﹣3;

(2)移项得,(3﹣x)2+x2﹣9=0,

变形得,(x﹣3)2+(x+3)(x﹣3)=0,

因式分解,得(x﹣3)[(x﹣3)+(x+3)]=0,

解得,x=3或x=0;

(3)移项得,2(x﹣3)2﹣x(x﹣3)=0,

因式分解得,(x﹣3)[2(x﹣3)﹣x]=0,

解得x=3或x=6;

(4)化简得:(x﹣1﹣2)(x﹣1﹣3)=0

即(x﹣3)(x﹣4)=0

解得x=3或x=4.

例4.阅读下面材料:解答问题

为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将(x2﹣1)看作一个整体,然后设x2﹣1=y,那么原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,x2﹣1=1,∴x2=2,∴x=±;当y=4时,x2﹣1=4,∴x2=5,∴x=±,故原方程的解为x1=,x2=﹣,x3=,x4=﹣.

上述解题方法叫做换元法;请利用换元法解方程.(x2﹣x)2﹣4(x2﹣x)﹣12=0.

例题分析:此题考查了学生学以致用的能力,解题的关键是掌握换元思想.

先把x2﹣x看作一个整体,设x2﹣x=y,代入得到新方程y2﹣4y﹣12=0,利用求根公式可以求解.

解:设x2﹣x=y,那么原方程可化为y2﹣4y﹣12=0(2分)

解得y1=6,y2=﹣2(4分)

当y=6时,x2﹣x=6即x2﹣x﹣6=0

∴x1=3,x2=﹣2(6分)

当y=﹣2时,x2﹣x=﹣2即x2﹣x+2=0

∵△=(﹣1)2﹣4×1×2<0

∴方程无实数解(8分)

∴原方程的解为:x1=3,x2=﹣2.(9分)

例5.阅读下面的材料,回答问题:

解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:

设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.

当y=1时,x2=1,∴x=±1;

当y=4时,x2=4,∴x=±2;

∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.

(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想.

(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.

例题分析:应用换元法,把关于x的方程转化为关于y的方程,这样书写简便且形象直观,并且把方程化繁为简化难为易,解起来更方便.

(1)本题主要是利用换元法降次来达到把一元四次方程转化为一元二次方程,来求解,然后再解这个一元二次方程.

(2)利用题中给出的方法先把x2+x当成一个整体y来计算,求出y的值,再解一元二次方程.

解:(1)换元,降次

(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,

解得y1=6,y2=﹣2.

由x2+x=6,得x1=﹣3,x2=2.

由x2+x=﹣2,得方程x2+x+2=0,

b2﹣4ac=1﹣4×2=﹣7<0,此时方程无解.

所以原方程的解为x1=﹣3,x2=2.

【同步训练】

一.选择题(共10小题)

1.解方程(x﹣1)2﹣5(x﹣1)+4=0时,我们可以将x﹣1看成一个整体,设x﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,即x﹣1=1,解得x=2;当y=4时,即x﹣1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程(2x+5)2﹣4(2x+5)+3=0的解为()

A.x1=1,x2=3 B.x1=﹣2,x2=3 C.x1=﹣3,x2=﹣1 D.x1=﹣1,x2=﹣2

2.用换元法解方程(x2+x)2+(x2+x)=6时,如果设x2+x=y,那么原方程可变形为()A.y2+y﹣6=0 B.y2﹣y﹣6=0 C.y2﹣y+6=0 D.y2+y+6=0

3.用换元法解方程(x2+x)2+2(x2+x)﹣1=0,若设y=x2+x,则原方程可变形为()A.y2+2y+1=0 B.y2﹣2y+1=0 C.y2+2y﹣1=0 D.y2﹣2y﹣1=0

4.已知实数x满足x2+=0,那么x+的值是()

A.1或﹣2 B.﹣1或2 C.1 D.﹣2

5.方程(x2﹣3)2﹣5(3﹣x2)+2=0,如果设x2﹣3=y,那么原方程可变形为()A.y2﹣5y+2=0 B.y2+5y﹣2=0 C.y2﹣5y﹣2=0 D.y2+5y+2=0

6.若实数x,y满足x2﹣2xy+y2+x﹣y﹣6=0,则x﹣y的值是()

A.﹣2或3 B.2或﹣3 C.﹣1或6 D.1或﹣6

7.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为()

A.﹣5或1 B.1 C.5 D.5或﹣1

8.如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()

A.1 B.﹣4 C.1或﹣4 D.﹣1或3

9.正整数x,y满足(2x﹣5)(2y﹣5)=25,则x+y的值是()

A.10 B.18 C.26 D.10或18

10.若(a2+b2)(a2+b2﹣2)=8,则a2+b2=()

A.﹣2 B.4 C.4或﹣2 D.﹣4或2

二.填空题(共5小题)

11.已知,关于x的方程x2+=1,那么x++1的值为_________.

12.解方程(x2﹣5)2﹣x2+3=0时,令x2﹣5=y,则原方程变为_________.

13.若a2﹣2ab+b2+2(a﹣b)+1=0,则a﹣b=_________.

14.用换元法解方程:(x2﹣x)2﹣5(x2﹣x)+6=0,如果设x2﹣x=y,那么原方程变为

_________.

15.在解方程(x2﹣1)2﹣2x2﹣1=0时,通过换元并整理得方程y2﹣2y﹣3=0,则y=

_________.

三.解答题(共4小题)

16.解方程:(x2﹣2x)2+(x2﹣2x)﹣2=0

17.如果a为不等于±2的整数,证明方程x4+ax+1=0没有有理根.

