激光扫描显示MEMS微镜研究

激光扫描显示MEMS微镜研究
激光扫描显示MEMS微镜研究

MEMS扫描镜介绍,MEMS微镜按原理区分

MEMS扫描镜介绍,MEMS微镜按原理区分 MEMS微镜是指采用光学MEMS技术制造的,把微光反射镜与MEMS驱动器集成在一起的光学MEMS器件。MEMS微镜的运动方式包括平动和扭转两种机械运动。对于扭转MEMS微镜,当其光学偏转角度较大(达到10°以上),主要功能是实现激光的指向偏转、图形化扫描、图像扫描时,可被称为“MEMS扫描镜”,以区别于较小偏转角度的扭转MEMS微镜。 MEMS扫描镜是激光应用必不可少的关键激光元器件,应用领域已渗透到消费电子、医疗、军事国防、通讯等。这其中有已经量产的应用,还有许多概念性的应用。主要应用领域有三个方面:激光扫描、光通讯、数字显示。扫描镜主要可用在激光雷达LiDAR、3D摄像头、条形码扫描、激光打印机、医疗成像;光通讯主要指光分插复用器、光衰减器、光开关、光栅;数字显示指高清电视、激光微投影、数字影院、汽车抬头显示(HUD)、激光键盘、增强现实(AR)等方面的应用。 MEMS微镜在激光雷达的应用 MEMS微镜在3D摄像头中的应用 MEMS微镜在光学通讯中的应用 MEMS微镜在激光虚拟键盘的应用 MEMS微镜在DLP的应用是一个成功的例子。DLP显示的核心技术则是采用静电原理的MEMS微镜组成的阵列,每一面微镜构成一个单色像素,由微镜下层的寄存器控制特定镜片在开关状态间的高速切换,将不同颜色的像素糅合在一起。DLP技术在1987年问世,最初仅用于国防,直到1996年才投入商业化应用:投影仪。 与传统的35毫米胶片电影相比,DLP影院显示技术所呈现的影像色彩更鲜艳、更精准。这多亏了DLP显示引擎光学效率的BrillianColor(极致色彩)技术,这种技术不仅让电影

MEMS微机电系统(Micro-Electro-Mechanical Systems)

MEMS是微机电系统(Micro-Electro-Mechanical Systems)的英文缩写。MEMS 是美国的叫法,在日本被称为微机械,在欧洲被称为微系统,它是指可批量制作的,集微型机构、微型传感器、微型执行器以及信号处理和控制电路、直至接口、通信和电源等于一体的微型器件或系统。MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的,目前MEMS加工技术还被广泛应用于微流控芯片与合成生物学等领域,从而进行生物化学等实验室技术流程的芯片集成化。 MEMS主要包括微型机构、微型传感器、微型执行器和相应的处理电路等几部分,它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。 MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器、微执行器、微型构件、微机械光学器件、真空微电子器件、电力电子器件等在航空、航天、汽车、生物医学、环境监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的应用前景。MEMS技术正发展成为一个巨大的产业,就象近20年来微电子产业和计算机产业给人类带来的巨大变化一样,MEMS也正在孕育一场深刻的技术变革并对人类社会产生新一轮的影响。目前MEMS市场的主导产品为压力传感器、加速度计、微陀螺仪、墨水喷咀和硬盘驱动头等。大多数工业观察家预测,未来5年MEMS器件的销售额将呈迅速增长之势,年平均增加率约为18%,因此对对机械电子工程、精密机械及仪器、半导体物理等学科的发展提供了极好的机遇和严峻的挑战。 MEMS是一种全新的必须同时考虑多种物理场混合作用的研发领域,相对于传统的机械,它们的尺寸更小,最大的不超过一个厘米,甚至仅仅为几个微米,其厚度就更加微小。采用以硅为主的材料,电气性能优良,硅材料的强度、硬度和杨氏模量与铁相当,密度与铝类似,热传导率接近钼和钨。采用与集成电路(IC)类似的生成技术,可大量利用IC生产中的成熟技术、工艺,进行大批量、低成本生产,使性价比相对于传统“机械”制造技术大幅度提高。 完整的MEMS是由微传感器、微执行器、信号处理和控制电路、通讯接口和电源等部件组成的一体化的微型器件系统。其目标是把信息的获取、处理和执行集成在一起,组成具有多功能的微型系统,集成于大尺寸系统中,从而大幅度地提高系统的自动化、智能化和可靠性水平。沿着系统及产品小型化、智能化、集成化的发展方向,可以预见:MEMS会给人类社会带来另一次技术革命,它将对21世纪的科学技术、生产方式和人类生产质量产生深远影响,是关系到国家科技发展、国防安全和经济繁荣的一项关键技术。 制造商正在不断完善手持式装置,提供体积更小而功能更多的产品。但矛盾之处在于,随着技术的改进,价格往往也会出现飙升,所以这就导致一个问题:制造商不得不面对相互矛盾的要求——在让产品功能超群的同时降低其成本。 解决这一难题的方法之一是采用微机电系统,更流行的说法是MEMS,它使得制造商能将一件产品的所有功能集成到单个芯片上。MEMS对消费电子产品的终极影响不仅包括成本的降低、而且也包括在不牺牲性能的情况下实现尺寸

