变压器高低压熔丝选择表

变压器高低压熔丝选择表
变压器高低压熔丝选择表

变压器高低压熔丝选择

公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

变压器高、低压熔丝的选择

小型变压器通常在高压侧采用高压熔断器,在低压侧采用低压熔断器保护。根据运行经验、高、低压熔断器可按以下原则选择;

(1)容量在100KVA以下的配电变压器,其高压侧熔丝按2~3倍额定电流选择;容量在100KVA以上的配电变压器,其高压侧熔丝按1.5~2倍额定电流选择。考虑到熔丝的机械强度,一般高压熔丝不小于10A。

(2)对于分支线上或重合保险的熔丝选择,要保证各熔丝相互之间的选择性。两级保护之间,熔丝的额定电流最少应相差一级。

装在变压器高压侧的熔断器,应与供电线路的继电保护装置相互配合。熔丝的熔断时间应小于电源侧的继电保护的动作时间。

(3)变压器低压侧熔丝可按变压器的额定电流或过负荷能力来选择,一般按过负荷20%选择。

(4)高、低压熔丝选择,应保证低压侧短路时,低压侧熔丝先熔断,高压侧熔丝不应熔断。

配电变压器高、低压侧熔丝选择,见表3—31供参考

表3—31 变压器高、低压熔丝选择表

用跌落式熔断器作配电变压器保护时的选配

用跌落式熔断器作配电变压器保护时的选配 https://www.360docs.net/doc/ff17684324.html, 期刊门户-中国期刊网 2008-12-17来源:《中小企业管理与科技》供稿文/青裕新 [导读]我公司10kv配电变压器高压侧广泛采用跌落式熔断器,实践证明这是一种较经济、简便、有效的方法。跌落式熔断器能在变压器内部故障时断开电源,又便于投.切变压器的正常操作。而且价格便宜,结构简单,安装简便,可以兼作隔离开关和过载,短路保护之用,因其有一个明显的断开点,具备了隔离开关的功能,给检修段线路和设备创造了一个安全作业环境,增加了检修人员的安全感。但是,如果选用不当,很可能会出现故障时无法断开电源的或正常运行时误断开变压器的情况,因此对跌落式熔断器的选用必须予以重视。 我公司10kv配电变压器高压侧广泛采用跌落式熔断器,实践证明这是一种较经济、简便、有效的方法。跌落式熔断器能在变压器内部故障时断开电源,又便于投.切变压器的正常操作。而且价格便宜,结构简单,安装简便,可以兼作隔离开关和过载,短路保护之用,因其有一个明显的断开点,具备了隔离开关的功能,给检修段线路和设备创造了一个安全作业环境,增加了检修人员的安全感。但是,如果选用不当,很可能会出现故障时无法断开电源的或正常运行时误断开变压器的情况,因此对跌落式熔断器的选用必须予以重视。 1 跌落式熔断器的工作原理 跌落式熔断器由瓷绝缘子.接触导电系统和熔管三部分组成。正常工作时,熔丝使熔管上的活动节锁紧,熔管在上触头的压力下处于合闸状态。故障时,熔丝熔断,在熔管内产生电弧,熔管内衬的消弧管在电弧的作用下分解出大量的气体,在电流过零时产生强烈的去游离作用而熄灭电弧.由于熔丝熔断,因而活动关节释放使熔管下垂,在上.下触头的弹力和熔管自重的作用下迅速跌落,形成明显的断开间隙。 2 跌落式熔断器的选用 首先,安装地点的短路容量应在跌落式熔断器额定断流容量范围内.若越超上限,则可能因电流过大,产气过多而使熔管爆炸;若低于下限,则有可能因电流过小,产气量不足而无法熄灭电弧,因此,在选择跌落式熔断器的额定容量时,即要考虑其上限开断电流与安装地点的最大短路电流相匹配,还要重视其下限开断容量与安装地点的最小短路电流的关系。考虑到跌落式高压熔断器作为配电变压器内部故障的,保护范围从低压熔断器变压器侧到高压熔断器变压器侧,而且又作为低压熔断器的后备保护,应以低压出口两相短路作为短路电流最小值来选择其下限开断容量。在选用熔断器时,要注意到它的额定断开容量上限值和下限值,不是额定断开容量越大越好。 3 跌落式熔断器的安装 3.1 安装时应将熔体拉紧(使熔体大约受到2 4.5N左右的拉力),否则容易引起触头发热。 3.2 熔断器安装在横担(构架)上应牢固可靠,不能有任何的晃动或摇晃现象。 3.3 熔管应有向下25°±2°的倾角,以利熔体熔断时熔管能依靠自身重量迅速跌落。