18.对于有理数x,用[x]表示不大于x的最大整数,请解方程.19.用适当方法解下列方程

(1)(2y﹣1)2=

(2)x﹣=5x(﹣x)

(3)(x﹣3)2+(x+4)2﹣(x﹣5)2=17x+24

(4)(2x+1)2+3(2x+1)﹣4=0

参考答案

一.选择题(共10小题)

1.解:(2x+5)2﹣4(2x+5)+3=0,

设y=2x+5,

方程可以变为y2﹣4y+3=0,

∴y1=1,y2=3,

当y=1时,即2x+5=1,解得x=﹣2;

当y=3时,即2x+5=3,解得x=﹣1,

所以原方程的解为:x1=﹣2,x2=﹣1.

故选D.

2.解:把x2+x整体代换为y,

y2+y=6,

即y2+y﹣6=0.

故选A.

3.解:设y=x2+x,得y2+2y﹣1=0.故选C.4.解:∵x2+=0

∴[(x+)+2][(x+)﹣1]=0

∴x+=1或﹣2.

∵x+=1无解,

∴x+=﹣2.

故选D.

5.解:∵x2﹣3=y

∴3﹣x2=﹣y

所以y2+5y+2=0.

故选D.

6.解:设x﹣y=m,则原方程可化为:

m2+m﹣6=0,

解得x1=2,x2=﹣3;

故选B

7.解:原方程变形得,(x2+y2)2+4(x2+y2)﹣5=0,(x2+y2+5)(x2+y2﹣1)=0,

又∵x2+y2的值是非负数,

∴x2+y2的值为只能是1.

故选B.

8.解:∵x、y为正整数,∴或或或

解得,x=5,y=5,或x=3,y=15,

∴x+y=10或18.

故选D.

10.解:设a2+b2=x,则有:

x(x﹣2)=8

即x2﹣2x﹣8=0,

解得x1=﹣2,x2=4;

∵a2+b2≥0,

故a2+b2=x2=4;

故选B

二.填空题(共5小题)

11.解:原方程可化为x2+()2+2x?+2(x+)+1=2+2x?

(x++1)2=4

x++1=±2.

12.解:∵x2﹣5=y,

∴x2=5+y,

∴(x2﹣5)2﹣x2+3=y2﹣y﹣5+3=y2﹣y﹣2=0,

故本题的答案是y2﹣y﹣2=0.

13.解:设t=a﹣b,则原方程可化为:t2+2t+1=0,

整理得:(t+1)2=0,

解得:t=﹣1.

∴a﹣b=﹣1.

14.解:根据题意x2﹣x=y,把原方程中的x2﹣x换成y,

所以原方程变化为:y2﹣5y+6=0

15.解:方程整理,得(x2﹣1)2﹣2(x2﹣1)﹣3=0

故y=x2﹣1

三.解答题(共4小题)

16.解:设y=x2﹣2x

原方程可变为:y2+y﹣2=0

解方程得y=﹣2或1所以x2﹣2x=﹣2或1.

当x2﹣2x=﹣2时,△<0,没实数根,

当x2﹣2x=1时,解得x=1±.

∴原方程的根是x1=1+,x2=1﹣.

17.证明:若a=2或者﹣2,方程有有理根,

当=2时,有理根x=﹣1;等于﹣2时,有理根x=1.这个根据配方法得来.

x4±2x+1=0,即x4﹣x2+x2±2x+1=x2(x+1)(x﹣1)+(x±1)2=0,此等式有公因式,可得x=±1.而由题意知:a≠±2,即x≠±1.

则有a=﹣=﹣x3﹣,其中x≠±1.

a为整数,而a=﹣x3﹣,若x为整数且x≠±1,那么x3为整数,为小数,整数与小数之和或者差,皆为小数,故x不能是整数.

若x为分数,那么设x=,其中c、b互质且为整数,b≠0.

那么﹣x3﹣=﹣=﹣.由此代数式知:因为c、b互质,故此代数式

的值不为整数.

故当x为整数或者分数时,a为整数均不能成立.

故当a为整数时,方程没有有理根.

18.解:因为方程左边的第1、3项都是整数,

所以3y是整数.

注意到,

代入方程,得到,

所以是整数,3y是10的倍数.

令3y=10k,k是整数,

代入得,

其中,对于有理数x,x=x﹣[x].

所以有,.

当k取不同整数时,的情况如下表:

<﹣=1

=

k的可能值是﹣1和3,相应的和y=10.

代入验算得到或y=10.

故答案:或y=10.

19.解:(1)方程原式两边同乘以2得(2y﹣1)2=,

∴2y﹣1=±,

y=±;

(2)移项、提取公因式得(x﹣)(5x+1)=0,

解得x1=,x2=﹣;

(3)去括号、移项、合并同类项得(x+3)(x﹣8)=0,

解得x1=﹣3,x2=8;

(4)解方程(2x+1)2+3(2x+1)﹣4=0可以用换元法和配方法,设2x+1为y,得y2+3y﹣4=0,

利用配方法得(y+)2=4+,

y+=±,

得y=1或﹣4,

设2x+1为y,

则x1=0,x2=﹣.