Zeiss 激光扫描共聚焦显微镜 操作手册

Zeiss 激光扫描共聚焦显微镜操作手册 目录: 1 系统得组成 系统组成及光路示意图 实物照片说明 2 系统得使用 2、1 开机顺序 2、2 软件得快速使用说明 2、3 显微镜得触摸屏控制 2、4 关机顺序 3 系统得维护 1 系统得组成 激光扫描共聚焦显微镜系统主要由:电动荧光显微镜、扫描检测单元、激光器、电脑工作站及各相关附件组成。 系统组成及光路示意图: 电脑工作站 激光器 电动荧光显微镜扫描检测单元 实物照片说明: 电动荧光显微镜 扫描检测单元 CO2 培养系统控制器 激光器 电脑工作站 2 系统得使用 2、1 开机顺序 (1)打开稳压电源(绿色按钮) 等待2 分钟(电压稳定)后,再开其它开关 (2)主开关[ MAIN SWITCH ]“ON” 电脑系统[ SYSTEMS/PC ]“ON” 扫描硬件系统[ PONENTS ]“ON” (3)打开[ 电动显微镜开关] 打开[ 荧光灯开关] (注:具有5 档光强调节旋钮) (4)Ar 离子激光器主开关“ON” 顺时针旋转钥匙至“—” 预热等待约15分钟, 将激光器[ 扳钮] 由“Standby”扳至 “Laser run”状态,即可正常使用 (5)打开[ 电脑开关],进入操作系统

注:键盘上也具有[ 电脑开关] 2、2 软件得快速使用说明 (1)电脑开机进入操作系统界面后,双击桌面共聚焦软件ZEN 图标 (2)进入ZEN 界面,弹出对话框: “Start System”——初始化整个系统,用于激光扫描取图、 分析等。 “Image Processing”——不启动共聚焦扫描硬件,用于已 存图像数据得处理、分析。 (3)软件界面: 1 功能界面切换:扫描取图(Acquisition)、图像处理(Processing)、维护(Maintain) (注:Maintain仅供Zeiss专业工程师使用) 2 动作按钮; 3 工具组(多维扫描控制); 4 工具详细界面; 5 状态栏; 6 视窗切换按钮; 7 图像切换按钮;8 图像浏览/预扫描窗口;9 文档浏览/处理区域;10 视窗中图像处理模块 动作按钮: Single ——扫描单张图片、并在图像预览窗口显示。 Start ——开始扫描单张图片或一个实验流程(1组图片,如XYZ、XYT 等)。 Stop ——暂停/结束扫描。 New ——建立一个新图像扫描窗口/文档。 激光连接状况检查 眼睛观察/相机/共聚焦LSM 光路切换(ZEN软件界面右上角): Ocular ——通过观察筒用眼睛观察。(激光安全保护装置自动阻断激光、保护眼睛。) Camera ——光路切换至相机。 LSM ——共聚焦扫描成像光路。 显微镜设置: “Ocular”——> “Light Path”——> 点击物镜图标,选择物镜——> 样品聚焦。 透射光控制(Transmitted Light Control) 反射光光闸控制(Reflected Light Shutter) 荧光激发块选择(Reflector) 共聚焦LSM 扫描设置 点击“LSM”(ZEN软件界面右上角),系统切换至共聚焦扫描光路: 光路设置: Smart Setup ——自动预设光路 选取“荧光探针”、“颜色”、扫描方法, 应用“Apply”。 (注:Fastest 为最快速扫描,多条激光谱线同时扫 描。Best signal 为最佳信号扫描,多条激光谱线顺 序扫描。Best promise 为兼顾速度与信号得折

激光共聚焦扫描显微镜简介

激光共聚焦扫描显微镜简介 一、激光共聚焦显微镜的基本组成 激光扫描共聚焦显微镜(laser scanning confocal microscope LSCM)是20世纪80年代发展起来的一项具有划时代意义的高科技新产品,是当今世界最先进的细胞生物学分析仪器。激光共聚焦显微镜利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦的原理和装置,以及通过针孔的选择和PMT的收集,并带有一套对其所观察到的对象进行数字图像分析处理的系统软件。与传统光学显微镜相比,它具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。所以它问世以来在生物学的研究领域中得到了广泛应用。 激光共聚焦显微镜主要有四部分组成:1、显微镜光学系统。2、扫描装置。3、激光光源。4、检测系统。整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。 1.1 显微镜光学系统 显微镜是LSCM的主要组件,它关系到系统的成象质量。显微镜光路以无限远光学系统可方便地在其中插人光学选件而不影响成象质量和测量精度。物镜应选取大数值孔径平场复消色差物镜,有利于荧光的采集和成象的清晰。物镜组的转换,滤色片组的选取,载物台的移动调节,焦平面的记忆锁定都应由计算机自动控制。 1.2 扫描装置 LSCM使用的扫描装置在生物领域一般为镜扫描。由于转镜只需偏转很小角度就能涉及很大的扫描范围,图象采集速度大大提高,512×512画面每秒可达5帧以上,有利于那些寿命短的离子作荧光测定。扫描系统的工作程序由计算机自动控制。 1.3 激光光源 LSCM使用的激光光源有单激光和多激光系统。多激光器系统在可见光范围使用多谱线氩离子激光器,发射波长为457nm、488nm和514nm的蓝绿光,氦氖绿激光器提供发射波长为543nm的绿光,氦氖红激光器发射波长为633nm的红光。 1.4 检测系统 LSCM为多通道荧光采集系统,一般有三个荧光通道和一个透射光通道,能升级到四个荧光通道,可对物体进行多谱线激光激发,样品发射荧光的探测器为感光灵敏度高的光电倍增管PMT,配有高速12位A/D转换器,可以做光子计数。PMT前设置针孔,由计算机软件调节针孔大小,光路中设有能自动切换的滤色片组,满足不同测量的需要,也有通过光栅或棱镜分光后进行光谱扫描功能的设置。 二、激光共聚焦显微镜的特点以及在生物领域的应用 与传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点,在对生物样品的观察中,激光共聚焦显微镜有如下优越性: 1、对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。 2、可以得到比普通荧光显微镜更高对比度、高解析度图象、同时具有高灵敏度、杰出样品保护。 3、多维图象的获得,如7 维图象(XYZaλIt): xyt 、xzt 和xt 扫描,时间序列扫描旋转扫描、区域扫描、光谱扫描、同时方便进行图像处理。