配电变压器的选用

配电变压器的选用 目前,在国内建设的配电系统中,为了保障整体电力管网的安全运行,一般会根据技术标准与设计要求在配电工程中选择和安装相适应的变压器,起到继电保护的作用。变压器是配电系统的基础设备之一,具有变阻抗、变压、变流等多方面的作用。在配电系统中,根据变压器的容量和重要程度设置性能良好、可靠的继电保护装置,对保障整体及局部配电系统的安全、稳定运行都具有深远的意义。 1、配电工程中变压器的选择 1.1 变压器型号的选择在配电工程的建设过程中,变压器型号的选择对于T程的质量和稳定性具有重要的影响。变压器的型号选择要综合分析配电线路负荷的类型、大小、分布情况等因素,并且结合配电线路建设的具体要求。在国内传统的配电工程建设中,变压器的型号选择普遍缺少对于配电线路运行中各类数据的科学分析和计算,导致配电线路中不稳定因素及能源浪费的现象客观存在。随着现代电力技术的不断发展以及各类新型变压器的研发与应用,对于变压器型号的选择更要坚持科学、合理、实用的原则,并且根据配电线路的供电

范围,最终确定变压器的容量。在我国城乡配电工程建设中,变压器容量的选择一般是根据实际负荷及5~l0年电力发展计划来选定。 1.2 变压器台区位置的选择配电工程中变压器台区位置的选择是否合理关系到电压的输送质量、线路的运行状态等问题。在变压器台区位置的选择中应坚持综合考虑、从实际出发的基本原则,并且保证尽量降低线损和工程投资。在城乡配电工程的建设中,变压器台区位置的选择具有一定的差异性。城市配电工程中,变压器的台区位置应满足线路末端电压降不大于4%,市区不超过250m,繁华地区不宜超过150。农村配电工程中,变压器的台区位置则要依据“小容量、密布点、短半径”的原则,合理选择配电变压器的位置。 2、配电工程中变压器安装的要点分析 2.1 变压器的整体定位和安装电力T程技术人员要经过精密的测量和定位后才能确定变压器的安装位置。配电丁程中变压器的体积、重量一般都比较大,需要运用大型的起吊装置才能将其搬运到变压器室内。当变压器就位后,安装技术人员应根据安装罔纸对其距墙尺寸和方位进行反复测量,距门距离应控制在800~l 000mm,横向距墙距离应控制在700~800 IHYI。在变压器台架的安装过程中,两杆的间距要严格控制在2~2.5 ri11 。变压器的腰栏要采用4~6 ITlm 的铁丝进行定,腰栏与带电部分的距离应在0.2lq’l以上。