《代入法解二元一次方程组》教案

用代入法解二元一次方程组 学习目标 :会运用代入消元法解二元一次方程组. 学习重难点:1、会用代入法解二元一次方程组。 2、灵活运用代入法的技巧. 学习过程: 一、基本概念 1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。 2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。 3、代入消元法的步骤: 二、自学、合作、探究 1、将方程5x-6y=12变形:若用y 的式子表示x ,则x=______,当y=-2时,x=_______;若用含x 的式子表示y ,则y=______,当x=0时,y=________ 。 2、在方程2x+6y-5=0中,当3y=-4时,2x= ____________。 3、若???-=-=+???-==1by ax 7by ax 2y 1x 是方程组的解,则a=______,b=_______。 4、若方程y=1-x 的解也是方程3x+2y=5的解,则x=____,y=____。

5、用代人法解方程组???=+-=7 y 3x 23x y ①②,把____代人____,可以消去未知数______。 6、已知方程组???=-=-1y 7x 45y x 3的解也是方程组? ??==-5by -x 34y 2ax 的解,则a=_______,b=________ ,3a+2b=___________。 7、已知x=1和x=2都满足关于x 的方程x 2+px+q=0,则p=_____, q=________ 。 8、当k=______时,方程组???=-+=+3y 1k kx 1y 3x 4)(的解中x 与y 的值相等。 9、用代入法解下列方程组: ⑴???=+=5x y 3x ⑵???==+y 3x 2y 32x ⑶? ??=-=+8y 2x 57y x 3 二、训练 1、方程组{1 y 2x 11y -x 2+==的解是( )

合并法换元法解元次方程组

合并法、换元法解二元一次方程组 (一)知识教学点 1.掌握用合并法、换元法解二元一次方程组的步骤. 2.熟练运用合并法、换元法解二元一次方程组. (二)能力训练点 1.培养学生的观察分析能力; 2.训练学生的运算技巧,养成检验的习惯. (三)德育渗透点 消元,化未知为已知的数学思想. (四)美育渗透点 通过本节课的学习,渗透化归的数学美,以及方程组的解所体现出来的奇异的数学美. 二、学法引导 1.教学方法:引导发现法、练习法,指导法. 2.学生学法:在前面已经学过二元一次方程组的解法,故在求解过程中始终应抓住消元的思想方法. 三、重点、难点、疑点及解决办法 (-)重点 使学生会用合并法、换元法解二元一次方程组. (二)难点 灵活运用合并法、换元法的技巧. (三)疑点 如何“消元”,把“二元”转化为“一元”.

四、课时安排 一课时. 五、教具学具准备 电脑 投影仪. 六、教学过程 一导 运用导学案 自主学习 (一)解二元一次方程组的基本思路是消元,即通过运用代入法和加减法把二元一次方程组转化为一元一次方程,从而求出方程组的解.而对于具有某些特点的二元一次方程组,如果仍按常规方法不仅运算量大,而且容易出错.若能根据题目的特点,适时改进方法,不仅可以减少运算量,而且可以又快又准地解出方程组. (二)自主探究请同学们根据提示用合并法解二元一次方程组 (略) 设计意图:以学生的兴趣为主,由易至难,逐层递进,逐步完成各个任务。 (三)总结 二研 合作学习 研究探讨 (一)例题解析 (1) ???-=+=+② 10y 65x ① 1056y x

(2) ???=+-=-+-② 72009)-7(2010y 9)4(2x ① 3)20092010(3)92(2y x 设计意图:合作探究,探索比较,发现规律,使每位学生参与其中,成为课堂的主人,提高解题技巧 (二)练习题 (1)???=+=+② 79y 137x ① 61713y x (2)???=+=+② 74y 1911x ① 1061119y x (3)?????-=--+=-++.1106,3106y x y x y x y x (4)??? ????=--+=-++.86)32(55)1(3,36)32(5)1(2y x y x 设计意图:竞赛完成,激发学习热情,巩固强化 三验 课堂小测验(略) 设计意图:对学生完成情况及时了解,及时总结,对课堂教学及时反思,对下一步的教学进行适时,适当的调整。并对学生的解题情况进行总体的评价,要本着激励的原则,使学生有成就感。

(完整版)解一元二次方程配方法练习题

- 1 - 解一元二次方程练习题(配方法) 步骤:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1.用适当的数填空: ①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2 + x+ =(x+ )2 ;④ x 2 -9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______. 4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 5.若 x 2+6x+m 2是一个完全平方式,则 m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 8.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D . 9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 10.用配方法解下列方程: (1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)4 1 x 2-x-4=0 (5)6x 2-7x+1=0 (6)4x 2-3x=52 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。 12.将二次三项式4x 2-4x+1配方后得( ) A .(2x -2)2+3 B .(2x -2)2-3 C .(2x+2)2 D .(x+2)2-3 13.已知x 2-8x+15=0,左边化成含有x 的完全平方形式, 其中正确的是( ) A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-11 14.已知一元二次方程x 2-4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程。 (1)你选的m 的值是 ;(2)解这个方程. 15.如果x 2-4x+y 2 ,求(xy )z 的值

