CuO_石墨烯的制备及光电催化性能研究

CuO_石墨烯的制备及光电催化性能研究
CuO_石墨烯的制备及光电催化性能研究

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽

环境与材料科学技术的前沿进展刘艳艳武汉理工大学资源与环境工程

环境与材料科学技术的前沿进展 刘艳艳武汉理工大学资源与环境工程学院 资源与环境已成为当今世界发展的主题。经济与资源、环境之间的和谐发展日益广泛受到关注。如何合理利用资源、保护环境,同时促进经济的增长,这对相应学科的科学与技术提出了高要求,也已成为全球化的重要议题。2015环境与材料科学技术学术研讨会在武汉理工大学资源与环境工程学院院长宋少先教授的主持下拉开帷幕。出席开幕式的人员包括圣路易斯波多西自治大学校长ManuelVilla、武汉理工大学副校长康灿华、圣路易斯波多西自治大学物理研究所所长JoséLuisArauzLara、武汉理工大学新材料研究所所长余家国教授等,还包括武汉理工大学资环学院、理学院、化生学院、材料复合新技术国家实验室等单位百余名师生参加。研讨会主题是“环境与材料科学技术”,会议旨在为中墨两国合作搭建潜在的平台,为环境、材料、能源等多方领域交流最新研究成果提供一个交流的机会。研讨会主题围绕环境、材料、能源、地理空间科学与技术等领域进行了交流,包括1场大会报告与4组分会场报告,双方与会代表共进行37场次报告,展示了双方各自最新研究成果,探讨了环境、材料与能源等领域的发展趋势,为日后合作发展提供了机会。本研讨会获得了中国教育部、武汉理工大学以及圣路易斯波多西自治大学的大力支持。武汉理工大学康灿华副校长在研讨会开幕式上发言,希望利用本次机会充分展示该校在环境与材料科学技术领域的研究成果和特色,推动该校在该领域学科建设的发展并提升国际影响。ManuelVilla校长介绍了圣路易斯波多西自治大学的学校历史、学科结构及对外合作项目,希望两校在科研合作与学生交流等方面开展深入合作,为双方优秀学者和学生搭建良好的学术交流平台。武汉理工大学余家国教授在大会报告中介绍了用于生产太阳能燃料的石墨烯光催化材料的研究进展与发展趋势。利用太阳能转化制备太阳能燃料目前被认为是解决未来全球能源与环境问题的主要策略之一。其中利用光催化水产氢和还原二氧化碳制甲烷已经成为利用太阳光制备太阳能燃料的重要且有前景的方法,可以实现清洁、经济以及再生等生产。通常基于TiO2光催化产氢强烈依赖于触媒类型与数量,这是因为仅有TiO2不具备很高的光催化性能,需要添加Pt作为触媒,这样才能增强TiO2的光催化产氢性能,然而Pt更是稀有且昂贵的材料。因此,便宜且来源丰富的材料便成了触媒的另外选择。比如基于石墨烯的纳米复合材料作为光催化剂具备增强光催化产氢和二氧化碳还原的能力,能将太阳能转化成化学能。余家国教授对在基于石墨烯的纳米复合材料在光催化产氢和二氧化碳还原方面的设计与制造研究成果进行了介绍与分享。 圣路易斯波多西自治大学的MagdalenoMedi-na-Noyola教授作了题为“StructuralRelaxiationandAgingofGlassesandPhysicalGels:aNon-equilibriumStatisticalThermodyn amicTheory的大会报告。有一项关于非均衡液体不可逆过程的非均衡统计热力学理论被用来表述淬火液体结构与动力学的非稳态演变,该理论提出一个方案:演变时间是一个基础的变量。该方案为类玻璃材料在高填充率下的老化行为以及低密度的类凝胶材料的形成过程,方案设计符合通用情况,也符合各系统下的分子内作用过程。比如硬体系和Lennard-Jones简单液体等具体模型体系都能很好地解释这个预计方案。其定性定量准确度可以通过对比模拟和实验结果进行评估。武汉理工大学资源与环境工程学院张一敏教授作了题为“VanadiumExtractionfromVanadium-bearingCarbonaceousShaleinChina”的大会报告。钒作为