配电变压器保护配置设计

配电变压器保护配置设计 摘要:文章简要说明配电变压器各种保护配置类型,通过分析比较,提出加强配电变压器保护优化配置,合理选择保护方案,可以提高配电变压器保护动作可靠性。 关键词:配电变压器;熔断器;负荷开关;断路器 中图分类号:tm41文献标识码:a 文章编号:1009-0118(2012)09-0278-01 变压器是配电网的主要设备,应用面广量大,其安全运行直接影响整个系统的可靠性。目前,配电变压器保护配置方面还存在许多问题,其中配电变压器与保护不匹配或存在动作死区,造成越级跳闸、拒动导致的事故相当多,因此,加强配电变压器保护优化配置,合理选择保护方案,可以提高配电变压器保护动作可靠性,有效防止主线路出口断路器保护误动。 一、配电变压器采用熔断器作为保护 熔断器是配电变压器最常见的一种短路故障保护设备,它具有经济、操作方便、适应性强等特点,被广泛应用于配电变压器一次侧作为保护和进行变压器投切操作用。所以一般配电变压器容量在400kva以下时,采用熔断器保护,高压侧使用跌落式熔断器作为短路保护,低压侧使用熔断器作为过负荷保护。 使用跌落式熔断器确定容量时,既要考虑上限开断容量与安装地点的最大短路电流相匹配,又要考虑下限开断容量与安装地点的最

小短路电流的容量关系。目前,户外跌落式熔断器分为50a、100a、200a三种型号,200a跌落式熔断器的开断容量上限是200mva,下限是20mva,其选择是按照额定电压和额定电流两项参数进行,也就是熔断器的额定电压必须与被保护配电变压器额定电压相匹配,熔断器的额定电流应大于或等于熔体的额定电流,可选为额定负荷电流的1.5-2倍,此外,应按被保护系统三相短路容量,对所选定的熔断器进行效验,保证被保护设备三相短路容量小于熔断器额定开断容量上限,但必须大于额定开断容量的下限。笔者曾经参与过事故调查,发现部分配电变压器所配置熔断器的额定开断容量(一般指上限)过大,或者在线路末段t接的配电变压器,选定熔断器造未经过短路容量效验,造成被保护变压器三相短路熔断器熔断时难以灭弧,最终引起容管烧毁、爆炸,导致主线路跳闸事故。 二、配电变压器采用负荷开关加熔断器组合电器作为保护 负荷开关加熔断器组合电器可以开断至31.5ka的短路电流,其基本特征是依赖熔断器熔断触发撞针动作于负荷开关。配电变压器短路有单相、两相、三相短路,无论哪种故障,任意一相熔断后,撞针触发负荷开关的脱扣器,负荷开关三相联动,及时隔离故障点,防止缺相运行,顺序是先熔断熔丝,后断负荷开关。采用负荷开关加熔断器组合电器作为配电变压器保护,经济实用,既可以开断负荷电流,实现安全操作需要,还可以在10ms内开断短路电流,切除故障并限制短路电流,能够有效保护配电变压器短路故障。

变压器低压侧出线电缆热稳定校验

变压器低压侧出线电缆热稳定校验 设计人员常对变压器高压侧电缆作短路热稳定校验。但低压侧电缆的短路热稳定校验往往容易被忽略,尤其是配至消防控制中心和弱电机房等处的出线回路,由于负荷容量不大、所选电缆截面较小,有时并不满足规范对电缆热稳定的要求。 1 电缆热稳定校验的重要性 根据GB 50054—2011《低压配电设计规范》第3.2.14条、第6.2.3条和GB 50217 2007《电力工程电缆设计规范》第3.7.7条的规定,电缆应能承受预期的故障电流或短路电流和短路保护的动作时间,对于非熔断器保护回路,应该校验电缆的相导体和保护导体的最小截面。 如果电缆不满足热稳定校验的要求.则在短路时电缆的绝缘层可能被破坏.同时可能影响到近旁的电缆和电气装置,甚至引发电气火灾。电缆的热稳定校验是设计过程中的重要环节。 2 变压器低压侧出线电缆的热稳定校验要求 根据GB 50054—2011第3.2.14条、第6.2.3条的规定,绝缘导体的热稳定,应按其截面积校验,且应符合下列规定: 当短路持续时间小于等于5 S(但不小于0.1 S)时,绝缘导体的截面积应符合下式: ------------- 短路持续时间小于0.1 s时,校验绝缘导体截面积应计入短路电流非周期分量的影响;大于5 S时.校验绝缘导体截面积应计入散热的影响。由上式可得:----------- 3 民用建筑中典型案例校验 3.1 短路参数计算 假设变压器高压侧的短路容量为S=300 MVA,则l 000 kVA变压器的低压出 I=1处(U n =0.38 kV,u k %=6)的短路电流计算如下: 取基准容量:S j =100 MVA,基准电压:U j = 1.05 U n =0.4 kV,基准电流: ----------- 电力系统的阻抗: ------ 变压器的阻抗: -------- 变压器低压出口处的短路阻抗: --------- 变压器低压出口处的短路电流: -------- 假设这个短路点远离发电厂,短路电路的总电阻较小,总电抗较大(R Σ≤XΣ/3)时,t一0.05 s。取短路电流峰值系数K P =1.8,矩路全电流最大有效值, I P =1.51 I K =1.51×22.8=34.4 kA 。 3.2 保护电器自动切断电流的动作时间 a.低压出线开关的主保护分闸时间(即低压馈线屏出线开关的脱扣时间) 可查样本获得。如出线开关的长延时整定电流值为40 A,由上面的数据可知,短路电流I K =22.8 kA,是长延时整定电流的570倍。一般带热磁脱扣器的断路器,