配方法解一元二次方程的教案

配方法解一元二次方程的教案 教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。 一、教学目标 (一)知识目标 1、理解求解一元二次方程的实质。 2、掌握解一元二次方程的配方法。 (二)能力目标 1、体会数学的转化思想。 2、能根据配方法解一元二次方程的一般步骤解一元二次方程。 (三)情感态度及价值观 通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。 二、教学重点 配方法解一元二次方程的一般步骤 三、教学难点 具体用配方法的一般步骤解一元二次方程。 四、知识考点 运用配方法解一元二次方程。 五、教学过程 (一)复习引入 1、复习:

解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。 2、引入: 二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。 (二)新课探究 通过实际问题的解答,引出我们所要学习的知识点。通过问题吸引学生的注意力,引发学生思考。 问题1: 一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗? 问题1重在引出用直接开平方法解一元二次方程。这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来, 具体解题步骤: 解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2 列出方程:60x2=1500 x2=25 x=±5 因为x为棱长不能为负值,所以x=5 即:正方体的棱长为5dm。 1、用直接开平方法解一元二次方程

《代入法解二元一次方程组》-教学设计

消元——二元一次方程组的解法(代入消元法) 学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。 三维目标 知识与技能 1、会用代入法解二元一次方程组 2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成 未知向已知的转化,培养学生观察能力,体会化归 思想。 情感态度与价值观 :通过研究解决问题的方法,培养学生合作交 流意识和探究精神。 教学重点: 用加减消元法解二元一次方程组。 教学难点: 理解加减消元思想和选择适当的消元方法解二元一次方程组。教学过程 (一)创设情境,激趣导入 在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场), 可以列方程组 x y22 2x y40 += ? ? += ?表示本章引言中问题的数量关系。如果只 设一个未知数(设胜x场),这个问题也可以用一元一次方程

________________________[1]来解。 分析:[1]2x+(22-x)=40。 观察 上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。这正是下面要讨论的内容。 (二)新课教学 可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。解这个方程,得x=18。把x=18代入y=22-x,得y=4。从而得到这个方程组的解。 二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想。[3] [3]通过对上面具体方程组的讨论,归纳出“将未知数的个数由多化少、逐一解决”的消元思想,这是从具体到抽象,从特殊到一般的认识过程。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解它。 归纳: 上面的解法,是由二元一次方程组中的一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法[4]

特殊法解二元一次方程组优秀教学设计

特殊法解二元一次方程组专题 命题人:易晓萍 班级:________姓名:__________ 学习目标:掌握整体代入法、换元法、轮换对称方程、含参方程等特殊的方法解方程 一、整体代入法 例1、对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组: 变式练习:(1)???=+=+11325y x y x (2)?????=--=-12264532y y x y x 归纳总结:在运用消元法解二元一次方程组时,要注重整体思想的运用,以探求消元捷径,提高解题速度和准确性。 二、换元法 请阅读下列材料,解答问题: 材料:解方程组 ,若设x +y =m ,x ﹣y =n ,则原方程组可变形为,用加减消元法解得,所以,再解这个方程组得.由此可以看出,在上述解方程组过程中,把某个式子看成一个整体,用一个字母去代替它,我们把这种解方程组的方法叫换元法. 问题:请你用上述方法解方程组 . 变式练习:(1)???=-++=--+11)(2)(35)()(2n m n m n m n m (2)???????=-++=-++1732)(3732y x y x y x y x 归纳总结:具备这种特征的二元一次方程组,如果按照常规解法,不仅计算量大,而且特别容易出错,若根据

其特征,适当进行换元,不仅可以减少运算量,而且可以更快更准确。 三、轮换对称方程 定义:在解方程组 时,我们可以先①+②,得x +y =1,再②﹣①,得x ﹣y =9,最后重新组成方程组,这种解二元一次方程组的解法我们称为二元一次方程组的轮换对称解法. 变式练习:(1)???=+=+13 341 43y x y x (2) ???=+=+15151491494951y x y x 归纳总结:具备这种特征的二元一次方程组,如果按照常规解法,不仅计算量大,而且特别容易出错,若根据 其特征,将两个方程相加相减得出新的方程,会大大减低计算量。(依据是等式的性质) 四、含参方程 例、解方程组 ???-=+=14 434:3:2::c b a c b a 变式练习:已知x 、y 的值满足等式 54321y x y x +=+=+,求式子32123++++y x y x 的值 归纳总结:连比或者连等,通常利用设参法,先将连比或连等中的未知数设参数表示,再求解,以达到消元的目的。

解一元二次方程配方法练习题

! 解一元二次方程配方法练习题 1.用适当的数填空: ①、x2+6x+ =(x+ )2; ②、x2-5x+ =(x-)2; ③、x2+ x+ =(x+ )2; ④、x2-9x+ =(x-)2 2.将二次三项式2x2-3x-5进行配方,其结果为_________. 3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______. ! 4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,?所以方程的根为_________. 5.若x2+6x+m2是一个完全平方式,则m的值是() A.3 B.-3 C.±3 D.以上都不对 6.用配方法将二次三项式a2-4a+5变形,结果是() A.(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-1 7.把方程x+3=4x配方,得() A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=2 8.用配方法解方程x2+4x=10的根为() 【 A.2.-2.. 9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值() A.总不小于2 B.总不小于7 C.可为任何实数 D.可能为负数 10.用配方法解下列方程: (1)3x2-5x=2.(2)x2+8x=9 #

(3)x 2+12x-15=0 (4)4 1 x 2 -x-4=0 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ; ? (2)求-3x2+5x+1的最大值。 12. 用配方法证明: (1)21a a -+的值恒为正; (2)2982x x -+-的值恒小于0. | 13. 某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长百分率. \

初中数学 配方法解一元二次方程

配方法解一元二次方程 教学目标 1、理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题. 2、通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤. 重点:讲清“直接降次有困难”,如x2+6x-16=0的一元二次方程的解题步骤.难点:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧. 【课前预习】 导学过程 阅读教材部分,完成以下问题 解下列方程 (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 填空: (1)x2+6x+______=(x+______)2;(2)x2-x+_____=(x-_____)2 (3)4x2+4x+_____=(2x+______)2.(4)x2-x+_____=(x-_____)2 问题:要使一块长方形场地的长比宽多6cm,并且面积为16cm2,场地的长和宽应各是多少?

