第三章 刚体力学习题答案

第三章     刚体力学习题答案
第三章     刚体力学习题答案

第三章 刚体力学习题答案

3-1 如图3-1示,一轻杆长度为2l ,两端各固定一小球,A 球质量为2m ,B 球质量为m ,

杆可绕过中心的水平轴O 在铅垂面内自由转动,求杆与竖直方向成θ角时的角加速度.

解:系统受外力有三个,即A ,B 受到的重力和轴的支撑作用力,轴的作用力对轴的力臂为零,故力矩为零,系统只受两个重力矩作用. 以顺时针方向作为运动的正方向,则A 球受力矩为正,B 球受力矩为负,两个重力的力臂相等为sin d l θ=,故合力矩为

2sin sin sin M mgl mgl mgl θθθ=-=

系统的转动惯量为两个小球(可视为质点)的转动惯量之和

22223J ml ml ml =+=

应用转动定律 M J β=

有:2

sin 3mgl ml θβ= 解得 sin 3g l

θ

β=

3-2 计算题3-2图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为

M ,半径为r ,在绳与轮边缘的摩擦力作用下旋转,忽略桌面

与物体间的摩擦,设1m =50kg,2m =200kg,M =15kg,r =0.1m.

解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对 1m ,2m 运用牛顿定律,有

a m T g m 222=- ① a m T 11= ②

对滑轮运用转动定律,有

3-1 图3-2

β)2

1

(212Mr r T r T =- ③

又, βr a = ④ 联立以上4个方程,得

2212s m 6.72

15

20058

.92002

-?=+

+?=

+

+=

M m m g m a

3-3 飞轮质量为60kg,半径为0.25m,当转速为1000r/min 时,要在5s 内令其制动,求制动

力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图所示.

解:以飞轮为研究对象,飞轮的转动惯量21

2

J mR =

,制动前角速度为1000260ωπ=?rad/s ,制动时角加速度为t

ω

β-=- 制动时闸瓦对飞轮的压力为N F ,闸

瓦与飞轮间的摩擦力f N F F μ=,运用转动定律,得 21

2

f F R J mR ββ-== 则 2N mR F t

ω

μ=

以闸杆为研究对象,在制动力F 和飞轮对闸瓦的压力N F -的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为(0.500.75)l =+m 和1l =0-50m ,则有

10N Fl F l -=

110.50600.252100015720.500.7520.4560

N l l mR F F l l t ωπμ???=

==?=+???N 图3-3

3-4 设有一均匀圆盘,质量为m ,半径为R ,可绕过盘中心的光滑竖直轴在水平桌面上转

动. 圆盘与桌面间的滑动摩擦系数为μ,若用外力推动它使其角速度达到0ω时,撤去外力,求:

(1) 此后圆盘还能继续转动多少时间? (2) 上述过程中摩擦力矩所做的功.

解:(1)撤去外力后,盘在摩擦力矩f M 作用下停止转动- 设盘质量密度为2

m

R

σπ=,则有

20

2

23

R

f M

g r dr mgR μπσμ==

? 根据转动定律 21,2f M J mR J

α-=

=

43g R

μα-= 0

34R t g

ωωα

μ-=

=

(2)根据动能定理有 摩擦力的功2220011

024

f W J mR ωω=-

=-

3-5 如题3-6图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆

于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度.

解: (1)由转动定律,有

β)3

1

(212ml mg

= ∴ l

g

23=β

(2)由机械能守恒定律,有

图3-6

22)3

1

(21sin 2ωθml l mg =

∴ l

g θ

ωsin 3=

3-6 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴O O '转动.设大小圆柱体的半径分别为R 和r ,质量分别为M 和m .绕在两柱体上的细绳分别与物体1m 和2m 相连,1m 和2m 则挂在圆柱体的两侧,如3-8图所示.设R =0.20m, r =0.10m,m =4 kg,M =10 kg,1m =2m =2 kg,且开始时1m ,2m 离地均为h =

2m .求:

(1)柱体转动时的角加速度; (2)两侧细绳的张力.

解: 设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b).

(a)图 (b)图

(1) 1m ,2m 和柱体的运动方程如下:

2222a m g m T =- ① 1111a m T g m =- ②

βI r T R T ='

-'21 ③

式中 ββR a r a T T T T ==='='122211,,,

而 222

1

21mr MR I += 由上式求得

2

22222

2212

1s rad 13.68.910.0220.0210.0421

20.010212

1.02

2.0-?=??+?+??+???-?=

++-=

g

r m R m I rm Rm β

(2)由①式

8.208.9213.610.02222=?+??=+=g m r m T βN

由②式

1.1713.6.

2.028.92111=??-?=-=βR m g m T N

3-7 一风扇转速为900r/min,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过

程中制动力做的功为44.4J,求风扇的转动惯量和摩擦力矩.

解:设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移2N θπ=,摩擦力矩所做的功为

2A M M N θπ=-=-

摩擦力所做的功应等于风扇转动动能的增量,即

21

02

A J ω=-

2

2

22(44.4)0.01(9002/60)

A

J ωπ?-=-

=-

=?kg ?m 2

44.4

0.09422275

A M N ππ-=-

=-=?N ?m 3-8 一质量为M 、半径为r 的圆柱体,在倾斜θ角的粗糙斜面上从距地面h 高处只滚不滑

而下,试求圆柱体滚止地面时的瞬时角速度ω.