石墨烯及石墨烯光催化复合材料简介

石墨烯及石墨烯光催化复合材料简介 1.1 前言 碳材料是地球上最普遍也是一类具有无限发展前景的材料,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构的富勒烯到二维结构的石墨烯,近几十年来,碳纳米材料一直备受关注。而三维网状结构的石墨烯自组装水凝胶的发现[1],不仅极大地充实了碳材料家族,为新材料和凝聚态领域提供了新的增长点,而且由于其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论上还是实验研究方面都已展现出了重大的科学意义和应用价值.从而为碳基材料的研究提供了新的目标和方向。 从石墨发现至今,关于石墨烯的研究已经铺满各种期刊杂志,此外,人们对石墨烯衍生物也进行了深入研究,如氧化石墨烯、石墨烯纳米带、石墨烷、磁性石墨烯衍生物等。其中对氧化石墨烯和石墨烯纳米带的研究更为深入。氧化石墨烯是单一的碳原子层,可以随时在横向尺寸上扩展到数十微米,因此,其结构跨越了一般化学和材料科学的典型尺度。氧化石墨烯可视为一种非传统型态的软性材料,具有聚合物、胶体、薄膜,以及两性分子的特性。由于它在水中具有优越的分散性,长久以来被视为亲水性物质,然而,相关实验结果显示,氧化石墨烯实际上具有两亲性,从石墨烯薄片边缘到中央呈现亲水至疏水的性质分布。因此,氧化石墨烯可如同界面活性剂一般存在界面,并降低界面间的能量。根据不同的碳取材来源和不同的结构,石墨烯纳米带有不同的特性,有些有金属的性质,有的具有半导体性能,从而也使得石墨烯纳米带成为未来半导体候选材料。此外,在挖掘石墨烯潜在的性能和应用方面,石墨烯的复合材料也受到了极大的关注,并且这类复合材料已在生物医学、能量储存、液晶器件、传感材料、电子器件、催化剂等领域显示出了优异的性能和潜在的应用。 总之,不断发现新的性质、衍生物、复合材料以及功能器件,极大地丰富了石墨烯的研究方向、开拓了人们的视野、拓展了石墨烯的应用领域,使得基于石墨烯的材料成为了一个充满魅力与无限可能的研究对象。

氧化石墨烯薄膜的光电化学性质

2011年第69卷化学学报V ol. 69, 2011第21期, 2539~2542 ACTA CHIMICA SINICA No. 21, 2539~2542 * E-mail: kzwang@https://www.360docs.net/doc/ff14944191.html, Received April 2, 2011; revised May 25, 2011; accepted June 3, 2011. 国家自然科学基金(Nos. 90922004, 20971016)、中央高校基本科研业务费专项资金、北京市大学生科学研究与创业行动计划和北京师范大学分析测试

2540化学学报V ol. 69, 2011 器有限责任公司); 冷场发射扫描电镜(S-4800 日立高新技术株式会社); FZ-A型辐照计(北京师范大学光电仪器厂); KQ-50B型超声波清洗器(昆山市超声仪器有限公司); 采用三电极系统, 覆盖有自组装膜的氧化铟-氧化硒(ITO)玻璃为工作电极, 铂片为对电极, 饱和甘汞电极为参比电极, 0.1 mol?L-1的Na2SO4溶液为支持电解质; 配有红外和紫外截止滤光片的500 W高压氙灯光源系统(北京畅拓科技有限公司). 试剂均为分析纯. 1.2 GO及其静电自组装薄膜的制备 在傅玲等[9]将Hummers法制备氧化石墨分为低温、中温、高温反应三个阶段的基础上, 延长中温反应时间至8 h; 充分超声剥离后, 通过脱脂棉抽滤和渗析的方法除去少量沉淀和杂质离子, 得到均一稳定的GO水溶胶, 放置7个月后无沉淀. GO的静电自组装薄膜的制备: 将按文献[10]报道的方法清洗和表面硅烷化的石英和ITO导电玻璃放入pH 3的HCl溶液中质子化处理, 使基片表面带有正电荷. 然后此基片浸入GO溶液中(1 mg?mL-1) 10 min, 取出并用去离子水清洗, 空气吹干. 1.3 光电化学性质 所有光电化学研究均以GO膜修饰的电极为工作电极, 其有效光照面积为0.28 cm2. 光电流的测量在电化学工作站上进行, 入射光的强度用辐照计测定. 不同波长的入射光是在氙灯光路上加具有所需带宽的滤光片得到. 2 结果与讨论 2.1 紫外-可见吸收光谱 图1为GO水溶液(a)和石英基片上单层薄膜(b)的紫外-可见光谱图的对比. GO在231 nm处有1个C—C键上的π-π*跃迁吸收峰, 在298 nm处有1个C=O键上的n-π* 跃迁肩峰[11], 这与在石英片上单层薄膜在30 nm 处的吸收峰吻合, 表明GO已成功组装到基片上. 处理后的基片浸泡在1 mg?mL-1 GO溶液, 利用紫外-可见光谱对浸泡时间进行了监测(图2). 结果表明: 当在GO水溶液的浸泡时间达10 min时, 吸光度基本达最大值. 2.2 冷场发射扫描电镜 我们制备的GO水溶液具有明显的丁达尔效应, 与文献[12]报道的结果吻合. GO水溶液在铝箔上流沿. 待液体干燥后, 剪取部分于样品台上经磁控溅射镀膜(喷金)处理后, 用冷场发射扫描电镜研究其形貌(图 3). 氧化石墨因超声剥离, 脱落成许多大小为几十纳米的片状GO. 这与氧化石墨烯是一种二维结构材料及其水溶液具有明显的丁达尔效应吻合 . 图1 (a) GO水溶液和(b)石英片上GO薄膜的紫外-可见光谱Figure 1 UV-Vis spectra of (a) GO aqueous solution and (b) GO film on quartz substrate 图2基片在230 nm处的吸光度随其在GO溶胶中浸泡不同时间的变化图 Figure 2Changes in absorbance at 230 nm of protonated quartz substrate at varied immersion time in GO aqueous solution 图3GO冷场发射扫描电镜图 Figure 3 Cold-field emission scanning electron microscope image of GO 2.3 GO修饰的ITO电极的光电响应 在0.1 mol?L-1的Na2SO4溶液中, 当用100 mW/cm2的白光照射GO膜修饰的ITO电极时, 所得光电流随偏