10kV配电变压器保护配置方式的合理选择.doc

10 kV配电变压器保护配置方式的合理选择 - 摘要:10 kV配电变压器的保护配置主要有断路器、负荷开关或负荷开关加熔断器等。负荷开关投资省,但不能开断短路电流,很少采用;断路器技术性能好,但设备投资较高,使用复杂,广泛应用不现实;负荷开关加熔断器组合的保护配置方式,既可避免采用操作复杂、价格昂贵的断路器,弥补负荷开关不能开断短路电流的缺点,又可满足实际运行的需要,该配置可作为配电变压器的保护方式,值得大力推广,为此,对10 kV环网供电单元和终端用户10 kV配电变压器采用断路器、负荷开关加熔断器组合的保护配置方式进行技术-经济比较,供配电网的设计和运行管理部门参考。 关键词:10 kV配电变压器;断路器;负荷开关;熔断器;保护配置 无论是在环网供电单元、箱式变电站或是终端用户的高压室结线方式中, 如配电变压器发生短路故障时,保护配置能快速可靠地切除故障,对保护10 kV高压开关设备和变压器都非常重要。保护方式的配置一般有两种:一种利用断路器;另一种则利用负荷开关加高遮断容量的后备式限流熔断器组合。这两种配置方式在技术和经济上各有优缺点,以下对这两种方式进行综合比

较分析。 1环网供电单元接线形式 1.1环网供电单元的组成 环缆馈线与变压器馈线间隔均采用负荷开关, 通常为具有接通、隔断和接地功能的三工位负荷开关。变压器馈线间隔还增加高遮断容量后备式限流熔断器来提供保护。实际运行证明,这是一种简单、可靠而又经济的配电方式。 1.3环网供电单元保护配置的特点 负荷开关用于分合额定负荷电流, 具有结构简单、价格便宜等特点, 但不能开断短路电流,高遮断容量后备式限流熔断器为保护元件, 可开断短路电流,如将两者有机地结合起来,可满足配电系统各种正常和故障运行方式下操作保护的要求。断路器参数的确定和结构的设计制造均严格按标准要求进行,兼具操作和保护两种功能,所以其结构复杂,造价昂贵,大量使用不现实。环网柜中大量使用负荷开关加高遮断容量后备式熔断器组合装置,把对电器不尽相同的操作与保护功能分别由两种简单、便宜的元件来实现,即用负荷开关来完成大量发生的负荷合分操作,而采用高遮断容量后备式限流熔断器对极少发生短路的设备起保护作用,很好地解决问题,既可避免使用操作复杂、价格昂贵