激光共聚焦显微镜的原理与应用范围

激光共聚焦显微镜的原理与应用范围 激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。把光学成像的分辨率提高了30%~40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代的研究工具。 1激光扫描共聚焦显微镜(LSCM)的原理 从基本原理上讲,共聚焦显微镜是一种现代化的光学显微镜,它对普通光镜从技术上作了以下几点改进: 1.1用激光做光源因为激光的单色性非常好,光源波束的波长相同,从根本上消除了色差。1.2采用共聚焦技术在物镜的焦平面上放置了一个当中带有小孔的挡板,将焦平面以外的杂散光挡住,消除了球差;并进一步消除了色差 1.3采用点扫描技术将样品分解成二维或三维空间上的无数点,用十分细小的激光束(点光源)逐点逐行扫描成像,再通过微机组合成一个整体平面的或立体的像。而传统的光镜是在场光源下一次成像的,标本上每一点的图像都会受到相邻点的衍射光和散射光的干扰。这两种图像的清晰度和精密度是无法相比的。 1.4用计算机采集和处理光信号,并利用光电倍增管放大信号图 在共聚焦显微镜中,计算机代替了人眼或照相机进行观察、摄像,得到的图像是数字化的,可以在电脑中进行处理,再一次提高图像的清晰度。而且利用了光电倍增管,可以将很微弱的信号放大,灵敏度大大提高。由于综合利用了以上技术。可以说LSCM是显微镜制作技术、光电技术、计算机技术的完美结合,是现代技术发展的必然产物。 2LSCM在生物医学研究中的应用 目前,一台配置完备的LSCM在功能上已经完全能够取代以往的任何一种光学显微镜,它相当于多种制作精良的常用光学显微镜的有机组合,如倒置光学显微镜、紫外线显微镜、荧光显微镜、暗视野显微镜、相差显微镜(PH)、微分干涉差显微镜(DIC)等,因此被称为万能显微镜,通过它所得到的精细图像可使其他的显微镜图像无比逊色。

LeicaSP8激光扫描共聚焦显微镜快速操作手册2013-5-13

Leica激光扫描共聚焦显微镜 快速操作手册 制作:徕卡显微系统(上海)贸易有限公司 2013年3月

目录: 1 系统的组成 系统组成 (3) 光路示意图 (4) 2 系统的使用 2.1 开机顺序 (5) 2.2 软件界面简介 (7) 2.3 在显微镜下观察样品 (8) 2.4 采集共聚焦图像 (9) 2.5 XYZ三维扫描(Z-Stack) (11) 2.6 时间序列扫描(Timeseries or xyt Scan) (15) 2.7 波长扫描(xyλScan) (16) 2.8 HyD检测器 (17) 2.9 图像的保存及输出 (18) 2.10 关机 (20) 3 系统的维护 (21)

Leica SP8 系统组成图

1可见波长激光或白激光15UVIS, HIVIS或VISIR的光路镀膜 2声光调制器(AOTF)16扫描视场旋转镜(Abbe-Konig 旋转)* 3红外激光(IR)* 17在NND位置上的反射光检测器(RLD)* 4电光调制器18物镜(可提供各种选择)* 5紫外激光* 19在NND位置上的透射光检测器(TLD)* 6 AOTF或直接调制器(DMOD)20正方型针孔 7STED 激光* 21Fluorifier盘* 8Setlight监控二极管22X1出口接口* 9AOBS, 及其他选配件23外置检测器* 10用于FRAP的光束增强镜* 24色散棱镜 11红外激光耦合25分开的荧光光谱 12与CS2紫外光路耦合的紫外激光26最多5个光电倍增管或4个HyD检测器 13STED激光耦合*选配组件 14全视野扫描镜及串行高速扫描镜选件

激光扫描共聚焦显微镜的原理和应用

激光扫描共聚焦显微镜的原理和应用 一、激光扫描共聚焦显微镜的原理 传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM)采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。 原理图 二、激光扫描共聚焦显微镜组成特点 LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地

进行。显微镜是LSCM的主要组件,它关系到系统的成像质量。通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。 三、激光扫描共聚焦显微镜的应用 (一)细胞的三维重建 普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。LSCM能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。通过角度旋转和细胞位置变化可产生三维动画效果。LSCM的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。(二)静态结构检测 1.细胞原位检测核酸 用于细胞核定位及其形态学观察、检测细胞内DNA的复制及断裂情况以及染色体定位观察。 2.原位检测蛋白质、抗体及其他分子 原位检测蛋白质、抗体及其他分子 免疫荧光标记技术 检测荧光蛋白 3.检测细胞凋亡 检测细胞凋亡不同时期细胞形态、细胞凋亡相关蛋白