思考? 1、以上解法中,为什么在方程x 2+6x=16两边加9?加其他数行吗? 2、什么叫配方法? 3、配方法的目的是什么? 这也是配方法的基本 4、配方法的关键是什么? 用配方法解下列关于x 的方程 (1)2x 2-4x-8=0 (2)x 2-4x+2=0 (3)x 2-21x-1=0 (4)2x 2+2=5 总结:用配方法解一元二次方程的步骤: 【课堂活动】 活动1、预习反馈 活动2、例习题分析 例1用配方法解下列关于x 的方程: (1)x 2-8x+1=0 (2)2x 2+1=3x (3)3x 2-6x+4=0

二元一次方程解法大全

二元一次方程解法大全 1、直接开平方法: 直接开平方法就是用直接开平方求解二元一次方程的方法。用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m. 例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解:9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0(a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2=

当b^2-4ac≥0时,x+=± ∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方) 解:将常数项移到方程右边3x^2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+()2=+()2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2=. 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac ≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。 例3.用公式法解方程2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2,b=-8,c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x=[(-b±(b^2-4ac)^(1/2)]/(2a) ∴原方程的解为x1=,x2=. 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程:

解一元二次方程(直接开方法配方法)练习题100道

解一元二次方程练习题(配方法) 1.用适当的数填空: ①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2; ③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )2 2.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 4.把方程x 2+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 5.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D .6.用配方法解下列方程: (2)x 2+8x=9 (3)x 2+12x-15=0 (4)4 1 x 2 -x-4=0 7.用直接开平方法解下列一元二次方程。 1、0142 =-x 2、2)3(2=-x 3、()512 =-x 4、()162812 =-x 8.用配方法解下列一元二次方程。 1、.0662 =--y y 2、x x 4232 =- 3、9642=-x x 4、01322=-+x x 5、07232=-+x x 6、01842 =+--x x 7.用直接开平方法解下列一元二次方程。 1、0142 =-x 2、2)3(2=-x 3、()512 =-x 4、()162812 =-x 8.用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232 =- 3、9642=-x x 2 2 2

用配方法解一元二次方程教案新部编本

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

2.1.2用配方法解一元二次方程 教学目标 【知识目标】 使学生会用配方法解一元二次方程。 【技能目标】 经历列方程解决实际问题的过程,熟练地运用配方法解一元二次方程,使学生理解转化变形思想,掌握一些转化的技能。 【情感目标】 通过配方法的探索活动,培养学生勇于探索的良好学习习惯,感受数学的严谨性。 教学重点难点 【重点】用配方法解一元二次方程 【难点】配方的过程 教法:引导、观察、归纳、探究 教具:多媒体、课件 教学过程: 一、复习回顾 上一节我们学习了配方法,首先我们回顾上一节学习的内容: 1、配方法的具体步骤是什么? 对二次三项式ax 2+bx+c 配方的一般步骤是: (1)把ax 2+bx+c 变形为a (x 2+a b x )+c (2)配方为:a[x 2 +a b x+(a b 2)2-224a b ]+c

(3)整理成a(x+a b 2)2+a b a c 442 的形式 议一议:配方的关键是什么? 点拨:配方的关键是把x 2+a b x 加上一次项系数一半的平方(a b 2)2。 2、将下列各式配成完全平方式。 (1)a 2+12a+ 62 =(a+ 6 )2; (2)x 2 - x +41=(x- 2 1 )2 二、讲授新课 这一节我们就来学习一下用配方法解一元二次方程 (一) 提出问题 归纳定义 1、 提出问题 如图 现有长方形的纸片一张,长20cm ,宽14cm ,在其四个角上各剪去一个边长相等的小正方形,然后把四边折起,如果恰好能将其做成底面积是72cm 2的无盖长方体纸盒,求剪去的小正方形边长是多少? 分析: 设剪去的小正方形的边长是xcm ,则盒子底面长方形的长是(20-2x )cm,宽是(14-2x )cm 。根据题意,列出方程