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯基光催化剂在能源转化方面的应用-

文章编号:1001-9731(2016)07-07034-04 石墨烯基光催化剂在能源转化方面的应用? 董倩,伍水生,马博凯,王亚明 (昆明理工大学化学工程学院,昆明650504) 摘要:石墨烯半导体复合纳米材料被视为一种最有潜力的光催化剂,由于其独特的物理化学性质在太阳能转化为化学能领域十分引人注目.石墨烯基光催化剂活性的增强机理包括光生电子-空穴对复合的减少,光吸收范围的扩大和光吸收强度的增强,表面活性位点的增加以及光催化剂化学稳定性的改善.综述石墨烯基光催化剂在能源转化如光催化分解水和CO2的光催化还原成碳氢化合物的应用并且简要分析了其活性增强的机理.关键词:石墨烯基纳米材料;光催化;光解水;能源转化 中图分类号: O611.4文献标识码:A DOI:10.3969/j.issn.1001-9731.2016.07.007 0 引言 石墨烯,由s p2杂化碳原子组成的单层二维纳米片,是一种零带隙半导体.自从2004年通过简单的机械剥离得到石墨烯之后[1],发现它具有优异的物理化学性质如高柔性结构[2],大表面积(2630m2/g)[3],高导电性和导热性(约5000W/(m K))[4].由于这些独特的特性,导致了研究者对石墨烯的关注,并进一步探讨它在材料科学领域的潜能.石墨烯以及它的衍生物的合成方法大致包括两类: to p-down 和 bottom-u p . to p-down 的外延生长方法一般包括化学气相沉积法[5-9]和有机合成法[10-12],它不仅能够制造大尺寸和高品质的石墨烯同时也可调整其形态与结构[13-15]. bottom-u p 生长的石墨烯包括机械剥离石墨[1]二石墨电化学膨胀[16]以及由石墨烯氧化物(GO)还原的石墨烯,虽然石墨烯来自还原氧化石墨烯不可避免地引入了含氧基团和缺陷,但这是具有大规模二低成本制备石墨烯的简单策略[17]. 利用石墨烯的导电性能好和高比表面积,将它与半导体复合构成新型复合光催化剂一方面可以提高光生电子迁移率使光生电子-空穴对易于分离,从而加速光催化反应.另一方面大比表面积的石墨烯有助于提高污染物分子在催化剂表面的吸附能力[18-20].这里,我们重点评述了最近有关石墨烯光催化剂在能源转化方面的的研究.首先介绍了石墨烯复合材料在能源转化方面如光催化分解水和光催化还原CO2的应用,然后简要说明了石墨烯复合材料光催化活性增强的基本原理.1石墨烯基光催化剂在能源转化方面的应用1.1光催化分解水 吸收太阳能来分解水是生产H2和O2最洁净的的方法之一,太阳能分解水制备H2对开发无碳燃料和可持续能源系统是一种有前途的解决方案.然而这种技术的实际应用受限于无法利用可见光,量子效率低,和/或催化剂的光降解[21].考虑到石墨烯良好的导电率和高比表面积,石墨烯作为有效的电子受体以提高光生电荷转移以及通过分离氢氧的析出位点来抑制逆向反应从而提高光催化产生H2活性(图1所示). 图1光解水在作为电子受体的石墨烯的不同位点选择性催化示意图 Fi g1Schematic illustration of selective catal y sis of water s p littin g at different sites on g ra p hene used as a conductin g su pp ort 溶胶-凝胶法合成的TiO2-5%(质量分数)g ra p hene 复合材料在紫外照射下H2的析出量(4.5μmol/h)比P25高出2倍,可能是引入石墨烯降低了光生电子-空穴对的复合[22-23].通过水热法制备的P25-RGO具有更好的性能(P25/RGO质量比=1/0.2,H2:74μmol/h),水热反应导致P25和石墨烯之间产生强相互作用,显示出比P25(H2:6.8μmol/h)更高的活性[24-25].理论计算揭示了锐钛矿型TiO2的{001}面为具有最高表面能反应面,催化结果显示紫外照射下石墨烯-暴露{001}面的改性TiO2纳米片(石墨烯含量 4307 02016年第7期(47)卷 ?基金项目:国家自然科学基金资助项目(21401088);云南省应用研究基础资助项目(KKSY201205025);昆明理工大学分析测试基金资助项目(20150357,20150320) 收到初稿日期:2015-05-26收到修改稿日期:2015-08-06通讯作者:伍水生,E-mail:wuss2005@126.com 作者简介:董倩(1990-),女,陕西宝鸡人,在读硕士,师承伍水生副教授,从事石墨烯纳米材料研究.