解: 在滚动过程中,圆柱体受重力Mg 和斜面的摩擦力F 作用,设 圆柱体滚止地面时,质心在瞬时速率为v ,则此时质心的平动动能为21

2

Mv ,与此同时,圆柱体以角速度ω绕几何中心轴转动,其转动动能为

21

2

J ω.将势能零点取在地面上,初始时刻圆柱体的势能为Mgh ,由于

圆柱体只滚不滑而下,摩擦力为静摩擦力,对物体不做功,只有重力做功,机械能守恒,

于是有2211

22

Mgh Mv J ω=+ 式中 21

,2J Mr v r ω=

=,代入上式得 222

11()22

Mgh Mr Mr ω=+

ω=

3-9 一个轻质弹簧的倔强系数 2.0k =N/m,它的一端固定,另一端通过一条细绳绕过一个

定滑轮和一个质量为m =80g 的物体相连,如图所示. 定滑轮可看作均匀圆盘,它的质量为M =100g,半径r =0.05m. 先用手托住物体m ,使弹簧处于其自然长度,然后松手.求物体m 下降h =0.5m 时的速度为多大?忽略滑轮轴上的摩擦,并认为绳在滑轮边缘上不打滑.

解:由于只有保守力(弹性力、重力)做功,所以由弹簧、滑轮和物体m 组成的系统机械能守恒,故有

222111

222

mgh kh I mv ω=++

2

1,2

v r I Mr ω==

所以

1.48v ==m/s

3-10 有一质量为1m 、长为l 的均匀细棒, 静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动. 另有一水平运动的质量为2m 的小滑块, 从侧面垂直于棒与棒的另一端A 相碰撞, 设碰撞时间极短. 已知小滑块在碰撞前后的速度分别为1V 和2V ,如图示,求碰撞后从细棒开始转动到停止转动的过程所需的时间(已知棒

绕O 点的转动惯量2

113

J m l =).

图3-11

图3-12

解:对棒和滑块组成的系统,因为碰撞时间极短,所以棒和滑块所受的摩擦力矩远小于相互间的冲量矩,故可认为合外力矩为零,所以系统的角动量守恒,且碰撞阶段棒的角位移忽略不计,由角动量守恒得

2212211

3

m v l m v l m l ω=-+

碰撞后在在转动过程中棒受到的摩擦力矩为 110

1

2

t

f m M g

dx m gl l μμ=

-=-?

由角动量定理得转动过程中

2

10103

t

f

M dt m l ω=-? 联立以上三式解得:12

2

12V V t m m g

μ+= 3-11 哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为1r =8.75×1010

m 时的速率是1v =5.46×104

m ·s -1

,它离太阳最远时的速率是2v =9.08×102

m ·s -1

,这时它离太阳

的距离2r 为多少?(太阳位于椭圆的一个焦点.)

解: 哈雷彗星绕太阳运动时受到太阳的引力——即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有 2211mv r mv r =

∴ m 1026.510

08.91046.51075.812

2

4102112?=????==v v r r 3-12 平板中央开一小孔,质量为m 的小球用细线系住,细线穿过小孔后挂一质量为1M 的重物.小球做匀速圆周运动,当半径为0r 时重物达到平衡.今在1M 的下方再挂一质量为2

M 的物体,如3-14图.试问这时小球做匀速圆周运动的角速度ω'和半径r '为多少?

图3-14

解: 在只挂重物时1M ,小球作圆周运动的向心力为g M 1,即

2

01ωmr g M =

挂上2M 后,则有

221)(ω'

'=+r m g M M

重力对圆心的力矩为零,故小球对圆心的角动量守恒. 即 v m r mv r ''=00

ωω''=?2020r r ③

联立①、②、③得

02

123

1

12

2

()M M M M M r g r m ωωω=+'=+'=

='

3-13 如图示, 长为l 的轻杆, 两端各固定质量分别为m 和2m 的小球, 杆可绕水平光滑轴在竖直平面内转动, 转轴O 距两端的距离分别为/3l 或2/3l . 原来静止在竖直位置. 今有一质量为m 的小球, 以水平速度0v 与杆下端的小球m 做对心碰撞, 碰后以0/2v 的速度返回, 试求碰撞后轻杆所获得的角速度ω.

解:将杆与两端的小球视为一刚体,水平飞来的小球m 与刚体视为一系统,在碰撞过程中,外力包括轴O 处的作用力和重力,均不产生力矩,故合外力矩为零,系统角动量守恒- 选逆时针转动为正方向,则由角动量守恒得 00

22323

v l

l mv m J ω=-+

图3-13

第七章刚体力学

第七章 刚体力学 习题 7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据). [解 答] -527.2710(rad/s) 243600π ω= =??自 -72 2.0410(rad/s) 365243600π ω==???公 R νω=自 2 2n a R R νω= = 7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转? [解 答] (1) 22(30001200)1/60 1.57(rad /s ) t 12ω πβ?-?= = = (2) 2222 2 ( )(30001200)302639(rad) 2215.7 π ωω θβ --= ==? 所以 转数=2639 420()2π=转 7.1.3 某发动机飞轮在时间间隔t 内的角位移为 34at bt ct θ=+- (:rad,t :s).θ 球t 时刻的角速度和角加速度. [解 答] 34at bt ct θ=+- 23d a 3bt 4ct dt θ ω= =+-