激光扫描共聚焦显微镜的原理和应用-17954讲解

激光扫描共聚焦显微镜的原理和应用 Tina(2007-10-23 09:40:17 一、激光扫描共聚焦显微镜的原理 传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。 原理图

二、激光扫描共聚焦显微镜组成特点 LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。显微镜是LSCM的主要组件,它关系到系统的成像质量。通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。 三、激光扫描共聚焦显微镜的应用 一)细胞的三维重建

普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。LSCM 能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。通过角度旋转和细胞位置变化可产生三维动画效果。LSCM 的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。 二)静态结构检测:原位鉴定细胞或组织内生物大分子、观察细胞及亚细胞形态结构 1.细胞原位检测核酸 用于细胞核定位及其形态学观察、检测细胞内DNA的复制及断裂情况以及染色体定位观察。 2.原位检测蛋白质、抗体及其他分子 原位检测蛋白质、抗体及其他分子 免疫荧光标记技术 检测荧光蛋白 3.检测细胞凋亡

北京大学软件与微电子学院-莫同-数据挖掘全部课后题整理-呕心之作

第1讲数据挖掘概述 –数据与知识的区别与联系? 数据:对象(被描述的单元)+属性(描述对象某一方面的特征) 数据是将不同类型的属性经数据处理数据化得到的结果 知识能保障我们达成既定目标 数据是挖掘的基础。数据记录了现象,通过现象总结出知识。 –列举几项你所知道的数据挖掘应用,并论述数据挖掘在其中的作用? (1)分类,根据特征判断对象属于哪个类别,有指导学习。预测肿瘤细胞是良性还是恶性;识别信用卡交易是否合法还是欺诈;电信客户流失分析;图片、音频、视频标签;蛋白质结构功能分类等。 (2)聚类,给对象归类使得同组对象尽可能相似,不同组对象尽可能不相似,无指导学习。把相关文档归并方便浏览;市场分割,细分为不同的客户群;获取价格波动相似的股票有助于决策;相关案件放在一起寻找嫌疑人的特征。(3)关联分析,给定一组记录,分析项目之间的依赖关系。购物分析,用于促销、货价管理存货管理;医疗信息发现与某种疾病与症状的关联以便通过症状诊断病症 (4)顾客分类,数据挖掘能够告诉我们什么样的顾客买什么产品(聚类或分类) 识别顾客需求,对不同的顾客识别最好的产品,使用预测发现什么因素影响新顾客。汽车保险检测假造事故骗取保险赔偿的人。检测电话欺骗,通话距离、通话时间,每天或每周通话次数 –数据挖掘方法过程是什么? 数据库-->数据清理-->数据仓库-->任务相关数据-->数据挖掘-->模式评估-->知识 具体在PPT上有一个流程图

书上的:数据清理(消除噪声、不一致数据)-->数据集成(多种数据源可以组合在一起)-->数据选择(从数据库中检索与分析任务相关的数据)-->数据变换(数据变换或统一成适合挖掘的形式,如通过汇总或聚集操作)-->数据挖掘(基本步骤,使用智能方法提取数据模式)-->模式评估(根据某种兴趣度度量,识别表示知识的真正有趣的模式)-->知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识) –数据挖掘与机器学习的区别与联系? 机器学习为数据挖掘提供理论方法:分类、聚类 所处理的数据在量上的差距:机器学习数据规模相对小;数据挖掘数据规模相对大 数据挖掘目标适中,自动化繁琐的挖掘工作,而非达到人的智能行为;辅助用户决策,而非代替用户决策 –数据挖掘与统计的区别与联系? 目标类似:统计也是希望从数据中发现令人感兴趣的信息 前提不同:统计学要求有数据分布模型的先验假设;数据挖掘没有上述要求 处理数据规模不同 相互促进:数据挖掘可以作为统计分析的初步分析阶段 统计理论方法和技术可以应用于数据挖掘 –数据挖掘与数据管理的区别与联系? 数据库:演绎推理(deductive) 先定义好模式,按照模式查询数据(SQL) 数据挖掘:归纳推理(inductive) 给定特定数据,归纳一般模式;数据挖掘是数据库功能的延伸