代入法解二元一次方程组练习

七年级数学导学案 课题:代入法解方程组练习 第1课时 班级________ 姓名_________ 学习过程: 一、基本概念 1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。 2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。 3、代入消元法的步骤:代入消元法的第一步是:将其中一个方程中的某个未知数用____的式子表示出来;第二步是:用这个式子代入____,从而消去一个未知数,化二元一次方程组为一元一次方程. 二、自学、合作、探究 1.将方程5x-6y=12变形:若用含y 的式子表示x ,则x=______,当y=-2时,x=_______;若用含x 的式子表示y ,则y=______,当x=0时,y=________ 。 2.用代人法解方程组? ??=+-=7y 3x 23 x y ①②,把____代人____,可以消去未知 数______,方程变为: 3.若方程y=1-x 的解也是方程3x+2y=5的解,则x=____,y=____。 4.若? ? ?-=-=+???-==1by ax 7 by ax 2y 1x 是方程组的解,则a=______,b=_______。 5.已知方程组?? ?=-=-1y 7x 45y x 3的解也是方程组???==-5 by -x 34 y 2ax 的解,则 a=_______,b=________ ,3a+2b=___________。 6.已知x=1和x=2都满足关于x 的方程x 2 +px+q=0,则p=_____, q=________ 。 7.用代入法解下列方程组: ⑴???=+=5x y 3x ⑵???==+y 3x 2y 32x ⑶???=-=+8 y 2x 57 y x 3 二、训练 1.方程组{ 1 y 2x 11 y -x 2+==的解是( ) A.???==0y 0x B.???==37y x C.???==73y x D.? ??-===37 y x 2.若2a y+5b 3x 与-4a 2x b 2-4y 是同类项,则a=______,b=_______。 3.用代入法解下列方程组

解一元二次方程练习题(直接开平方法、配方法)

? 解一元二次方程(直接开平方法、配方法) 1. 用直接开平方法解下列方程: (1)2225x =; (2)2 1440y -=. 2. 解下列方程: (1)2 (1)9x -=; (2)2(21)3x +=; ( (3)2(61)250x --=. (4)281(2)16x -=. 3. 用直接开平方法解下列方程: (1)25(21)180y -=; (2) 21(31)644 x +=; 【 (3)26(2)1x +=; (4)2 ()(00)ax c b b a -=≠,≥ … 4. 填空 (1)28x x ++( )=(x + )2 . (2)223 x x - +( )=(x - )2. (3)2b y y a -+( )=(y - )2. 5. 用适当的数(式)填空: 23x x -+ (x =- 2);

2x px -+ =(x - 2) % 23223(x x x +-=+ 2)+ . 6. 用配方法解下列方程 1).210x x +-= 2).23610x x +-= 3).21(1)2(1)02 x x ---+= ' 7. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 8. 用配方法解方程. 23610x x --= 22540x x --= ? 9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 10. 关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程 (1)210x x --=; (2)23920x x -+=. ( 12. 用适当的方法解方程 (1)23(1)12x +=; (2)2 410y y ++=;

配方法解一元二次方程知识点及练习

配方法解一元二次方程 知识点一、配方法解一元二次方程 利用完全平方公式222 ()2a b a ab b ±=±+ 将一元二次方程一般式20ax bx c ++= 转换成2x p = 或2()x m n += 的形式。 知识点二、配方法解一元二次方程的一般步骤: ① 移项(常数项右移) ② 等式两边同除以二次项系数a (或等式两边同乘 1a ) ③ 等式两边同加2 ()2b ④ 合并成2x p = 或2()x m n += ⑤ 直接开平方法 例1:2210x x +-=(配方法) 解: 222222212210 21 1122 1111()()2424 19()416 1344 1,12x x x x x x x x x x x x +-=+=+ =++=++=+=±==-

配方法巩固练习 1. 配方 22_____(__)x x x ++=+ 228_____(__)x x x ++=+ 223-_____(-__)2x x x += 227_____(__)3 x x x ++=+ 2248_____(__)x x x ++=+ 229-18_____(__)x x x +=+ 2. 最值 已知代数式223x x ++ ,配方可得________________,代数式有_____值,最值为____ 3. 非负性 证明:2246130x y x y ++++≥ 课堂练习 一、选择题 1.用配方法解方程2 680x x --=时,配方结果正确的是( ) A.2(3)17x -= B. 2(3)14x -= C.2(6)44x -= D. 2(3)1x -= 2.已知方程22160x x m -+= 可配方成2 (8)0x -=的形式,则m 的值为( ) A.8 B.-8 C.±8 D.16 3.用配方法解2+410x x =的根是( ) A.222- D,2-4.把2-1x x =配方得( ) A.21 3()24x -= B. 2(1)2x -= C. 215()24x += D. 25(1)4 x -= 5. 已知方程240x x m -+= 可配方成2(2)0x -=的形式,则m 的值为( ) A.2 B.4 C.±2 D.±4

用配方法解一元二次方程练习题

解一元二次方程配方法练习题 1.用适当的数填空: ①、x2+6x+ =(x+ )2; ②、x2-5x+ =(x-)2; ③、x2+ x+ =(x+ )2; ④、x2-9x+ =(x-)2 2.将二次三项式2x2-3x-5进行配方,其结果为_________. 3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______. 4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,?所以方程的根为_________. 5.若x2+6x+m2是一个完全平方式,则m的值是() A.3 B.-3 C.±3 D.以上都不对 6.用配方法将二次三项式a2-4a+5变形,结果是() A.(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-1 7.把方程x+3=4x配方,得() A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=2 8.用配方法解方程x2+4x=10的根为() A.2±10B.-2±14C.-2+10D.2-10 9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值() A.总不小于2 B.总不小于7 C.可为任何实数D.可能为负数10.用配方法解下列方程: (1)3x2-5x=2.(2)x2+8x=9 (3)x2+12x-15=0 (4) 4 1 x2-x-4=0 11.用配方法求解下列问题 (1)求2x2-7x+2的最小值; (2)求-3x2+5x+1的最大值。 - 1 -