2d 6bt 12ct dt ω β= =- 7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立 O-xy 坐标系,原点在轴上.x 和y 轴沿水平和铅直向上的方向.边缘上 一点A 当t=0时恰好在x 轴上,该点的角坐标满足 21.2t t (:rad,t :s).θθ=+求(1)t=0时,(2)自t=0开始转45时,(3) 转过90时,A 点的速度和加速度在x 和y 轴上的投影. [解 答] 21.2t t 1.22t 2θωβ=+=+= (1) A ??t 0,1.2,R j 0.12j(m/s). 0,0.12(m/s) x y ωνωνν====∴== 2 2n a a 0.144(m /s ) R y x ν==- =- 2y a R 0.2(m/s )β== (2)45θ=时, 由2A 1.2t t ,t 0.47(s)4 2.14(rad /s) v R π θωω=+= =∴==?得 ??? i j k ?? 0 0 0.15j 0.15i R cos R sin 0 ωθθ==- x y A A 0.15(m /s),015(m /s)d d ??a (R sin i R cos j)dt dt νννωθωθ∴=-===-+ 221222x y d ??R(sin i cos j)dt ??R[(cos sin )i (sin cos )j ??0.183j 0.465i(m /s )a 0.465(m /s ),a 0.183(m /s ) ωθωθωθβθωθβθ-= -+=--+-+=--∴=-=- (3)当90θ=时,由

大学物理 第三章 刚体力学

班级: 姓名: 一、选择题 1、一质点作匀速率圆周运动时,则质点的( ) (A)动量不变,对圆心的角动量也不变. (B)动量不变,对圆心的角动量不断改变. (C)动量不断改变,对圆心的角动量不变. (D)动量不断改变,对圆心的角动量也不断改变. 2、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 ( ) (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. 3、刚体角动量守恒的充分而必要的条件是 ( ) (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变. 4、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系 统 ( ) (A) 动量守恒. (B) 机械能守恒. (C) 对转轴的角动量守恒. (D) 动量、机械能和角动量都守恒. 二、填空题: 1. 一质量为m 的质点沿着一条曲线运动,其位置矢量在空间直角座标系中的表达式为 j t b i t a r ωωs i n c o s +=,其中a 、b 、ω皆为常量,则此质点对原点的角动量为_____ ;此质点所受对原点的力矩_____. 2、一正方形abcd 边长为L ,它的四个顶点各有 一个质量为m 的质点,此系统对下面三种转轴的 转动惯量: (1)Z 1轴: (2)Z 2轴: (3)Z 33、一人造地球卫星绕地球做椭圆轨道运动,则卫星的动量 ,动能 ,机械能 ,对地心的角动量 。(填“守恒”或“不守恒”) 4、刚体的转动惯量与 、 及 有关。 5、一质量为2kg 的质点在某一时刻的位置矢量为23r i j =+ (m ),该时刻的速度为32i j υ=+ (m/s ),则质点此时刻的动量p = ,相对于坐标 原点的角动量L = 。 三、简答题: 1、力学中常见三大守恒定律是什么? 2、试用所学知识说明(1)芭蕾舞演员、花样滑冰运动员在原地快速旋转动作;(2)为什么体操和跳水运动中直体的空翻要比屈体、团体的空翻难度大。

第五章 刚体力学(答案)

一、选择题 [ C ] 1、(基础训练2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1 和m 2的物体(m 1<m 2),如图5-7所示.绳 与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【提示】逆时针转动时角速度方向垂直于纸面向外,由于(m 1<m 2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R J β-=可得:21T T > (或者:列方程组:1112 2212m g T m a T m g m a T R T R J a R ββ-=??-=???-=? ?=?? ,解得:()()122 12m m gR m m R J β-=++,因为m 1<m 2,所以β<0,那么由方程120T R T R J β-=<,可知,21T T >) [ B ] 2、(基础训练5)如图5-9所示,一静止的均匀细棒,长为L 、质量为m 0,可 绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为2 01 3 m L .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1,则此时棒的角速度应为 (A) 0v m m L . (B) 03v 2m m L . (C) 05v 3m m L . (D) 07v 4m m L 【提示】把细棒与子弹看作一个系统,该系统所受合外力矩为零, 所以系统的角动量守恒: 20123v mvL m L m L ω??=+ ??? ,即可求出答案。 [ C ] 3、(基础训练7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线 上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 【提示】把三者看成一个系统,则系统所受合外力矩为零,所以系统的角动量守恒。设L 为一颗子弹相对于转轴O 的角动量的大小,则有 图5-7 m m 图5-11 v ? 2 1 v ? 俯视图 图5-9

第七章 刚体力学习题及解答

第七章刚体力学习题及解答 7.1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的 线速度和向心加速度.估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据). 解: 7.1.2 汽车发动机的转速在12s内由1200rev/min增加到3000rev/min.(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转? 解: ( 1) ( 2)

所以转数 = 7.1.3 某发动机飞轮在时间间隔t内的角位移为 球 t时刻的角速度和角加速度. 解: 7.1.4 半径为0.1m的圆盘在铅直平面内转动,在圆盘平面内建立坐标系,原点在轴上.x和y轴沿水平和铅直向上的方向.边缘上一点A当t=0时恰好在x轴上,该点的角坐标满足 求(1)t=0时,(2)自t=0开始转时,(3)转过时,A点的速度和加速度 在x和y轴上的投影. 解:

( 1) ( 2)时, 由 ( 3)当时,由

7.1.5 钢制炉门由两个各长1.5m的平行臂AB和CD支承,以角速度逆时针转动, 求臂与铅直时门中心G的速度和加速 度. 解: 因炉门在铅直面内作平动,门中心 G的速度、加速度与B或D点相同。所以: 7.1.6 收割机拔禾轮上面通常装4到6个压板.拔禾轮一边旋转,一边随收割机前进.压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反. 已知收割机前进速率为 1.2m/s,拔禾轮直径1.5m,转速22rev/min,求压板运动到最低点挤压作物的速度. 解: 取地面为基本参考系,收割机为运动参考系。

大学物理第3章 刚体力学习题解答

第3章 刚体力学习题解答 3.13 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度和角加速度。 解:23 212643ct bt ct bt a d d -==-+== ω θβω 3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转? 解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。显然,汽车前进的速度就是驱动轮边缘的线速度, 909.0/2212Rn Rn v ππ==,所以: min /1054.1/1024.93426.014.3210 166909.02909.013 rev h rev n R v ?=?===????π 3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为: 2..dm h r dr ρπ= 对其轴线的转动惯量dI z 为 232..z dI r dm h r dr ρπ== 2 1 2222112..()2 r z r I h r r dr m r r ρπ== -? 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 , 求对过细杆二端 轴的转动惯量。 解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过 轴的转动惯量为 1 2 mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为:21 4 AA I mR '=

第05章__刚体力学基础补充汇总

3 一、选择题 1甲乙两人造卫星质量相同, 分别沿着各自的圆形轨道绕地球运行, 与乙相比,甲的: (A) 动能较大,势能较小, (B) 动能较小,势能较大, (C) 动能较大,势能较小, (D) 动能较小,势能较小, 4长为L 、质量为M 的匀质细杆 轴,平 衡时杆竖直下垂,一质量为 端并嵌入其内。那么碰撞后 A 端的速度大小: 5 一根质量为m 、长为I 的均匀直棒可绕过其一端且与棒垂直 的水平光 滑固定轴转动.抬起另一端使棒竖直地立起,如让它 掉下来,则棒将以角速度 ⑷撞击地板。如图将同样的棒截成长 为少2的一段,初始条件不变,则它撞击地板时的角速度最接近 于: 6如图:A 与B 是两个质量相同的小球, A 球用一根不 能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位 置,放手后两小球到达竖直位置时绳长相等,则此时两球 第五章刚体力学基础 甲的轨道半径较小, 总能量较大; 总能量较大; 总能量较小; 总能量较小; C ]难度: 2 一滑冰者,以某一角速度开始转动, (A) 角速度增大,动能减小; (B) 角速度增大,动能增大; (C) 角速度增大,但动能不变; (D) 角速度减小,动能减小。 当他向内收缩双臂时,则: 3两人各持一均匀直棒的一端,棒重 受 的力变为: (A)% ; W , —人突然放手,在此瞬间, 另一个人感到手上承 (B) W 2 OA 如图悬挂.0为水平光滑固定转 m 的 子弹以水平速度v 0击中杆的 12mv 0 (A) 12m+M 3mv 0 (B) 3m + M V o mv o (C) mmM (D)倍。 (A) 2 ; (B) 42^ :A ]难度:难 (C) (D)

第三章 刚体力学习题答案

第三章 刚体力学习题答案 3-1 如图3-1示,一轻杆长度为2l ,两端各固定一小球,A 球质量为2m ,B 球质量为m , 杆可绕过中心的水平轴O 在铅垂面内自由转动,求杆与竖直方 向成θ角时的角加速度. 解:系统受外力有三个,即A ,B 受到的重力和轴的支撑作用力,轴的作用力对轴的力臂为零,故力矩为零,系统只受两个重力矩作用. 以顺时针方向作为运动的正方向,则A 球受力矩为正,B 球受力矩为负,两个重力的力臂相等为sin d l θ=,故合力矩为 2sin sin sin M mgl mgl mgl θθθ=-= 系统的转动惯量为两个小球(可视为质点)的转动惯量之和 2 2 2 23J ml ml ml =+= 应用转动定律 M J β= 有:2sin 3m gl m l θβ= 解得 sin 3g l θβ= 3-2 计算题3-2图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为 M ,半径为r ,在绳与轮边缘的摩擦力作用下旋转,忽略桌面 与物体间的摩擦,设1m =50kg,2m =200kg,M =15kg,r =0.1m. 解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对 1m ,2m 运用牛顿定律,有 a m T g m 222=- ① a m T 11= ② 对滑轮运用转动定律,有 图 3-1 图3-2

β)2 1( 2 12Mr r T r T =- ③ 又, βr a = ④ 联立以上4个方程,得 2 212s m 6 .721520058.92002-?=+ +?= + += M m m g m a 3-3 飞轮质量为60kg,半径为0.25m,当转速为1000r/min 时,要在5s 内令其制动,求制动 力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图所示. 解:以飞轮为研究对象,飞轮的转动惯量2 12 J m R =,制动前角速度 为1000260 ωπ=? rad/s ,制动时角加速度为t ωβ-= - 制动时闸瓦对飞轮的压力为N F ,闸 瓦与飞轮间的摩擦力f N F F μ=,运用转动定律,得 2 12 f F R J m R ββ-== 则 2N m R F t ωμ= 以闸杆为研究对象,在制动力F 和飞轮对闸瓦的压力N F -的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为(0.500.75)l =+m 和1l =0-50m ,则有 10N Fl F l -= 110.50600.2521000 15720.500.75 20.4560 N l l mR F F l l t ωπμ???= = = ? =+???N 图3-3