10KV变压器高低压侧电流计算

10KV变压器高低压侧电流计算 三相变压器额定电流的计算公式为: Ⅰ=变压器额定容量÷(1.732 ×变压器额定电压) 1、快速估算法 变压器容量/100,取整数倍,然后*5.5=高压侧电流值,如果要是*144,就是低压侧电流值! 比如说1000KVA的变压器/100取整数倍后是10,那么高压侧电流就是10*5.5=55A,低压侧电流就是10*144=1440A 2、线性系数法 记住一个常用容量的变压器高低压侧电流值,其它容量的可以进行线性推导 比如说1000KVA的变压器,高压侧电流计算值是57.73,低压侧电流计算值是1443.42,那么记住这个数值,其它容量的可以以此推导,比如说1600KVA的变压器,高压侧电流就是1600/1000*57.73=92.368A,低压侧电流就是1600/1000*1443.42=2309.472A 3、粗略估算法 高压侧电流=变压器容量/20,低压侧电流=变压器容量*2 比如说1000KVA的变压器,高压侧电流=1000/20=50A,低压侧电

流 =1000*2=2000A,这种方法过于粗糙,一般都是设计院用来开关元型选型、电缆选型和校验的时候常用的方法 4、公式计算法 I=S/1.732/U I--电流,单位A S--变压器容量,单位kVA U--电压,单位kV 5、最大电流计算 需要考虑过载系数、过载时限、变压器寿命、电动机起动系数、涌流、高频负荷如电机的高频谐波等综合因素了,这样计算就非常麻烦了。 只说一个简单的,在过载的情况下,油变的过载系数是1.2,干式的过载系数是1.5,也就是通过上述方法计算出变压器的额定电流值之后,再乘以过载系数,从而得到最大电流值,用以高低压侧开关的整定和变压器后备限流熔断器数值的设计和整定! 值得注意一点:10 KV 变压器的输出电压为 400 V ,不是 380 V ,这是变压器的标准设计