激光扫描共聚焦显微镜

激光扫描共聚焦显微镜 ZEISS 780操作规程 本设备属于精密设备,操作人员必须提前熟悉其适用范围、结构、性能及其具体操作方法,未经操作培训者不能进行上机操作。通过操作培训的人员必须严格按照仪器管理老师的培训要求及设备使用说明书指定的操作进行工作。 1.开机 提前进行镜检,确保样本无误;查看空调温度、抽湿机湿度和不间断电源工作情况。 1.1开三相稳压电源。注意:先开稳压电源后面的黑色扳手开关①,再按下稳压电源前面的绿色按钮②,如果出现报警声,请马上关闭稳压电源,并报告管理人员。 1.2两分钟以后依次打开电源控制板上的三个开关。先打开主开关MAIN SWITCH ③,再依次打开SYSTEMS/PC④和COMPONENTS⑤开关。注意:各个开关不要同时按下,开机时仪器会进行自检,每按下一个开关,请等待相应的部件自检完毕后再开下一个开关。 1.3打开电脑开关⑨,点击“LSM User”图标,进入桌面;当看到桌面右下角显示“注意安全”图标时,方可点击桌面中央的ZE N软件图标;然后点击“Start System”按钮开启软件。 注意:当桌面右下角始终不显示“注意安全”图标时,不可启动软件。这时把电脑主机左边那台仪器的盖子掀开,按一下“Reset”按钮,等待电脑桌面右下角出现“注意安全”图标。 1.4打开氩离子激光器(若不使用458nm或488nm或514nm激光线则不需要打开)。先打开氩离子激光器正面的开关ON⑥,再顺时针旋转钥匙⑦至“—”的方向,等待绿色指示灯亮起方可开启光路(大约5-10min)。 注意:Ar+激光器在启动后,需要1h左右的预热时间才能进入稳定状态。若闲置时间1h以上,可将激光器扳钮由“laser run”位置扳至“idle power”处⑧,保护激光器,延长使用寿命。

个人陈述--北大微电子

姓名: 报考专业最感兴趣 请用学习和研助完成,报考院系200的四年了动手路上,我着对一颗四年实的基础学会把BaO S 基于“的微波案,最200卡罗模拟模拟这我进行编程过程结果,答就在设计,题计并不到分析而同时进 起了独立 Jo 业: 微趣的研究方向用大约1500字研究计划、研将取消申请系研究生教务05年9月,中,我从课能力并实践我踏踏实实颗积极而向年来,我从础。课余时理论知识应Sm O T 固相烧结法介质陶瓷。终在很有限08年5月,拟”。我们用一过程。开了详细的进程中遇到的答辩获得了在进行离子题目要求设复杂,当从结果并对修进行两个课立研究和学北京oel 电子学与固体向:(1) U 字介绍你的学研究生毕业后请人复试资格务办公室。 ,我步入了课堂上、图书践了基本的实的走着每一向上的心对从课堂上、时间,我参加应用于实践TiO (BST)体法”,对原有在第一轮实 限的实验条6人组队圆满用C 语言描述开题之初,小进度规划和的种种问题了副系主任子注入模拟设计一有源从计算讨论修改原始设课题也促使学习的能力京大学20个 考生体电子学 LSI 新器件及学术背景、在后的就业目标格。此页请打华中科技大书馆获得了科研方法,一步,力求待生活,更图书馆、因加了不少科践。2007体系微波介有BST 体系实验失败后件下获得了满完成计算述离子注入小组对课题涉成员分工安。经过努力江建军教授课题的同时电流镜差分电路的各项设计以折衷电我合理对学。 009年招个 人 生编号: 及集成技术在报考专业曾标等。个人陈打印,可以使大学的大门了专业相关从社团活动求让自己在学更让我找到因特网上获得科研项目,从年9月,我介质陶瓷的改系进行掺杂,后,团队深入了性能优于算材料学课入无定形靶的涉及的理论安排,组织成力,我们最终授的充分肯时,我个人分放大器,满项参数、到编电路性能,学习进行统招收攻读硕人 陈 (2) 曾经作过的研陈述应由申请使用背面,务门,开始了我的基础知识动和社会实学习和生活了勇气,追得了专业理从中既锻炼我与3名同改性”这一,期望找到入分析了失预期的掺杂程设计,研的过程,描述论知识几乎没成员积极自终得到了模定。 完成了“模满足各项预编写电路网整个流程深筹安排。可硕士学位 述 ___ MEMS 微研究工作、以请人独立完成请于复试前我四年的大识,从科研项实践中学会活的点滴中成追逐梦想,理论知识,通炼了自己的动同学组成小组一课题展开了到合理的配方失败原因并及杂体系。 研究课题为述其数学模没有准备。作自学相关理模拟离子注入模拟CMOS 预设的性能指网表并进行深化了我对可以说这一切位研究生__ 微机械系统 及攻读研究生,如发现是(以邮戳为准学生活。在 项目的经历了待人接物成长,这让超越自我。通过努力打动手能力,组,对“添了研究。我方得到介电及时调整了“离子注入模型,并通过作为课题负论,并克服入的直观的S 集成电路指标。虽然HSPICE 模 对理论知识的切都使我逐生 生阶段的由他人协准)送交 在这难忘历中锻炼物。这一让我保持 打下了扎也开始添加剂对我们小组电性能优 了实验方入的蒙特过Matlab 负责人,服了建模的图形化路”课程然整个设模拟,再的理解; 逐步建立