石墨烯在光电子器件中的应用

石墨烯在光电子器件中的应用 摘要:石墨烯是目前发现的唯一存在的二维自由态原子晶体,有着优异的机械性能、超高的热导率和载流子迁移率、超宽带的光学响应谱,以及极强的非线性光学特性。且因其卓越的光学与电学性能及其与硅基半导体工艺的兼容性,石墨烯受到了各领域学科的高度关注。本文重点综述了石墨烯在超快脉冲激光器、光调制器、光探测器、表面等离子体等光电子器件领域的应用研究进展,并对其未来发展趋势进行了进一步的分析。 关键字:石墨烯;光调制器;光探测器;超快脉冲激光器;表面等离子体; 1、前言 石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,具有独特的零带隙能带结构,是一种半金属薄膜材料。石墨烯不仅有特殊的二维平面结构,还有着优良的力学、热学、电学、光学性质。其机械强度很大,断裂强度比优质的钢材还要高,同时又具备良好的弹性、高效的导热性以及超强的导电性。石墨烯又是一种禁带宽度几乎为零的特殊材料,其电子迁移速率达到了1/300光速。由于石墨烯几乎是透明的,因此光的透过率可高97.7%。此外,石墨烯的加工制备可与现有的半导体CMOS(Complementary metal-oxide-semiconductor transistor)工艺兼容,器件的构筑、加工、集成简单易行,在新型光电器件的应用方面具有得天独厚的优势。 目前,人们已利用石墨烯开发出一系列新型光电器件,并显示出优异的性能和良好的应用前景。 2、石墨烯的基本性质 石墨烯具有独特的二维结构,并且能分解为零维富勒烯,也可以卷曲成一维碳纳米管,或堆积成为三维石墨。石墨烯力学性质高度稳定,碳原子连接比较柔韧,当施加外力时,碳原子面就会发生弯曲形变。 在理想的自由状态下,单层石墨烯并非完美的平面结构,表面不完全平整,在薄膜边缘处出现明显的波纹状褶皱,而在薄膜内部褶皱并不显,多层石墨烯边缘处的起伏幅度要比单层石墨烯稍小。这也说明了石墨烯在受到拉伸、弯曲等外力作用时仍能保持高效的力学稳定性。 在一定能量范围内,石墨烯中的电子能量与动量呈线性关系,所以电子可视为无质量的相对论粒子即狄拉克费米子。通过化学掺杂或电学调控的手段,可以有效地调节石墨烯的化学势,使得石墨烯的光学透过性由“介质态”向“金属态”转变。 石墨烯的功函数与铝的功函数相近,约为4.3eV,因此在有机光电器件中有望取代铝来做透明电极。近年来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米光电器件领域极有前景的材料。 3、基于石墨烯的光调制器 3.1 直波导结构石墨烯光调制器 光学调制是改变光的一个或多个特征参数,并通过外界各种能量形式实现编码光学信号的过程。对光学调制器件的评价有调制带宽、调制深度、插入损耗、比特能耗以及器件尺寸等性能指标。大多数情况下,光在

最新石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。

图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少

石墨烯光电探测器

石墨烯光电探测器 第一节纯石墨烯光电探测器 2.1.1 石墨烯光电探测的相关原理 有关石墨烯光电探测和光电子应用的关键原理已经被报道。这里包括光伏效应,光的热效应,热辐射效应,光选择效应和等离子体波辅助机制。 (a)(b) (c)(d) 图2.1 石墨烯光电探测原理(a)光伏效应;(b)光热电效应;(c)测辐射热效应;(d) 辅助的等离子体波机制(引自[27]) 光伏效应 光伏电流来源于由不同掺杂区域连接处内部电场或外置电场所产生的光生电子分离。石墨烯是半导体,自身会产生了大量的暗电流,不适于外置电路。内置区域可以用本身的化学掺杂,通过选通脉冲产生静电效应或者通过利用好在石墨烯和金属接触点的功函数差别来引入。石墨烯通道可为P型或N型。光电流的

方向仅依赖于电场,而非整体的掺杂程度。因而其可从p-n到n-p,或者从p-p+到p+-p之间转换信号。 光热电效应 辅助热载流子输运在石墨烯中扮演重要地位。由于这种强烈的电子-电子相互作用,光激电子对可以给载流子快速(~10-50fs)加热。因为光频声子能量(~200meV)在石墨烯中很大,辐射产生的热载流子可以保持在一个温度 上。最终热电子会与晶格之间得到平衡。 光生热电子通过光热电效应(即PTE或塞贝克效应)产生光电压=(-),其中(在V )是不同掺杂石墨烯区域的热电动力(温差电势率),是不同区域电子温度差。 辐射热效应 辐射热效应与由入射光子产热导致的输运电导率变化相关。一个辐射热计可以通过吸收入射辐射dP,并读出导致的温度变化量dT来测量电磁辐射的强度。辐射热计的关键常数有电阻=dT/dP,还有热容量,其决定了响应时间=[28]。石墨烯有很小的体积和很低的态密度,因而得到很低的和一个很高的响应度。这里不直接产生的光电流,而要求有外置的偏压,不需要引进p-n结。 由入射光引起的电导率变化可归于以下两种机制:⑴由于相关温度改变引起载流子迁移率的改变;⑵对电流有贡献的载流子数目的改变(如PV效应)。 光门效应 光门效应是基于GRM载流子浓度n引起的光诱导的改变,因而其电导率=。第一,电子-空穴对的生成发生在GRM 中,随后其中之一被复合(例如在陷阱电荷中或者附近纳米粒子的分子中)。第二,电子-空穴对生成发生在GRM附近的纳米粒子中,分子,或者陷阱电荷中。接着,一种载流子转移到GRM,同时其他的载流子待在微粒,分子或者陷阱中。 通过运用高迁移率的导体和长的响应时间,提高光电导的增益。同时,长的减慢了运行速度。因而这类探测器可以被用在低的暂时频带宽度上,例如视频图像电流。所以合适的评估不仅来自响应度,还有其噪声等效功率(NEP)和特殊的探测能力。 辅助的等离子体波机制 Dyakonov和Shur提出了一个光电探测的方案,即通过凭借场效应晶体管