普通物理学教程力学课后答案高等教育出版社第七章-刚体力学习题解答

第七章刚体力学 习题解答 7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。⑵在此时间内,发动机转了多少转? 解:⑴212 60 /2)12003000(/7.15s rad t == =-??πωβ ⑵rad 27.152)60/2)(12003000(21039.262 222 02?== = ??--πβ ωωθ 对应的转数=42010214 .3239.262≈?= ??πθ 7.1.3 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度和角加速度。 解:23212643ct bt ct bt a dt d dt d -== -+==ωθβω 7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2 (θ:rad,t:s)。⑴t=0时,⑵自t=0开始转45o时,⑶转过90o时,A 点的速度和加速度在x 和y 轴上的投影。 解:0.222.1== +== dt d dt d t ωθ βω ⑴t=0时,s m R v v y x /12.01.02.10 ,2.1=?====ωω 2 222 /2.01.00.2/144.01.0/12.0/s m R a a s m R v a a y y n x =?===-=-=-=-=βτ ⑵θ=π/4时,由θ=1.2t+t 2,求得t=0.47s,∴ω=1.2+2t=2.14rad/s s m R v s m R v y x /15.02/21.014.245sin /15.02/21.014.245cos =??=?=-=??-=?-=ωω

第05章__刚体力学基础补充

第五章刚体力学基础 一、选择题 1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的: (A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小; (D)动能较小,势能较小,总能量较小; [ C ]难度:易 2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变; (D)角速度减小,动能减小。 [ B ]难度:易 3 两人各持一均匀直棒的一端,棒重W,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:

(A)3w ; (B) 2w (C) 43w ; (D) 4 w 。 [ D ]难度:难 4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。那么碰撞后A 端的速度大小: (A) M m mv +12120; (B) M m mv +330 ; (C) M m mv +0 ; (D) M m mv +330。 [ B ]难度:中 5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另 一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。如图将同样的棒截成长为 2 l 的一段,初始条件不变,则它撞击地板时的角速度最接近于: (A)ω2; (B) ω2; (C) ω; (D) 2ω。 [ A ]难度:难 6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度: L

第5章 刚体力学

第5章 刚体力学 一、选择题(共61题) 1.如图所示,一悬绳长为l ,质量为m 的单摆和一长度为l 、质量为m 能绕水平轴自由转动的匀质细棒(细棒绕此轴转动惯量是2 31ml ),现将摆球和细棒同时从与竖直方向成θ角 的位置由静止释放,当它们运动到竖直位置时,摆球和细棒的角速度之间的关系为 ( ) A 、 21ωω> B 、21ωω= C 、 21ωω< [属性]难易度:2分;所属知识点:刚体的定轴转动 [答案] C 2.轻质绳子的一端系一质量为 m 的物体,另一端穿过水平桌面上的小孔A ,用手拉着, 物体以角速度ω绕A 转动,如图所示。若绳子与桌面之间,物体与桌面之间的摩擦均可忽 略,则当手用力F 向下拉绳子时,下列说法中正确的是( ) A 、物体的动量守恒 B 、 物体的角动量守恒 C 、 力F 对物体作功为零 D 、 物体与地球组成的系统机械能守恒 [属性]难易度:2分;所属知识点:动量守恒、机械能守恒、角动量守恒

[答案] B 3.如图,细绳的一端系一小球B ,绳的另一端通过桌面中心的小孔O 用手拉住,小球在水 平桌面上作匀速率圆周运动。若不计一切摩擦,则在用力F 将绳子向下拉动的过程中 ( ) A 、 小球的角动量守恒,动能变大 B 、 小球的角动量守恒,动能不变 C 、 小球的角动量守恒,动能变小 D 、 小球的角动量不守恒,动能变大 [属性]难易度:2分;所属知识点: 角动量守恒、动能 [答案] A 4.光滑的水平桌面上,有一长为L 2、质量为m 的匀质细杆,可绕通过其中点o ,且与杆 垂直的竖直轴自由转动,其转动惯量为 23 1mL 。开始时,细杆静止,有一个质量为m 的小球沿桌面正对着杆的一端A ,在垂直于杆长的方向上以速度v 运动,并与杆的A 端碰撞后与杆粘在一起转动,则这一系统碰撞后的转动角速度为( ) A 、 L v 2 B 、 L v 43 C 、 L v 32 D 、 L v 54 [属性]难易度:2分;所属知识点: 角动量守恒 [答案] C 5.如图所示,一静止的均匀细棒,长为l ,质量为M ,可绕通过棒的中点O ﹑且垂直于棒 长的水平轴在竖直面内自由转动,转动惯量为 212 1Ml 。一质量为m 、速度为v 的子弹在竖直方向射入棒的右端,击穿棒后子弹的速度为v 21,则此棒的角速度为( ) A 、 l M mv B 、l M mv 3 C 、 l M mv 2 D 、 l M mv 23v