激光扫描共聚焦显微镜及其应用讲解

激光扫描共聚焦显微镜及其应用 激光扫描共聚焦显微镜(Laserscanningconfocalmicroscope,LSCM)是近代最先进的细胞生物医学分析仪器之一。它是在荧光显微镜成像的基础上加装激光扫描装置,使用紫外光或可见光激光荧光探针,利用计算机进行图像处理,不仅可观察固定的细胞、组织切片,还可对活细胞的结构、分子、离子进行实时动态地观察和检测。目前,激光扫描共聚焦显微技术已用于细胞形态定位、立体结构重组、动态变化过程等研究,并提供定量荧光测定、定量图像 激光扫描共聚焦显微镜(Laser scanning confocal microscope, LSCM)是近代最先进的细胞生物医学分析仪器之一。它是在荧光显微镜成像的基础上加装激光扫描装置,使用紫外光或可见光激光荧光探针,利用计算机进行图像处理,不仅可观察固定的细胞、组织切片,还可对活细胞的结构、分子、离子进行实时动态地观察和检测。目前,激光扫描共聚焦显微技术已用于细胞形态定位、立体结构重组、动态变化过程等研究,并提供定量荧光测定、定量图像分析等实用研究手段,结合其他相关生物技术,在形态学、生理学、免疫学、遗传学等分子细胞生物学领域得到广泛应用。 激光共聚焦显微镜的原理 激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。 主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及图象输出设备(显示器、彩色打印机)等。 通过激光扫描共聚焦显微镜,可以对观察样品进行断层扫描和成像。因此,可以无损伤的观察和分析细胞的三维空间结构。同时,通过激光扫描共聚焦显微镜也是活细胞的动态观察、多重免疫荧光标记和离子荧光标记观察的有力工具。 主要功能 1、图像处理功能 2、细胞生物学功能应用范围:(1)定量荧光测定;(2)定量共焦图像分析;(3)光学切片及三维重组;(4)动态观察;(5)荧光漂白恢复研究;(6)质膜流动性研究;(7)蛋白质相互作用研究;(8)激光显微外科及“光陷阱”研究;(9)光活化技术研究。 (编辑:文静)

北大微电子

微电子学系本科生课程设置 Undergraduate Courses for Department of Microelectronics

清华大学微电子所研究生课程 一、简介 我所研究生一级学科名称为电子科学与技术,二级学科名称为微电子学与固体电子学。研究方向有以下四个方面:微/纳电子器件及微系统;系统的芯片集成;微/纳米工艺学;微/纳器件和系统的CAD方法。我所现有博士生导师13名;研究生课程共设置19门;目前在校学生数:博士生77人;硕士生:235人(包括工程硕士125人)。2005年度录取人数:博士生14人;硕士生102人。2005年度毕业人数:博士生8人;硕士生33人。 二、博士生导师情况介绍 姓名 职称 研究方向 李志坚 院士教授 半导体新器件、器件物理和器件模型、微电子机械系统 陈弘毅 教授 超大规模集成电路设计技术(多媒体数字信号处理、算法的VLSI实现和系统的芯片集成技术) 周润德 教授 超大规模集成电路设计技术(微处理器与嵌埋式系统设计,加密算法,低压,低功耗电路设计) 许 军 教授 SiGe/Si微波功率HBT器件与集成电路以及超高速应变

硅MOS器件 刘理天 教授 半导体新器件、器件物理和器件模型、微电子机械系统魏少军 教授 超大规模集成电路设计技术(多媒体数字信号处理、算法的VLSI实现和系统的芯片集成技术) 陈 炜 教授 纳米加工、纳米电子器件、超导量子器件和量子计算实现 孙义和 教授 超大规模集成电路设计技术(多媒体DSP技术、VLSI 测试方法和可测性设计、网络安全) 陈培毅 教授 半导体新器件、器件物理和器件模型、新型半导体材料余志平 教授 半导体器件和电路计算机模拟(包括亚100nm硅CMOS 器件模型;纳电子器件量子输运模型;基于版图和衬底耦合的RF(射频)电路分析,验证软件和电路单元自动生成。 王志华 教授 模拟与数模混合集成电路设计,生物与医疗微系统芯片设计,射频电子标签电路技术,集成电路设计方法学 任天令 教授 新型微电子器件、微电子机械系统 (MEMS)、新型半导体存储器、纳电子与自旋电子学 王 燕 教授 纳电子器件的量子输运模型,化合物半导体器件和电路计算机模拟 三、课程设置 本年度共开设研究生课程23门,新开课4门。具体情况介绍如下:? 课程编号: 71020013 课程名称:半导体器件物理进展 学分: 3 学分总学时: 48 学时开课学期:秋季 任课教师:许军 ? 课程编号: 71020023 课程名称:数字大规模集成电路 学分: 3 学分总学时: 48 学时开课学期:秋季 任课教师:周润德 ? 课程编号: 71020033 课程名称:模拟大规模集成电路 学分: 3 学分总学时: 48 学时开课学期:秋季 任课教师:李福乐王自强王志华 ? 课程编号: 71020053 课程名称:集成电路的计算机辅助设计 学分: 2 学分总学时: 32 学时开课学期:秋季

激光扫描共聚焦显微镜在生命科学中的应用

激光扫描共聚焦显微镜在生命科学中的应用 实验目的与要求 1. 掌握激光扫描共聚焦显微镜的成像基本原理及其在生命科学中的应用。 一、激光扫描共聚焦显微镜的成像基本原理 1.普通荧光显微镜的不足 使用荧光物质标记细胞中的特定成分或结构,不仅图像与对比度增强,而且由于许多荧光显微镜的光源使用短波长的紫外光,大大提高了分辩率(δ=0.61 λ/ NA )。但当所观察的荧光标本稍厚时,普通荧光显微镜不仅接收焦平面上的光量,而且来自焦平面上方或下方的散射荧光也被物镜接收,这些来自焦平面以外的荧光使观察到的图像反差和分辨率大大降低(即焦平面以外的荧光结构模糊、发虚,原因是大多数生物学标本是层次区别的重叠结构)。 Laser Scanning Confocal Microscope 2. 共聚焦扫描显微镜的成像原理 采用点光源照射标本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜收集,并沿原照射光路回送到由双向色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。两者的几何尺寸一致,约100-200nm;相对于焦平面上的光点,两者是共轭的,即光点通过一系列的透镜,最终可同时聚焦于照明针孔和探测针孔。这样,来自焦平面的光,可以会聚在探测孔范围之内,而来自焦平面上方或下方的散射光都被挡在探测孔之外而不能成像。以激光逐点扫描样品,探测针孔后的光电倍增管也逐点获得对应光点的共聚焦图像,转为数字信号传输至计算机,最终在屏幕上聚合成清晰的整个焦平面的共聚焦图像。 Confocal Principle