石墨烯的制备及其在光催化材料中的应用

第3期2017年6月 矿产保护与利用 CONSERVATION AND UTILIZATION OF MINERAL RESOURCES №.3 Jun.2017 矿物材料 石墨烯的制备及其在光催化材料中的应用倡 李珍1,2,杨剑波1,2,刘学琴1,2,沈毅1,2,李云国3,张寄丹3 (1.纳米矿物材料及应用教育部工程研究中心,湖北武汉430074;2.中国地质大学材料与化学学院,湖北武汉430074;3.黑龙江省第六地质勘察院,黑龙江佳木斯154000) 摘 要:以黑龙江鸡西柳毛鳞片石墨为原料制备石墨烯,重点探讨了氧化剂配比、氧化时间对氧化石墨结构 的影响,表征了氧化石墨、氧化石墨烯与石墨烯的晶体结构与形貌特征。并将石墨烯与氧化锌纳米棒阵列 (RGO/ZNRs)复合,研究了石墨烯浓度对石墨烯/氧化锌纳米棒阵列复合材料光催化降解性能的影响,分析 了复合材料的光降解机制。结果表明:鸡西柳毛天然鳞片石墨成功制备成单层或少层还原氧化石墨烯片,厚 度为1.1~1.3nm。石墨烯的引入有效增强了RGO/ZNRs复合材料光催化降解性能。当石墨烯浓度为2 mg/mL时,RGO/ZNRs复合材料中石墨烯的含量达到最优值,光催化性能最佳。 关键词:石墨;石墨烯;RGO/ZNRs复合材料;光催化降解 中图分类号:TB383 文献标识码:B 文章编号:1001-0076(2017)03-0084-06 DOI:10.13779/j.cnki.issn1001-0076.2017.03.016 Preparation of Graphene and Its Application in Photocatalytic Materials LI Zhen1,2,YANG Jianbo1,2,LIU Xueqin1,2,SHEN Yi1,2,LI Yunguo3,ZHANG Jidan3(1.Engineering Research Center of Nano-geomaterials of Ministry of Educationm,Wuhan430074,Chi-na;2.Faculty of Materials Science and Chemistry,China University of Geosciences,Wuhan430074,Chi-na;3.The Six Institute of Geology Exploration of Heilongjiang Province,Jamusi154000,China)Abstract:GraphenehadbeenfabricatedusingHeilongjiangJixiLiumaoflakegraphiteasrawmate- rials.Theeffectsofoxidantratio,oxidationtimeoncrystalstructuresandmorphologyfeaturesof graphiteoxide,grapheneoxideandgraphenehadbeencharacterizedandanalyzed,respectively. TheeffectofKMnO4dosageonthequalityofgraphitewasdiscussedindetail.Thenwecombined ZnOnanorodarrays(RGO/ZNRs)withthegraphene,andtheeffectsofgrapheneconcentrationon thephotocatalyticdegradationpropertiesofRGO/ZNRshadbeenstudied.Additionally,thephoto- degradationmechanismofthecompositeshadbeeninvestigated.itturnsoutthatthefabricatedgra- pheneexhibitedoneorseverallayersforthelessthickness(1.1-1.3nm).TheRGO/ZNRsdis- playedanenhancedphotocatalyticdegradationpropertyduetotheintroducingofgraphene.Final- ly,whentheconcentrationofgrapheneis2mg/mL,thecompositesgaintheoptimalphotocatalytic performance. Key words:graphite;graphene;RGO/ZNRscomposite;photocatalyticdegradation 石墨在电气工业、化学工业、冶金铸造、核工业、航天工业等诸多领域中都有广泛的应用。随着石墨 倡收稿日期:2017-04-12 基金项目:黑龙江国土资源厅项目(201602) 作者简介:李珍(1963-),女,山西临汾人,博士,教授,主要从事矿物材料功能化研究。 万方数据