用配方法解一元二次方程练习题答案: 1.①9,3 ②2.52,2.5 ③0.52,0.5 ④4.52,4.5 2.2(x-3 4)2-49 8 3.4 4.(x-1)2=5,1±55.C 6.A 7.?C 8.B 9.A 10.(1)方程两边同时除以3,得x2-5 3x=2 3 , 配方,得x2-5 3x+(5 6 )2=2 3 +(5 6 )2, 即(x-5 6)2=49 36 ,x-5 6 =±7 6 ,x=5 6 ±7 6 . 所以x1=5 6+7 6 =2,x2=5 6 -7 6 =-1 3 . 所以x1=2,x2=-1 3 . (2)x1=1,x2=-9 (3)x1=-6+51,x2=-6-51; 11.(1)∵2x2-7x+2=2(x2-7 2x)+2=2(x-7 4 )2-33 8 ≥-33 8 , ∴最小值为-33 8 , (2)-3x2+5x+1=-3(x-5 6)2+37 12 ≤37 12 ,? ∴最大值为37 12 . - 2 -

二元一次方程的解法(代入消元法)

二元一次方程的解法 1.用一个未知数表示另一个未知数 (1)24x y +=,所以________x =; (2)345x y +=,所以________x =,________y =; (3) 5x-2y=10,所以x = ,________y =. 2.用代入法解二元一次方程组 例1:方程组(1)92x y y x ……①………②ì+=??í?=?? (2) ???-=+=1521 2x y y x (3)???-=+=-.154,653y x y x (4)???=-=-.43,532y x y x (5)?? ?=-=+. 72, 852y x y x 练习巩固:解下列方程组: (1)???-==+236y x y x (2)???=+-=-10235y x y x (3)? ? ?-=-=-2.32872x y y x (4) ?? ?-==+. 2,72y x y x (5) ?? ?=-=+. 2,6y x y x (6) ?? ?=+=-4 23,52y x y x (7) ???=+=-.63,72y x y x (8) ???=+=-.543,72y x y x (9) ???-==+. 1, 623x y y x

(10)???=-=+.102,8y x y x (11)???=+=+.52,42y x y x (12)? ??=-=-.1383,32y x y x 将方程组中的一个方程的某个未知数用含有另一个未知数的代数式表示,并代入到另一个方程中,消去一个未知数,得到一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法,简称代入法. 代入消元法解方程组的步骤是: ①用一个未知数表示另一个未知数; ②把新的方程代入另一个方程,得到一元一次方程(代入消元); ③解一元一次方程,求出一个未知数的值; ④把这个未知数的值代入一方程,求出另一个未知数的值; ⑤检验,并写出方程组的解. 例2、(1)? ??-=-=+8547 32y x y x (2)541538x y x y -=?? +=?①② 1.对于方程432=-y x ,用含x 的代数式表示y ,则结果是 ;如果用含y 的代数式表示x ,结果是 , 2.已知方程25-=-y x ,如果用含x 的代数式表示y ,则结果是 ;如果用含y 的代数式表示x ,结果是 . 3.根据你的喜爱,把下列方程变形为用含一个未知数的代数式表示另一个未知数的形式. 131=-y x )( (2)15105=-y x (3)1267=+y x (4)1035=-y x 4.解下列方程组:

用配方法和公式法解一元二次方程

用配方法和公式法解一元二次方程 一.教学内容: 用配方法和公式法解一元二次方程 1.知道配方法的意义及用配方法解一元二次方程的主要步骤,能够熟练地用配方法解系数较简单的一元二次方程. 2.理解用配方法推导出一元二次方程的求根公式,了解求根公式中的条件b2-4ac≥0的意义,知道b2-4ac的值的符号与方程根的情况之间的关系. 3.能熟练地运用求根的公式解简单的数字系数的一元二次方程. 二. 知识要点: 1.形如x2=p或(mx+n)2=p(p≥0)的方程用开平方法将一元二次方程降次转化为两个一元一次方程. 通过配方,方程的左边变形为含x的完全平方形式(mx+n)2=p(p≥0),可直接开平方,将一个一元二次方程转化为两个一元一次方程.这样解一元二次方程的方法叫做配方法. 3.用配方法解一元二次方程的步骤: (1)把二次项系数化为1; (2)移项,方程的一边为二次项和一次项,另一边为常数项; (3)方程两边同时加上一次项系数一半的平方; (4)用直接开平方法求出方程的根. (3)当b2-4ac<0时,方程没有实数根.

三. 重点难点: 本讲重点是用配方法和公式法解一元二次方程,难点是配方的过程和对求根公式推导过程的理解. 例2.用配方法解方程: (1)x2+2x-5=0;(2)4x2-12x-1=0; (3)(x+1)2-6(x+1)2-45=0. 分析:方程(1)是一元二次方程的一般形式,且二次项系数为1,所以直接移项、配方、求解即可;方程(2)要先把二次项系数化为1;方程(3)不要急于打开括号,可把(x +1)2看成一个整体合并,可避免重复配方. (3)将方程整理得 (x+1)2-6(x+1)2=45, -5(x+1)2=45, (x+1)2=-9, 由于x取任意实数时(x+1)2≥0,则上式都不成立,所以原方程无实数根.