上海理工大学 大学物理 第五章_刚体力学答案

一、选择题 [ C ] 1、基础训练(2)一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳 与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 参考答案: 逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R J β-=可得:21T T > [ B ] 2、基础训练(5)如图5-9所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为2 3 1 ML .一质量为m 、 速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 2 1 ,则此时棒的角速度应为 (A) ML m v . (B) ML m 23v . (C) ML m 35v . (D) ML m 47v . 图5-9 [ C ] 3、基础训练(7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 图5-7 m 图5-11 v 2 1 v 俯视图

[ C ] 4、自测提高(2)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为 .如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于 . (B) 大于 ,小于2 . (C) 大于2 . (D) 等于2 . [ A ] 5、自测提高(7)质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ??? ??=R J mR v 2ω,顺时针. (B) ??? ??=R J mR v 2ω,逆时针. (C) ? ?? ??+=R mR J mR v 22ω,顺时针. (D) ?? ? ??+=R mR J mR v 22ω,逆时针. 二、填空题 6、基础训练(8)绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad ω=,t =20s 时角速度为00.8ωω=,则飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间内飞轮所转过的角度θ= 250rad . 7、基础训练(9)一长为l ,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m 的小球,如图5-12所示.现将杆由水平位置无初转速地释放.则杆刚被释放时的角加速度β0= g/l ,杆与水平方向夹角为60°时的角加速度β= g/2l .

第五章_刚体力学_习题解答

5.1、一长为l 的棒AB ,靠在半径为r 的半圆形柱面上,如图所示。今A 点以恒定速度0v 沿水平线运动。试求:(i)B 点的速度B v ;(ii)画出棒的瞬时转动中心的位置。 解:如图,建立动直角系A xyz -,取A 点为原点。B A AB v v r ω=+?,关键是求ω 法1(基点法):取A 点为基点,sin C A AC A CO A A v v r v v v v ωθ=+?=+=+ 即sin AC A r v ωθ?=,AC r ω⊥,化成标量为 ω在直角三角形OCA ?中,AC r rctg θ= 所以200sin sin sin cos A AC v v v r rctg r θθ θωθθ === 即2 0sin cos v k r θ ωθ = 取A 点为基点,那么B 点的速度为: 20023 00sin [(cos )sin ] cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i j r r θ ωθθθθθ θ=+?=+?-+=-- 法2(瞬心法):如图,因棒上C 点靠在半圆上,所以C 点的速度沿切线方向,故延长OC , 使其和垂直于A 点速度线交于P 点,那么P 点为瞬心。 在直角三角形OCA ?中,sin OA r r θ = 在直角三角形OPA ?中,2 cos sin AP OA r r r ctg θ θθ == 02 cos ()sin A PA PA PA r v r k r j r i i v i θ ωωωωθ=?=?-===,即20sin cos v r θωθ = 取A 点为基点,那么B 点的速度为: 20023 00sin [(cos )sin ] cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i j r r θ ωθθθ θθ θ=+?=+?-+=-- 5.2、一轮的半径为r ,竖直放置于水平面上作无滑动地滚动,轮心以恒定速度0v 前进。求轮缘上任一点(该点处的轮辐与水平线成θ角)的速度和加速度。 解:任取轮缘上一点M ,设其速度为M v ,加速度为M a θ C A v CO v

普通物理学教程力学课后答案高等教育出版社第七章 刚体力学习题解答

第七章刚体力学 习题解答 7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。⑵在此时间内,发动机转了多少转? 解:⑴21260/2)12003000(/7.15s rad t === -??πωβ ⑵rad 27 .152)60/2)(12003000(21039.262 222 02?===??--πβωωθ 对应的转数=42010214.3239 .262≈?=?? πθ 7.1.3 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度和角加速度。 解:23212643ct bt ct bt a dt d dt d -==-+==ωθ βω 7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2 (θ:rad,t:s)。⑴t=0时,⑵自t=0开始转45o时,⑶转过90o时,A 点的速度和加速度在x 和y 轴上的投影。 解:0.222.1==+==dt d dt d t ωθ βω ⑴t=0时,s m R v v y x /12.01.02.10,2.1=?====ωω ⑵θ=π/4时,由θ=1.2t+t 2,求得t=0.47s,∴ω=1.2+2t=2.14rad/s ⑶θ=π/2时,由θ=1.2t+t 2,求得t=0.7895s,ω=1.2+2t=2.78rad/s 7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速率ω =10rad/s 逆时针转动,求臂与铅直成45o时门中心G 的速度和加速度。 解:因炉门在铅直面内作平动,所以门中心G 的速度、加速度与B 点或D 点相同,而B 、D 两点作匀速圆周运动,因此 s m AB v v B G /155.110=?===ω,方向指向右下方,与水平方向成45o; 222/1505.110s m AB a a B G =?===ω,方向指向右上方,与水平方向成 45o 7.1.6 收割机拨禾轮上面通常装4到 6个压板,拨禾轮一边旋转,一边随 收割机前进。压板转到下方才发挥作用,一方面把农作物压向切割器,一方 面把切下来 的作物铺放在收割台上,因此要求压板运动到下方时相对于作物 的速度与收割机前进方向相反。已知收割机前进速率为 1.2m/s ,拨禾轮直径 1.5m ,转速22rev/min,求压板运动到最低点挤压作物的速度。 解:拨禾轮的运动是平面运动,其上任一点的速度等于拨禾轮轮心C 随 收割机前进的平动速度加上拨禾轮绕轮心转动的速度。压板运动到最低点时,其转动速度方向与收割机前进速度方向相反,压板相对地面(即农作物)的速度 负号表示压板挤压作物的速度方向与收割机前进方向相反。