校团-皖西学院

皖西学院2016-2017学年度研究性学习项目 结项情况一览表 一等奖: wxxyx2016015 硫化镉量子点/氧化钛薄片复合材料的制备及性能研究材化学院:陈晓华赵鹏指导教师:傅绪成wxxyx2016022 大别山茶树中茶皂素提取率的探究 材化学院:罗词俊胡李劲草陈媛媛指导教师:李林刚wxxyx2016024 具有活性位点的配位聚合物的合成及其性能研究 材化学院:陈维新刘周敏汪正权赖富根指导教师:金俊成wxxyx2016032 羟基化聚苯乙烯微球制备及其应用研究 材化学院:王恒钦义鹏吴芳指导老师:谢成根wxxyx2016043 五自由度机械手及智能控制研究 电光学院:苏娜黄凯强刘晨指导教师:李泽彬wxxyx2016045 教学楼避灾及安全疏散的研究---以皖西学院为例 建工学院:程瑞许雪峰陈飞张秋瑞徐宏燕指导教师:涂劲松wxxyx2016078 霍山石斛HPLC指纹图谱研究 生工学院:张方方张陈王惊鸿曹志杨伏宇指导教师:陈乃东wxxyx2016079 霍山石斛血清指纹图谱分析研究 生工学院:王雪荣牛清杨晓龙廖维娟薛珂指导教师:陈乃东wxxyx2016085 组培霍山石斛、铁皮石斛激素残留检测方法的构建及其含量测定研究 生工学院:李卢凡邵丹丹王美玲王朋王岭指导教师:陈乃东wxxyx2016086 江浙辐射神经毒素制备电泳与抗血清的制备 生工学院:李月董韦指导教师:韦传宝wxxyx2016111 基于手机可控的智能厨房系统 电信学院:张乐李爽钟圣旭王淼徐启源指导教师:何富贵wxxyx2016148 “美食美客”APP 机车学院:蔡云庆何宇瑶刘香环韩月茹指导教师:刘建树wxxyx2016175 流水地貌演示模型的制作与地貌过程模拟 环旅学院:欧阳凌风张晓瑶种发利吴艳指导教师:张广胜wxxyx2016176 大别山北麓丹霞地貌洞穴景观的特征及其成因研究 环旅学院:孙鹏飞孙玥张艳楠张丽指导教师:张广胜二等奖:

与石墨烯相关的特征

1 拓扑绝缘体 自然界的材料根据其电学输运性质,可分为导体,半导体和绝缘体。一般的导体中存在着费米面(如图a所示),半导体和绝缘体的费米面存在于禁带之中(如图b所示)。拓扑绝缘体在边界上存在着受到拓扑保护的稳定的低维金属态,这些无能隙的边缘激发处在禁带之中,并且连接价带顶和导带底(如图c,d所示)。从这个意义上讲,拓扑绝缘体是介于普通绝缘体和低维金属之间的一种新物态。根据能带理论,费米能落在晶体材料的带隙中时,材料表现为绝缘体。拓扑绝缘体的材料的能带结构类似于一般绝缘体,存在全局的能隙。但不同于一般的绝缘体,当考虑存在边界的拓扑绝缘体时,将出现贯穿整个能隙的边界态,这些特殊的边界态和体系的拓扑性质(由体系的拓扑数决定)严格对应,因而只要不改变体系的拓扑性质,这些边界态就不会被破坏。 拓扑绝缘体的典型特征是体内元激发存在能隙,但边界上或表面具有受拓扑保护的无能隙边缘激发。拓扑绝缘体的内部的电子能带结构和一般绝缘体相似,它的费米能级位于导带和价带之间,而在其表面存在一些特殊量子态,这些量子态位于块体能带结构的带隙之中,从而允许导电。拓扑绝缘体表面或边界导电是有材料电子态的拓扑结构决定,与表面的具体结构无关。也正是因为其表面金属态的出现由拓扑结构对称性所决定,所以它的存在非常稳定,基本不会受到杂志与无序的影响。 从广义上讲,可分为两大类:一类是破坏时间反演的量子霍尔体系;另一类是最近发现的时间反演不变的拓扑绝缘体。 2半金属 semimetal halfmetal 半金属:介于金属和非金属之间的物质。从能带结构来看,金属中被电子填充的最高能带是半满的或部分填充的,电子能自由运动,有较高的电导率。绝缘体中被电子填充的最高能带是满带(又称价带),价带与导带之间的禁带宽度较大。

石墨烯的制备、表征及石墨烯氧化锌光催化剂的制备与性能研究

摘要 石墨烯的制备、表征及石墨烯/氧化锌光催化剂的制备与性能研究 石墨烯(Graphene,GR)自从2004年被发现以来,因其理想的二维晶体结构和独特的物理性能而成为研究的热点。目前,石墨烯的制备方法主要有:微机械剥离法、化学气相沉积法、外延生长法、氧化石墨烯(Graphene Oxide,GO)溶液还原法。与其它方法相比,氧化石墨烯溶液还原法具有高产量、低成本和可规模化制备等特点,有望成为规模化制备石墨烯的有效途径之一。然而在还原过程中常采用的还原剂肼和水合肼具有易爆炸性和强毒性,易对环境造成危害。因此,需要发现一种环境友好、温和且有效的方法来实现化学还原氧化石墨烯(Chemically Reduced Graphene Oxide,CRGO)的批量制备。 氧化锌(ZnO)因其无毒、成本低等优点被广泛应用于光催化的研究。氧化锌光催化剂光生电子-空穴对的快速复合是氧化锌光催化性能的主要限制因素之一,而石墨烯归因于其良好的电子传输性能和巨大的比表面积,使其成为氧化锌复合改性的理想材料。本论文的研究内容及结果如下: (1)通过简化的Hummers 法,改进的Hummers 法,加压氧化法三种不同方法制备出了氧化石墨烯。利用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM) 、透射电镜(TEM)、红外光谱(FT-IR)对其化学组成和形貌进行了表征和分析。结果表明改进的Hummers 方法制备出的氧化石墨烯的具有较高的氧化程度。 (2)在水溶液中,采用具有较强还原能力和环境友好的还原剂腐植酸钠(Sodium Humate, SH)将氧化石墨烯的含氧基团成功移除,制备出稳定均匀的化学还原氧化石墨烯悬浮溶液,碳氧原子比达到3.78。这种制备方法不仅避免了有毒有害的还原剂以及表面活性剂等的添加和使用,也为化学还原氧化石墨烯的批量制备提供了一种简单且环境友好的方法。 (3)通过水热制备出石墨烯/氮掺杂氧化锌复合光催化材料,最佳的制备条件是氮掺杂量为0.4 g,氧化石墨烯和氮掺杂氧化锌的质量比为5%,水热温度为120 °C。在此条件下制备出的石墨烯/氮掺杂氧化锌复合光催化材料经过90 min 的光催化反应,亚甲基蓝的降解效率能达到95%。

