高一函数大题训练及复习资料

高一函数大题训练及复习资料
高一函数大题训练及复习资料

高中函数大题专练

1、已知关于x 的不等式2

(4)(4)0kx k x --->,其中k R ∈。

⑴试求不等式的解集A ;

⑵对于不等式的解集A ,若满足A Z B =I (其中Z 为整数集)。试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合

B ;若不能,请说明理由。

2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。

① 对任意的[0,1]x ∈,总有()0f x ≥;

② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2

()g x x =与()21x

h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;

(3)在(2)的条件下,讨论方程(21)()x

g h x m -+=()m R ∈解的个数情况。 3.已知函数|

|212)(x x x f -

=. (1)若2)(=x f ,求x 的值;

(2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x

?-?

=???

0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式.

(2)请你作出函数)(x f 的大致图像.

(3)当0a b <<时,若()()f a f b =,求ab 的取值范围.

(4)若关于x 的方程0)()(2

=++c x bf x f 有7个不同实数解,求,b c 满足的条件.

5.已知函数()(0)||

b

f x a x x =-

≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;

(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是

[,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探

求,a b 应满足的条件。

6、设bx ax x f +=2)(,

求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。

7.对于函数)(x f ,若存在R x ∈0 ,使00)(x x f =成立,则称点00(,)x x 为函数的不动点。 (1)已知函数)0()(2

≠-+=a b bx ax x f 有不动点(1,1)和(-3,-3)求a 与b 的值; (2)若对于任意实数b ,函数)0()(2

≠-+=a b bx ax x f 总有两个相异的不动点,求a 的取值范围;

(3)若定义在实数集R 上的奇函数)(x g 存在(有限的)n 个不动点,求证:n 必为奇数。

8.设函数)0(1

)(≠+

=x x

x x f ,的图象为1C 、1C 关于点A (2,1)的对称的图象为2C ,2C 对应的函数为)(x g .

(1)求函数)(x g y =的解析式;

(2)若直线b y =与2C 只有一个交点,求b 的值并求出交点的坐标.

9.设定义在),0(+∞上的函数)(x f 满足下面三个条件:

①对于任意正实数a 、b ,都有()()()1f a b f a f b ?=+-; ②(2)0f =;

③当1>x 时,总有()1f x <. (1)求)2

1

()1(f f 及的值;

(2)求证:),0()(+∞在x f 上是减函数.

10. 已知函数)(x f 是定义在[]2,2-上的奇函数,当)0,2[-∈x 时,3

2

1)(x tx x f -=(t 为常数)。

(1)求函数)(x f 的解析式;

(2)当]6,2[∈t 时,求)(x f 在[]0,2-上的最小值,及取得最小值时的x ,并猜想)

(x f 在[]2,0上的单调递增区间(不必证明);

(3)当9≥t 时,证明:函数)(x f y =的图象上至少有一个点落在直线14=y 上。

11.记函数()2

7

2++-

=

x x x f 的定义域为A ,()()()[]()R a b ax b x x g ∈>+-=,012lg 的定义域为B ,

(1)求A : (2)若B A ?,求a 、b 的取值范围

12、设()()1,011

≠>-+=

a a a a x f x

x 。 (1)求()x f 的反函数()x f 1

-:

(2)讨论()x f

1

-在()∞+.1上的单调性,并加以证明:

(3)令()x x g a log 1+=,当[]()()n m n m <+∞?,1,时,

()x f

1

-在[]n m ,上的值域是

()()[]m g n g ,,求a 的取值范围。

13.集合A 是由具备下列性质的函数)(x f 组成的:

(1) 函数)(x f 的定义域是[0,)+∞; (2) 函数)(x f 的值域是[2,4)-;

(3) 函数)(x f 在[0,)+∞上是增函数.试分别探究下列两小题:

(Ⅰ)判断函数1()2(0)f x x =≥,及21()46()(0)2

x f x x =-?≥是否属于集合A ?并简要说明理由.

(Ⅱ)对于(I )中你认为属于集合A 的函数)(x f ,不等式)1(2)2()(+<++x f x f x f ,

是否对于任意的0≥x 总成立?若不成立,为什么?若成立,请证明你的结论.

14、设函数f(x)=ax 2

+bx+1(a,b 为实数),F(x)=??