代入法解二元一次方程组练习题

作业 1、解方程组 (1) ?? ?=+-=18050y x y x (2) ???=-=+1 73x y y x (3) (4) 233511 x y x y +=??-=? (5) 523,611;x y x y -=??+=? (6)???????=+=+24 4263n m n m (7) 32522(32)28x y x x y x +=+??+=+? (8)357,23423 2.3 5x y x y ++?+=???--?+=?? 2.已知 是方程组 的解,求a 和b 的值. m =1 n =2 am +bn =2 am -bn =3 ???=-=2 273y x x y

3、若方程组2(1)(1)4x y k x k y +=??-++=? 的解x 与y 相等,求k 的值. 4、已知方程组4234ax by x y -=??+=?与2432ax by x y +=??-=? 的解相同,求a b +=. 5、如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少? ↑ ↓60cm 6.运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨? 7.〈〈一千零一夜〉〉中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部 分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的13 ,若从树上飞下去一只,则树上、树下的鸽子就一样多了。”你知道树上、树下各有多少只鸽子吗? 8、在解方程组2,78ax by cx y +=??-=?时,哥哥正确地解得3,2.x y =??=-? ,弟弟因把c 写错而解得2,2. x y =-??=?,求a+b+c 的值.

二元一次方程解题技巧及练习

二元一次方程解题技巧及练习 基本思路:二元一次方程→化简→消元/转化→一元一次方程 基本方法:代入消元或者加减消元法 适用情况: 1. 代入 当有一个未知数系数为1或者-1; 2. 加减 当同一个字母的未知数的系数相同或者相反时; 当同一个字母的未知数的系数互为倍数时; 3. 代入加减一起使用 两个相同的未知数系数之和分别相等时; 其中一个未知数系数相差1时; 4. 整体代入,即两个方程中有相同整式时; 练习1: y =x-3 2x+3y =11 5x+2y =7 7x+2y =-1 2x-y =1 x+y =5 x-y =3 3x-8y =14 4x+8y =12 3x+2y =5 6x+4y =10 4x+6y =20 4x+7y =222 5x+6y =217 2x+3y =1 3x+5y =12.9 练习2: 一.解答题(共16小题) 1.求适合的x ,y 的值. 2.解下列方程组 (1)(2)(3)(4). 3.解方程组:

4.解方程组: 5.解方程组: 6.已知关于x,y的二元一次方程y=kx+b的解有和. (1)求k,b的值. (2)当x=2时,y的值. (3)当x为何值时,y=3? 7.解方程组: (1);(2). 8.解方程组: 9.解方程组: 10.解下列方程组: (1)(2) 11.解方程组: (1)(2)

12.解二元一次方程组: (1);(2). 13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为. (1)甲把a看成了什么,乙把b看成了什么? (2)求出原方程组的正确解. 14. 15.解下列方程组: (1);(2). 16.解下列方程组:(1)(2)

《代入法解二元一次方程组》教学教案

《代入法解二元一次方程组》精品教案 教学目标 1.用代入法解二元一次方程组. 2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想. 3.会用二元一次方程组解决实际问题. 重点、难点 重点: 代入消元法 难点: 用代入法解较难的二元一次方程组. 教学过程 一、复习 1、什么叫二元一次方程组的解? 2、若错误!未找到引用源。是方程2x+y=2的解,则8a+4b-3=____. 3.已知4x-y=-1,用关于x的代数式表示y:___________; 用关于y的代数式表示x :_________ 设计意图:复习以前学过的二元一次方程的知识,从而引出课题:用代入法解二元一次方程组。 二、情景导入 《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上,另一部分在地上.树上的一只鸽子对地上的鸽子说:“若从你们中飞上来一只,则地上的鸽子为整个鸽群的三分之一;若从树上飞下去一只,则树上、地上的鸽子一样多.”你知道树上、地上各有多少只鸽子吗? 提问:此题怎么解呢?有几种解法? 学生列出两种方法,即: 方法一: 设树上有x只鸽子,则由题意得:x+(x-2)=3[(x-2)-1] 方法二: 解:设树上有x只鸽子,地上有y只鸽子,

得到方程组错误!未找到引用源。 提问:以上方法一中的方程和方法二中的方程组有什么联系? 三、探究新知 如何解方程组:错误!未找到引用源。 将第二个方程转化为y=x-2 将y=x-2代入第一个方程得x+(x-2)=3[(x-2)-1],这个方程是我们已熟知的一元一次方程,解这个一元一次方程得x=_______,将x=_______代入y=x-2得y=_______,从而得到这个方程组的解. 说明:全班同学独立作业,10分钟后交流成果.在此基础上引入消元思想、代入消元法概念. 【归纳结论】1.解方程组时,将未知数的个数由多化少、逐一解决的思想,叫消元思想. 2.把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法. 设计意图:通过让学生观察、思考、概括的一系列思维的心理操作的过程来培养学生的思维;同时让学生理解并掌握代入法,也增强了学生的表达能力和概括能力 四、例题讲解 例1:解方程组错误!未找到引用源。 学生独立解答此题并总结步骤。 总结:用代入法解二元一次方程组的一般步骤 1、将方程组里的一个方程变形,用含有一个未知数的式子表示另一个未知数; 2、用这个式子代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未 知数的值; 3、把这个未知数的值代入上面的式子,求得另一个未知数的值; 4、写出方程组的解 例2、用代入法解方程组错误!未找到引用源。

相关文档
最新文档