基于SnO2-石墨烯的光催化及应变传感多功能涂层

文章编号:1001-9731(2018)09-09015-05 基于SnO2/石墨烯的光催化及应变传感多功能涂层? 李家兴,张东 (同济大学材料科学与工程学院先进土木工程材料教育部重点实验室,上海201804) 摘要:利用喷涂法制备了兼具光催化性能和应变传感功能的SnO2/石墨烯复合涂层三实验研究了石墨烯含量对涂层应变敏感性及SnO2光催化性能的影响三石墨烯的引入能够有效地抑制SnO2的团聚现象继而提高SnO2/石墨烯复合涂层的光催化性能三此外,SnO2/石墨烯复合涂层对应变展现出了良好的敏感性三 关键词: SnO2;石墨烯;光催化;应变传感 中图分类号: TB383.2文献标识码:A DOI:10.3969/j.issn.1001-9731.2018.09.003 0 引言 当今社会,各类半导体光催化剂被广泛应用于各 个领域,并引起了人们的高度关注三其中,如何利用半 导体光催化剂对空气污染二水体污染等[1-3]热点问题提出有效的解决方案,已然成为各位研究人员所密切关 注的话题三SnO2半导体具有独特的电子结构,在外界紫外光的照射下,价带电子会吸收紫外光的能量进而 受到激发三当价带电子吸收到足够的能量,便会跃迁 至导带中形成光生电子三与此同时,在价带中会留下 相应的空穴三光生电子空穴对具有极强的氧化性,可 以把吸附在SnO2纳米颗粒表面的污染物进行光降解[4-7]三此外,当SnO2半导体纳米颗粒处于纳米尺度上时,才会显现出良好的光催化性[8-11]三然而在光催化过程中,SnO2半导体纳米颗粒的团聚以及电子空穴对的复合现象[12-13]会影响到SnO2半导体纳米颗粒的光催化性能三这两个难题大大限制了SnO2半导体纳米颗粒在光催化领域的应用;另一方面,石墨烯良好的电学性能可以有效地在光催化过程中对光生电子进行转移,防止电子空穴对的复合[14-16]三同时,石墨烯可以很好地支撑分散SnO2纳米颗粒,抑制团聚现象的出现三这两点都能有效改善SnO2的光催化性能三此外,在损伤检测二材料疲劳测试等领域,应变传感器应用广泛[17-19]三如何制备出高效的应变传感器,引起了人们的广泛关注[20-23]三由于石墨烯具有优异的力学和电学性能,利用石墨烯制备应变传感器具备着非常突出的机电性能[24-26]三基于上述理论,本文采用喷涂法制备了兼具光催化性能和应变传感性能的SnO2/石墨烯多功能涂层,研究了影响涂层光催化性能和应变传感性能的相关因素三1实验 1.1原材料 实验所用的材料主要包含纳米SnO2颗粒(平均尺寸为50~70nm),聚乙烯吡咯烷酮(PVP),来自阿拉丁试剂上海有限公司;石墨烯纳米片(GNP)C750,来自XG科学公司;甲基橙,水合肼(85%),天然鳞片石墨粉(200目),无水乙醇,来自国药集团化学试剂有限公司;不含增塑剂的改性丙烯酸酯乳液聚合物Ac-ronal?PX7026X a p,来自巴斯夫股份有限公司三1.2实验制备 实验采用喷涂法制备SnO2/石墨烯涂层,具体的实验过程如下:(1)在3个容量为1000mL的烧杯中分别加入1000mL的去离子水,然后称取1g SnO2纳米颗粒,2g石墨烯纳米片(GNP)以及2g氧化石墨烯(以天然鳞片石墨粉为原料,采用hummer法制备所得)并各自加到3个烧杯中,磁力搅拌均匀后再超声处理1h,得到浓度为1m g/mL的SnO2水溶液,2m g/mL 的石墨烯纳米片分散液和2m g/mL的氧化石墨烯分散液;(2)取6个100mL的烧杯,分别在6个烧杯中加入40mL的SnO2水溶液三依次量取1.1,2.2,3.5, 5,6.7和8.6mL的石墨烯纳米片分散液并分别加入6个装有SnO2水溶液的烧杯中,磁力搅拌均匀后再超声处理1h得到均匀分散的SnO2/GNP混合溶液三另取一个100mL的烧杯,只加入40mL的SnO2水溶液作为对照组三在7个烧杯上分别贴上标签,写上S-x%GNP(x代表石墨烯纳米片的质量分数,x=0, 5,10,15,20,25,30,x=0代表溶液中不含石墨烯纳米片);(3)再次取6个100mL的烧杯,分别在6个烧杯中加入40mL的SnO2水溶液三依次量取1.1,2.2, 3.5,5,6.7和8.6mL的氧化石墨烯分散液并分别加入6个装有SnO2水溶液的烧杯中,磁力搅拌均匀后再超 51090 李家兴等:基于SnO2/石墨烯的光催化及应变传感多功能涂层 ?基金项目:国家自然科学基金委员会与中国工程物理研究院联合基金资助项目(U1730117) 收到初稿日期:2018-03-23收到修改稿日期:2018-06-22通讯作者:张东,E-mail:zhan g dn g@ton gj https://www.360docs.net/doc/ff14944191.html, 作者简介:李家兴(1992-),男,重庆人,在读硕士,师承张东教授,从事石墨烯应用方面研究三 万方数据