?<->)

0()()

0()(x x f x x f

(1)若f(-1)=0且对任意实数x 均有f(x)0≥成立,求F(x)表达式。

(2)在(1)的条件下,当x []2,2-∈时,g(x)=f(x)-kx 是单调函数,求实数k 的取值范围。 (3)(理)设m>0,n<0且m+n>0,a>0且f(x)为偶函数,求证:F(m)+F(n)>0。

15.函数f(x)=

b

ax x

+(a ,b 是非零实常数),满足f(2)=1,且方程f(x)=x 有且仅有一个解。

(1)求a 、b 的值;

(2)是否存在实常数m ,使得对定义域中任意的x ,f(x)+f(m –x)=4恒成立?为什么? (3)在直角坐标系中,求定点A(–3,1)到此函数图象上任意一点P 的距离|AP|的最小值。

函数大题专练答案

1、已知关于x 的不等式2

(4)(4)0kx k x --->,其中k R ∈。

⑴试求不等式的解集A ;

⑵对于不等式的解集A ,若满足A Z B =I (其中Z 为整数集)。试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合

B ;若不能,请说明理由。

解:(1)当0k =时,(,4)A =-∞;当0k >且2k ≠时,4

(,4)(,)A k k

=-∞+

+∞U ; 当2k =时,(,4)(4,)A =-∞+∞U ;(不单独分析2k =时的情况不扣分)

当0k <时,4

(,4)A k k

=+

。 (2) 由(1)知:当0k ≥时,集合B 中的元素的个数无限;

当0k <时,集合B 中的元素的个数有限,此时集合B 为有限集。

因为4

4k k

+≤-,当且仅当2k =-时取等号,

所以当2k =-时,集合B 的元素个数最少。

此时()4,4A =-,故集合{}3,2,1,0,1,2,3B =---。

2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。

① 对任意的[0,1]x ∈,总有()0f x ≥;

② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。

已知函数2

()g x x =与()21x

h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;

(3)在(2)的条件下,讨论方程(21)()x

g h x m -+=()m R ∈解的个数情况。 解:(1) 当[]0,1x ∈时,总有2g x x 0()=≥,满足①,

当12120,0,1x x x x ≥≥+≤时,

22221212121212g x x x x 2x x x x g x g x +=++≥+=+()()(),满足② (2)若a 1<时,h 0a 10()=-<不满足①,所以不是G 函数;

若a 1≥时,h x ()在x 01[,]∈上是增函数,则h x 0≥(),满足①

由1212h x x h x h x +≥+()()() ,得12

12x x x x a 21a 21a 21+?-≥?-+?-,

即12

x

x a 1212

11[()()]---≤,

因为 12120,0,1x x x x ≥≥+≤

所以 1x

0211≤-≤ 2x

0211≤-≤ 1x 与2x 不同时等于1 11x

x

021211()()∴≤--<

11x x 1

a 12121()()

∴≤

---

当12x x 0==时,11x x 1

112121min (

)()()

=--- a 1∴≤, 综合上述:a 1{}∈

(3)根据(2)知: a=1,方程为x

x

42m -=,

由x 02110x 1

?≤-≤?≤≤? 得 x 01∈[,] 令x 2t 12=∈[,],则2

211m t t t 24

=-=--()

由图形可知:当m 02∈[,]时,有一解;

当m 02∈-∞?+∞(,)(,)时,方程无解。

3.已知函数||2

12)(x x x f -

=. (1)若2)(=x f ,求x 的值;

(2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围.

[解] (1)当0

12)(-=. 由条件可知 22

1

2=-

x x ,即 012222=-?-x x , 解得 212±=x .

02>x Θ,()

21log 2+=∴x .

(2)当]2,1[∈t 时,021*******≥???

?

?-+??? ??-

t t t

t t m , 即 ()()121242--≥-t t m .

0122>-t Θ, ∴ ()122+-≥t m . ()2[2,3],12[65,17]t t ∈∴-+∈--Q ,

故m 的取值范围是[17,)-+∞.

(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;

(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是

[,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探

求,a b 应满足的条件。

设12,(0,)x x ∈+∞且12x x <,由()f x 是(0,)+∞上的增函数,则12()()f x f x <

由12x x <,12,(0,)x x ∈+∞知12120,0x x x x -<>,所以0b >,即(0,)b ∈+∞

数,则0mn >且0b ≠

(4) ①若0m n <<

即2

0x ax b -+=在(0,)+∞上有两不等实根,所以

21212

4000a b x x a x x b ?->?+=>???=>?,即0,

0a b >>且2

40a b ->

②若0m n <<

6、设bx ax x f +=

2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数

)(x f 的定义域和值域相同。

解:(1)若0=a ,则对于每个正数b ,bx x f =)(的定义域和值域都是),0[+∞

故0=a 满足条件 (2)若0>a ,则对于正数b ,bx ax x f +=

2)(的定义域为D [)+∞??

? ??