每一幅焦平面图像实际上是标本的光学横切面,这个光学横短面总是有一定厚度的,又称为光学薄片。由于焦点处的光强远大于非焦点处的光强,而且非焦平面光被针孔滤去,因此共聚焦系统的景深近似为零,沿Z轴方向的扫描可以实现光学断层扫描,形成待观察样品聚焦光斑处二维的光学切片。把X-Y平面(焦平面)扫描与Z轴(光轴)扫描相结合,通过累加连续层次的二维图像,经过专门的计算机软件处理,可以获得样品的三维图像。 LSCM的基本特点 观察方式:以荧光为主 光源:激光(紫外、可见光、近红外) 照明方式:点照明、逐点扫描 成像方式:共聚焦、逐点成像 输出:实时观测,数字化图像,可以进行图像处理和定量分析多重染色样品的观察 3. 共聚焦扫描显微镜在生命科学研究中的应用 细胞结构、蛋白质(如受体、抗原、抗体、酶、细胞 骨架蛋白等基因表达产物)、DNA、RNA等 细胞膜流动性(荧光光漂白恢复技术) 细胞内氧自由基活性 细胞内钙离子浓度变化 膜电位

北大微电子考研经验

北大微电子考研教训 考研已经过去好久了,一场没有硝烟的战争带给了我太多人惊喜和遗憾。而我就属于那遗憾中的一个吧。呵呵,不过还是感觉自己已经很幸运了。承蒙上天的眷顾,我还有上研的机会。研究生的事情敲定后一直忙于毕业设计,没有时间静下来好好把自己心里的话写下来。今天终于把毕业设计的事情基本搞定了,所以特意在宿舍熄灯以后,借着夜深人静好好做一个总结。希望今后准备考北大微电子专业的学们能从我这里吸取教训,少走弯路。虽然我没有成功的经验,但是,前车之鉴,后事之师。希望对大家有所帮助。 记得当初我是从3月份寒假开学就开始准备了,不过当初没有打算考北大微电子的。一直的愿望是考复旦微电子。同时,从很多师兄师姐那里了解到,考研很多人都是栽到了专业课上。并且复旦微电子的专业课尤其的多,不但要考数模电,还要考模集、数集和专用集成电路。虽然我的本科也是微电子专业,但是本科中学到的集成电路知识只有数字集成电路,并且还不是重点,老师都当做选修课来讲的。因为我们学校的微电子专业更偏向于MEMS,所以很多专业课都是与MEMS相关的,而不是集成电路设计。所以,在复旦专业课上花费了很多时间。到了报名的时候,我发现按照目前的状况最后是不可能复习完的,况且复旦微电子的竞争也是很大的。所以就开始寻找别的学校报考。 为了不使之前复习的专业课白费,我就只看那些专业课是数模电的学校。由于自己心太高,放弃了复旦之后又选择了北大。考虑到北大微电子每年招收的分数并不是很高,并且还可以选择数模电专业课考试,所以就选择了北大。报考北大微电子的同学应该都知道,北大的专业课都没有给出参考教材更没有什么大纲。我当时感觉把本科学的那些内容全看一遍,把重点再过一遍应该就不会有什么问题了,毕竟所有教材的内容都相差不了多少。所以我就继续沿袭以前的方法宽泛的复习专业课。把本科教学中的重点内容重点复习。例如,三极管的基本电路,还有多级放大电路的频响分析,功放,负反馈等很经典的考点重点。 就这样复习了2个月,到了11月底的时候感觉应该看看专业课真题了,就

德国Zeiss LSM710激光扫描共聚焦显微镜操作说明

德国Zeiss 激光扫描共聚焦显微镜 快速操作手册 制作制作::Zeiss 光学仪器光学仪器((上海上海))国际贸易有限公司 孙 凯 2009年6月

目录目录:: 系统组成及光路示意图 实物照片实物照片说明说明 2.1 开机顺序 2.2 软件的软件的快速快速快速使用使用使用说明说明 2.3 显微镜显微镜的的触摸屏控制 2.4 关机顺序

激光扫描共聚焦显微镜系统主要由激光扫描共聚焦显微镜系统主要由::电动荧光显微镜电动荧光显微镜、、扫描检测单元扫描检测单元、、激光器激光器、、电脑工作站及各相关附件组成电脑工作站及各相关附件组成。。 系统系统组成及光路组成及光路组成及光路示意图示意图示意图:: 电脑工作站 激光器 扫描检测单元 电动荧光显微镜