石墨烯复合材料的应用研究进展_巩金瑞2017

石墨烯是由碳原子以sp2杂化连接的单原子层构成的二维蜂窝状材料,理论厚度仅为0.34nm,是目前发现的最薄的二维材料[1]。石墨烯具有很多优异的性能,例如:强度高达130GPa,是钢的100多倍[2];热导率为5000W·m-1·K-1,是金刚石的3倍[3];理论比表面积和透光率分别高达2600m2·g-1[4]和97.7%[5];室温下载流子迁移率为15000cm2·V-1·s-1,在特殊条件下甚至高达250000cm2·V-1·s-1[6]。石墨烯独特的结构和性能使其在诸多领域得到广泛应用,因此,自从2004年石墨烯被发现以来,便在世界范围内掀起了人们对它的研究热潮。 为了更好利用石墨烯上述优异的性能,进一步扩大石墨烯的应用范围,国内外许多科学工作者将石墨烯与其他材料复合,成功制备出不同功能的石墨烯复合材料,使其在能源、环境、医学、传感器等领域得到广泛的应用。鉴于此,本文主要介绍了近年来不同类型石墨烯复合材料在各个领域的应用现状。 1石墨烯/聚合物复合材料的应用 通常采用溶液混合、熔融混合、原位聚合和浇铸成型等方法将石墨烯与聚乙烯醇、聚丙烯、环氧树脂、聚苯乙烯、聚对苯二甲酸乙二醇酯等绝缘聚合物复合形成石墨烯/绝缘聚合物复合材料,也可与聚噻吩、聚吡咯、聚苯胺等典型的导电聚合物复合形成石墨烯/导电聚合物复合材料,使其在电容器、导热和生物应用等领域具有广阔的应用前景,这是石墨烯复合材料的一个重要研究领域。 1.1电容材料 刘建华等[7]采用化学接枝法原位合成了石墨烯/聚吡咯复合物,在该复合物中吡咯在石墨烯层片上均匀分布,石墨烯片层间的吡咯大量成链并与石墨烯层片相互连接,二者之间产生了紧密的化学键结合。结果表明,复合物的电导率为3.32S/cm,比电容可达到284F·g-1,比纯聚吡咯的比电容提高52%,具有优异的电容特性。Zhang[8]等利用原位聚合法成功制备出石墨烯/聚苯胺纳米纤维复合材料,将其作为超级电容器的电极材料时,具有很高的电导率和比容量(当电流密度为0.1A·g-1时,电容高达480F·g-1),且 石墨烯复合材料的应用研究进展 巩金瑞1,2,詹肇麟1,虞锦洪2,沈典宇1 (1.昆明理工大学材料科学与工程学院,云南昆明650093,2.中国科学院宁波工业技术研究院,浙江宁波315201) 摘要:石墨烯具有独特的二维结构和性能,使其在能源、传感器、环境和生物等领域具有广泛的应用。为了进一步扩大石墨烯的应用范围,常将其与高分子聚合物、无机纳米粒子、碳纳米管和某些金属块体材料复合。最后,指出了石墨烯复合材料的研究方向。 关键词:石墨烯;复合材料;应用 DOI:10.14158/https://www.360docs.net/doc/ff14944191.html,ki.1001-3814.2017.06.009 中图分类号:TB33文献标识码:A文章编号:1001-3814(2017)06-0031-05 Research Progress of Application of Graphene Composite GONG Jinrui1,2,ZHANZhaolin1,YU Jinhong2,SHEN Dianyu1 (1.Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming650093,China; 2.Ningbo Institute of Industrial Technology,Chinese Academy of Sciences,Ningbo315201,China) Abstract:Due to unique two-dimensional structure and performance,graphene has wide applications in energy,sensors, environment and biology and other fields.In order to furtherly expand the application of graphene,graphene was compounded with high-molecular polymer,inorganic nanoparticles,carbon nanotubes and some block gold materials.At last,the research direction of the graphere composite was pointed out. Key words:graphene;composite;application 收稿日期:2016-03-04 基金项目:国家自然科学基金资助项目(51573201) 作者简介:巩金瑞(1988-),女,甘肃天水人,硕士; E-mail:gongjinrui@https://www.360docs.net/doc/ff14944191.html, 通讯作者:詹肇麟(1964-),男,教授,E-mail:zl_zhan@https://www.360docs.net/doc/ff14944191.html,

相关文档
最新文档