第五章 刚体力学基础 动量矩1

第五章 刚体力学基础 动量矩 班级______________学号____________姓名________________ 一、选择题 1、力kN j i F )53( +=,其作用点的矢径为m j i r )34( -=,则该力对坐标原点的力矩大小为 ( ) (A)m kN ?-3; (B )m kN ?29; (C)m kN ?19; (D)m kN ?3。 2、圆柱体以80rad /s 的角速度绕其轴线转动,它对该轴的转动惯量为24m kg ?。由于恒力矩的作用,在10s 内它的角速度降为40rad /s 。圆柱体损失的动能和所受力矩的大小为( ) (A)80J ,80m N ?;(B)800J ,40m N ?;(C)4000J ,32m N ?;(D)9600J ,16m N ?。 3、 一匀质圆盘状飞轮质量为20kg ,半径为30cm ,当它以每分钟60转的速率旋转时,其动能为 ( ) (A)22.16π J ; (B)21.8πJ ;(C )1.8J ; (D )28.1πJ 。 4、如图所示,一轻绳跨过两个质量均为m 、半径均为R 的匀 质圆盘状定滑轮。绳的两端分别系着质量分别为m 和2m 的重 物,不计滑轮转轴的摩擦。将系统由静止释放,且绳与两滑轮 间均无相对滑动,则两滑轮之间绳的张力。( ) (A)mg ; (B)3mg /2; (C)2mg ; (D)11mg /8。 5、一根质量为m 、长度为L 的匀质细直棒,平放在水平桌面 上。若它与桌面间的滑动摩擦系数为μ,在t =0时,使该棒绕过其一端的竖直轴在水平桌面上旋转,其初始角速度为 0ω,则棒停止转动所需时间为 ( ) (A)μωg L 3/20; (B) μωg L 3/0; (C) μωg L 3/40; (D) μωg L 6/0。 6、关于力矩有以下几种说法,其中正确的是 ( ) (A )内力矩会改变刚体对某个定轴的角动量(动量矩); (B )作用力和反作用力对同一轴的力矩之和必为零; (C )角速度的方向一定与外力矩的方向相同; (D )质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等。 7、一质量为60kg 的人站在一质量为60kg 、半径为l m 的匀质圆盘的边缘,圆盘可绕与盘面相垂直的中心竖直轴无摩擦地转动。系统原来是静止的,后来人沿圆盘边缘走动,当人相对圆盘的走动速度为2m/s 时,圆盘角速度大小为 ( ) (A) 1rad/s ; (B) 2rad/s ; (C) 2/3rad/s ; (D) 4/3rad/s 。 8、如图所示,一根匀质细杆可绕通过其一端O 的水平轴在竖直平面 内自由转动,杆长5/3m 。今使杆从与竖直方向成?60角由静止释放(g 取10m/s 2),则杆的最大角速度为( ) (A )3rad/s ; (B)πrad/s ; (C)3.0rad/s ; (D)3/2rad/s 。 9、对一个绕固定水平轴O 量相同、速率相等的子弹,并停留在盘中,则子弹射入后转 盘的角速度应 ( ) (A) 增大; (B) 减小; (C) 不变;(D) 无法确定。

第五章刚体力学答案

一、选择题 [ C ]1、如图所示,A 、 B 为两个相同的绕着轻绳的 定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而 且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计 滑轮轴的摩擦,则有 (A) βA =βB . (B) βA >βB . (C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . 图5-18 提示: 设定滑轮半径为R,转动惯量为J ,如图所示,据刚体定轴转动定律M=Jβ有: 对B :FR=MgR= J βB . 对A :Mg-T=Ma TR=J βA, a=R βA, 可推出:βA <βB [ D ]2、如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小 (A) 为 41mg cos θ. (B)为2 1 mg tg θ. (C) 为 mg sin θ. (D) 不能唯一确定. [ C ]3、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 图5-8 m m 图5-11

提示: 把三者看作同一系统时,系统所受合外力矩为零, 系统角动量守恒。 设L 为每一子弹相对固定轴O 的角动量大小.故由角动量守恒定律得: J ω0+L-L=(J+J 子弹) ω ω <ω0 [ A ]4、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为 (A) ?? ? ??= R J mR v 2 ω,顺时针. (B) ??? ??=R J mR v 2ω,逆时针. (C) ? ? ? ??+= R mR J mR v 2 2 ω,顺时针. (D) ?? ? ??+=R mR J mR v 22 ω,逆时针. 提示: 视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒: 0=Rmv-J ω 可得结论。 [ C ]5、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒. 图5-10 提示: 视小球与细杆为一系统,碰撞过程中系统所受合外力矩为零,满足角动量守恒条件,不满足动量和机械能守恒的条件,故只能选(C ) [ C ]6、光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为 3 1mL 2 ,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图5-17所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A) L 32v . (B) L 54v . (C) L 76v . (D) L 98v . (E) L 712v . 图5-19 O v 俯视图