实物照片说明实物照片说明:: 电动荧光显微镜 扫描检测单元 CO 2培养系统控制器 激光器 电脑工作站

2.1 开机顺序 (1)打开稳压电源打开稳压电源((绿色按钮绿色按钮)) (2)主开关 [ MAIN SWITCH ]“ON ” 电脑系统 [ SYSTEMS/PC ]“ON ” 扫描硬件系统 [ COMPONENTS ]“ON ” (3)打开 [ 扫描载物台开关 ] 打开 [ 电动显微镜开关 ] 打开 [ 荧光灯开关 ] (注:具有荧光光强调节具有荧光光强调节旋钮旋钮旋钮)) (4)Ar 离子激光器 “ON ” 顺时针旋转钥匙 至 “—” 预热预热等待约等待约15分钟分钟,, 将激光器 [ 扳钮 ] 由“Standby “Laser run ”状态状态,,即可正常使用 (5)打开 [ 电脑开关 ],进入操作系统 注:键盘上也具有 [ ]

激光扫描共聚焦显微镜操作手册

激光扫描共聚焦显微镜(A1R-si) 操作指南

目录 第一章:Ti-E 显微镜操作2-7 显微镜光路调节和照明注意事项 6 Ti-E 物镜,DIC 插片,DIC 棱镜对照表7 第二章:共聚焦开关机8-10 第三章:共聚焦图像拍摄1-38 NIS-Elements C 软件开启和操作界面简介1-15 NIS-Elements C 的实时图像获得基本操作16-23 图像拍摄24-27 探测模式(标准探测器)设置28-38 第四章: 图像的保存和查看39-42 第五章:图像分析43-46 附件一、多维拍摄功能和操作方式介绍47-51 附件二:图像格式批量转换操作52-53

第一章Ti-E 显微镜操作指南 (一)认识显微镜各个部件 (1)滤光片:包括D---毛玻璃;NCB---色温(8)滤色块转盘(包括DIC 检偏器); 平衡片;ND---减光片;“G IF”---绿色滤(9)手动荧光光闸; 光片和用于PFS 的红外滤光片;(10)电动焦距调节旋钮;(2)视场光阑;(11)ND 减光片; (3)聚光器升降旋钮;(12)遥控器; (4)起偏器(DIC 用);(13)透射光电源; (5)聚光器对中旋钮;(14)汞灯荧光光源; (6)孔径光阑;(15)PFS 控制器 (7)聚光器模块(包括明视场,DIC);(16)HUB 控制器

遥控器示意图(根据具体配置有些图标可能不显示) 1)物镜切换按钮; 2)滤光块,DIC 检偏器切换按钮; 3)DIC 检偏器快速切换按钮; 4)光路端口切换按钮; 5)PFS 开关控制按钮; 6)聚光器转盘切换按钮; 7)透射光源控制按钮*。 *请注意:CNTL 按钮灯亮,则可以通过遥控器或电脑控制软件来调节透射光源强度,此时显微镜底座左侧光源开关和调节旋钮锁定;CNTL 功能关闭,可以通过显微镜底座开关和旋钮来控制透射光源。

北大考博辅导:北京大学软件与微电子学院考博难度解析及经验分享

北大考博辅导:北京大学软件与微电子学院考博难度解析及经验分享2019 年,软件与微电子学院招收博士研究生实行以考察综合素质能力为基础的“申请-考核制”方式选拔。申请人须按照我校博士生招生简章和我院的相关要求进行报名并提交申请材料。经我院招生工作小组对申请人的材料审核评估后确认是否给予考核资格,对符合条件者通过考核确定是否录取。 一、院系简介 北京大学软件与微电子学院按照北京大学建设世界一流大学的总体规划,按新模式建立、新机制运行的北京大学的新型学院,学院实行理事会领导下的院长负责制,探索多途径合作办学的管理体制与运行机制,与国内外企业合作,拉动社会资金投入,实行运作企业化、办学专业化和后勤社会化,实现培养高层次、实用型、复合交叉型、国际化人才的目标。北京大学软件与微电子学院秉承北京大学“民主科学、兼容并蓄”的传统,坚持北大“勤奋、严谨、求实、创新”的学风,以坚持创新创业、坚持面向需求、坚持质量第一为建院宗旨。 学院于2002年3月成立至今,已初步形成了一个学院(北京大学软件与微电子学院)、两个学科(软件工程学科、集成电路设计与工程学科)、四个基地(国家软件人才国际培训(北京)基地、国家集成电路人才培养基地、软件工程国家工程研究中心北京工程化基地、北大软件与微电子学院无锡产学研合作教育基地)的综合性软件与微电子人才培养实体。目前,学院以培养软件工程、集成电路工程、项目管理、电子与通信工程4个领域的工程硕士为主体。学院以脱产、在职的培养方式,发展至今,形成了每年可为国家培养1000名左右的工程硕士研究生的规模。 二、招生信息 北京大学软件与微电子学院博士招生专业有2个: 083500软件工程: 研究方向:01. 大数据机器学习;02. 智能计算与系统;03. 云计算技术;04. 网络空间安全;05. 大数据安全;06. 软件工程技术与环境;07. 软件理论与方法;08. 系统软件; 09. 软件知识工程 085271电子与信息: 研究方向:01 (非全日制)软件工程技术;02 (非全日制)软件服务工程;03 (非全日制)领域软件工程;04 (非全日制)大数据技术;05 (非全日制)软件与系统安全; 06 (非全日制)集成电路与集成系统;07 (非全日制)集成微纳系统技术;08 (非全

相关文档
最新文档