-∞-=,0,Y a b ,

但)(x f 的值域[)+∞?,0A ,故A D ≠,即0>a 不合条件; (3)若0

b

D -= a

b x f -=

2))((max ,

)(x f 的值域为]2,

0[a b

-,a b

a b -=-2420-=????-=-

a a 综上所述:a 的值为0或4-

7.对于函数)(x f ,若存在R x ∈0 ,使00)(x x f =成立,则称点00(,)x x 为函数的不动点。 (1)已知函数)0()(2

≠-+=a b bx ax x f 有不动点(1,1)和(-3,-3)求a 与b 的值; (2)若对于任意实数b ,函数)0()(2

≠-+=a b bx ax x f 总有两个相异的不动点,求a 的取值范围;

(3)若定义在实数集R 上的奇函数)(x g 存在(有限的)n 个不动点,求证:n 必为奇数。 解:(1)由不动点的定义:0)(=-x x f ,∴0)1(2

=--+b x b ax 代入1=x 知1=a ,又由3-=x 及1=a 知3=b 。

∴1=a ,3=b 。

(2)对任意实数b ,)0()(2

≠-+=a b bx ax x f 总有两个相异的不动点,即是对任意的实数b ,方程0)(=-x x f 总有两个相异的实数根。

∴0)1(2

=--+b x b ax 中04)1(2

>+-=?ab b ,

即01)24(2

>+-+b a b 恒成立。故04)24(2

1<--=?a ,∴10<

(3))(x g 是R 上的奇函数,则0)0(=g ,∴(0,0)是函数)(x g 的不动点。 若)(x g 有异于(0,0)的不动点),(00x x ,则00)(x x g =。 又000)()(x x g x g -=-=-,∴),(00x x --是函数)(x g 的不动点。

∴)(x g 的有限个不动点除原点外,都是成对出现的,

所以有k 2个(k N ∈),加上原点,共有12+=k n 个。即n 必为奇数 8.设函数)0(1

)(≠+

=x x

x x f ,的图象为1C 、1C 关于点A (2,1)的对称的图象为2C ,2C 对应的函数为)(x g .

(1)求函数)(x g y =的解析式;

(2)若直线b y =与2C 只有一个交点,求b 的值并求出交点的坐标. 解.(1)设),(v u p 是x x y 1+

=上任意一点,u

u v 1

+=∴ ① 设P 关于A (2,1)对称的点为??

?-=-=????=+=+∴y

v x

u y v x u y x Q 2424),,( 代入①得4

1

24142-+

-=?-+

-=-x x y x x y ));,4()4,((4

1

2)(+∞?-∞∈-+

-=∴x x x x g (2)联立,094)6(4122

=+++-??????-+-==b x b x x x y b y

004)94(4)6(22=?=-=+?-+=?∴b b b b b 或,4=b

(1)当0=b 时得交点(3,0); (2)当4=b 时得交点(5,4). 9.设定义在),0(+∞上的函数)(x f 满足下面三个条件:

①对于任意正实数a 、b ,都有()()()1f a b f a f b ?=+-; ②(2)0f =;

③当1>x 时,总有()1f x <. (1)求)2

1

()1(f f 及的值;

(2)求证:),0()(+∞在x f 上是减函数.

解(1)取a=b=1,则(1)2(1) 1.(1)1f f f =-=故 又11(1)(2)(2)()12

2

f f f f =?=+-. 且(2)0f =.

得:1()(1)(2)11122

f f f =-+=+=

(2)设,021x x <<则:222111111

()()()()[()()1]x x f x f x f x f x f f x x x -=?-=+-1()f x -

2

1

(

)1x f x =- 依1,01221><

再依据当1>x 时,总有()1f x <成立,可得2

1

(

)1x f x < 即0)()(12<-x f x f 成立,故),0()(+∞在x f 上是减函数。

10. 已知函数)(x f 是定义在[]2,2-上的奇函数,当)0,2[-∈x 时,3

2

1)(x tx x f -=(t 为常数)。

(1)求函数)(x f 的解析式;

(2)当]6,2[∈t 时,求)(x f 在[]0,2-上的最小值,及取得最小值时的x ,并猜想)

(x f 在[]2,0上的单调递增区间(不必证明);

(3)当9≥t 时,证明:函数)(x f y =的图象上至少有一个点落在直线14=y 上。

解:(1)(]2,0∈x 时,[)0,2-∈-x , 则 332

1

)(21)()(x tx x x t x f +-=--

-=-, ∵函数)(x f 是定义在[]2,2-上的奇函数,即()()x f x f -=-,∴()3

2

1x tx x f +-=-,即

321)(x tx x f -=,又可知 ()00=f ,∴函数)(x f 的解析式为 32

1

)(x tx x f -= ,

[]2,2-∈x ;

(2)()??? ??-

=221x t x x f ,∵]6,2[∈t ,[]0,2-∈x ,∴02

1

2≥-x t , ∵ ()[]

27832121213

3

222

2222

t x t x t x x t x x f =?????

?

??-+-+≤??? ??-=,∴2221x t x -=,

即 3

6,322

t

x t x -

==

[])0,236(-∈-t 时,t t f 962min -= 。 猜想)(x f 在[]2,0上的单调递增区间为??

?

???36,

0t 。 (3)9≥t 时,任取2221≤<≤-x x ,∵

相关主题
相关文档
最新文档