《力学》漆安慎(第二版)答案07章

力学(第二版)漆安慎习题解答 第七章刚体力学

第七章 刚体力学 一、基本知识小结 ⒈刚体的质心 定义:∑??==dm dm r r m r m r c i i c // 求质心方法:对称分析法,分割法,积分法。 ⒉刚体对轴的转动惯量 定义:∑?==dm r I r m I i i 22 平行轴定理 I o = I c +md 2 正交轴定理 I z = I x +I y. 常见刚体的转动惯量:(略) ⒊刚体的动量和质心运动定理 ∑==c c a m F v m p ⒋刚体对轴的角动量和转动定理 ∑==βτω I I L ⒌刚体的转动动能和重力势能

c p k mgy E I E ==2 2 1ω ⒍刚体的平面运动=随质心坐标系的平动+绕质心坐标系的转动 动力学方程:∑∑==c c c c I a m F βτ (不必考虑惯性力矩) 动能:221 221c c c k I mv E ω+= ⒎刚体的平衡方程 ∑=0F , 对任意轴 ∑=0τ

二、思考题解答 火车在拐弯时所作的运动是不是平动 答:刚体作平动时固联其上的任一一条直线,在各时刻的位置(方位)始终彼此平行。若将火车的车厢看作一个刚体,当火车作直线运行时,车厢上各部分具有平行运动的轨迹、相同的运动速度和加速度,选取车厢上的任一点都可代替车厢整体的运动,这就是火车的平动。但当火车拐弯时,车厢上各部分的速度和加速度都不相同,即固联在刚体上任一条直线,在 各时刻的位置不能保持彼此平行,所以火车拐弯时的运动不是平动。 对静止的刚体施以外力作用,如果合外力为零,刚体会不会运动 答:对静止的刚体施以外力作用,当合外力为了零,即0i c F ma ==∑时,刚体的质心将保持静止,但合外力为零并不表明所有的外力都作用于刚体的同一点。所以,对某一确定点刚体所受合外力的力矩i i i M M r F ==?∑∑不一定为零。由刚体的转动定律M J α=可知,刚体将发生转动。比如,置于光滑水平面上的匀质杆,对其两端施以大小相同、方向相反,沿水平面且垂直于杆的两个作用力时,杆所受的外力的合力为零,其质心虽然保持静 止,但由于所受合外力矩不为零,将作绕质心轴的转动。 如果刚体转动的角速度很大,那么(1)作用在它上面的力是否一定很大 (2)作用在它上面的力矩是否一定很大

第3章刚体力学基础

第3章 刚体力学基础 一、基本要求 1.理解质点及刚体转动惯量、角动量的概念,并会计算质点及刚体(规则形状刚体)的转动惯量、角动量; 2.理解刚体绕定轴转动的转动定律,并应用它来求解定轴转动刚体力矩和角加速度等问题; 3.会计算力矩的功、刚体的转动动能、刚体的重力势能,会应用机械能守恒定律解答刚体定轴转动问题; 4.掌握刚体的角动量定理和角动量守恒定律,并会分析解决含有定轴转动刚体系统的力学问题(质点与刚体碰撞类问题等)。 二、基本内容 (一)本章重点和难点: 重点:刚体绕定轴转动定律及角动量守恒定律。 难点:刚体绕定轴转动系统的角动量守恒定律及其应用。 (二) 知识网络结构图: ?????? ???????????????????角动量守恒定律定轴转动定律基本定律转动动能角动量冲量矩转动惯量力矩基本物理量 (三)容易混淆的概念: 1.转动惯量和质量 转动惯量反映刚体转动状态改变的难易程度,即刚体的转动惯性大小的量度;质量反映质点运动状态改变的难易程度,即质点的惯性大小的量度。

2.平动动能和转动动能 平动动能是与质量和平动速度的平方成正比;转动动能是与转动惯量和角速度的平方成正比。 (四)主要内容: 1.描述刚体定轴转动的角位置θ,角位移θ?、角速度ω和角加速度α(β)等物理量 t t d d ,d d ωαθω== 角量与线量的关系: 2n t ωαω θr a r a r v r s ==== 2.转动惯量--转动质点对转轴的转动惯量,等于转动质点的质量m 成以质点到转轴的距离r 的平方。2J m r =? (1)质量连续分布的刚体: ?=m r J d 2 线分布:dl dm ?=λ λ-质量线分布刚体,单位长度的质量。 面分布:dS dm ?=σ σ- 质量面分布刚体,单位面积的质量。 体分布:dV dm ?=ρ ρ 质量体分布刚体,单位体积的质量。 (2)质量离散分布刚体的转动惯量:2 i J m r =?∑ (3)平行轴定理 2 C J J md =+ 3.刚体绕定轴转动的转动定律—刚体的合外力矩等于转动惯量乘以角加速度。 t J J M d d ω α== i i i M M r F ==?∑∑ 力矩:F r M ?= 力对轴的力矩大小:θsin rF M =

第05章__刚体力学基础补充[精品文档]

第五章 刚体力学基础 一、选择题 1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的: (A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小; (D)动能较小,势能较小,总能量较小; [ C ]难度:易 2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变; (D)角速度减小,动能减小。 [ B ]难度:易 3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为: (A)3w ; (B) 2w (C) 4 3w ; (D) 4 w 。 [ D ]难度:难 4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。那么碰撞后A 端的速度大小: (A) M m mv +12120; (B) M m mv +330 ; (C) M m mv +0 ; (D) M m mv +330。 [ B ]难度:中 5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。如图将同样的棒截成长为2 l 的一段,初始条件不变,则它撞击地板时的角速度最接近 于: (A)ω2; (B) ω2; (C) ω; (D) 2ω。 [ A ]难度:难 6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球 L

相关文档
最新文档