10kV配电变压器保护配置方式的合理选择 金强德

10kV配电变压器保护配置方式的合理选择金强德 发表时间:2018-11-11T12:40:55.827Z 来源:《电力设备》2018年第17期作者:金强德 [导读] 摘要:当前在电网建设中常见的几种保护装置包括断路器、负荷开关以及负荷开关、熔断器的组合系统。 (新疆新特顺电力设备有限责任公司新疆乌鲁木齐 830063) 摘要:当前在电网建设中常见的几种保护装置包括断路器、负荷开关以及负荷开关、熔断器的组合系统。这几类保护装置均存在使用上的优缺点,为了优化当前输电网络建设,使得技术人员更为合理的选择保护装置,对常见的几种保护装置进行了介绍和对比。 关键词:10kV配电变压器;保护配置方式;对比 选择无论是在环网供电单元、箱式变电站或是终端用户的高压室结线方式中,如配电变压器发生短路故障时,保护配置能快速可靠地切除故障,对保护10kV高压开关设备和变压器都非常重要。保护方式的配置一般有两种:一种利用断路器;另一种则利用负荷开关加高遮断容量的后备式限流熔断器组合。这两种配置方式在技术和经济上各有优缺点,以下对这两种方式进行综合比较分析。 1环网供电单元接线形式 在当前的输电网络建设之中,负荷开关与熔断器组合构成的变压器保护配置装置是使用较多的一种保护与装置,其使用具备如下几方面的优势:第一,这一保护装置在使用中避免了断路器的使用,由于环网配电网络的特殊设置,其在结构中含有首端断路器,会对网络在运行过程中的过电流进行保护。假如使用额外的断路器就会导致网络之中两个断路器工作混乱,降低运行的安全性。 第二,在负荷开关与熔断器组合式保护装置之中一般会使用性能较高的开合空载变压器,当前的环网供电网络在运行中会受到多种因素的影响,配电变压器对其会造成较大的负荷,因此,在实际保护装置的使用过程中,设备中应当使用合适的开合空载变压器,避免电压的瞬时升高影响输电网络的正常工作。 第三,组合式的电路保护设备可以提升配电变压器的运行安全性,在当前在输电网络中使用较多的油浸式变压器的保护系统设置的过程中,组合式保护装置可以起到更好的保护效果,断路器在出现一些异常情况时无法起到中断故障线路的作用。第四,负荷开关和高遮容量的熔断器组合形成的保护装置可以对输电网络中的多种元件比如变压器、电缆以及电流互感器等多种设备起到高质量的保护作用,熔断器的感应较为灵敏,可以在出现故障电流时及时进行中断,避免了断路器建设中造成的成本增加问题,提升了电力供应系统的安全性。 2终端用户高压室接线形式 标准GB14285-1993《继电保护和安全自动装置技术规程》规定,选择配电变压器的保护开关设备时,当容量等于或大于800kVA,应选用带继电保护装置的断路器。对于这个规定,可以理解为基于以下两方面的需要:a.配电变压器容量达到800kVA及以上时,过去多数使用油浸变压器,并配备有瓦斯继电器,使用断路器可与瓦斯继电器相配合,从而对变压器进行有效地保护。b.对于装置容量大于800kVA的用户,因种种原因引起单相接地故障导致零序保护动作,从而使断路器跳闸,分隔故障,不至于引起主变电站的馈线断路器动作,影响其他用户的正常供电。此外,标准还明确规定,即使单台变压器未达到此容量,但如果用户的配电变压器的总容量达到800kVA时,亦要符合此要求。目前,多数用户的高压配电室的接线方案采用装设负荷开关加高遮断容量后备式熔断器的组合,不是常用的开关柜而是环网负荷开关柜,其造价较低,体积较小,运行更加可靠,能够有效节省配电投资。 3环网供电元单元接线形式 3.1环网供电单的组成环网 供电单元(RMU)由间隔组成,一般至少有3个间隔,包括2个环缆进出间隔和1个变压器回路间隔。 3.2环网供电单元保护方式的配置 环缆馈线与变压器馈线间隔均采用负荷开关,通常为具有接通、隔断和接地功能的三工位负荷开关。变压器馈线间隔还增加高遮断容量后备式限流熔断器来提供保护。实际运行证明,这是一种简单、可靠而又经济的配电方式。 3.3环网供电单元保护配置的特点 负荷开关用于分合额定负荷电流,具有结构简单、价格便宜等特点,但不能开断短路电流,高遮断容量后备式限流熔断器为保护元件,可开断短路电流,如将两者有机地结合起来,可满足配电系统各种正常和故障运行方式下操作保护的要求。断路器参数的确定和结构的设计制造均严格按标准要求进行,兼具操作和保护两种功能,所以其结构复杂,造价昂贵,大量使用不现实。环网柜中大量使用负荷开关加高遮断容量后备式熔断器组合装置,把对电器不尽相同的操作与保护功能分别由两种简单、便宜的元件来实现,即用负荷开关来完成大量发生的负荷合分操作,而采用高遮断容量后备式限流熔断器对极少发生短路的设备起保护作用,很好地解决问题,既可避免使用操作复杂、价格昂贵的断路器,又可满足实际运行的需要。10kV配电变压器保护配置方式的合理选择a.断路器具备所有保护功能与操作功能,但价格昂贵;b.负荷开关与断路器性能基本相同,但它不能开断短路电流;c.负荷开关加高遮断容量后备式限流熔断器组合,可断开短路电流,部分熔断器的分断容量比断路器还高,因此,使用负荷开关加高遮断容量后备式限流熔断器组合不比断路器效果差,可费用却可以大大降低。 3.4负荷开关加高遮断容量后备式熔断器组合的优点 采用负荷开关加高遮容量熔断器组合,具有如下优点: a.开合空载变压器的性能好环网柜的负荷种类,绝大部分为配电变压器,一般容量不大于1250kVA,极少情况达1600kVA,配电变压器空载电流一般为额定电流的2%左右,较大的配电变压器空载电流较小。环网柜开合空载变压器小电流时,性能良好,不会产生较高过电压。 b.有效保护配电变压器,特别是对于油浸变压器,采用负荷开关加高遮断容量后备式限流熔断器比采用断路器更为有效,有时后者甚至并不能起到有效的保护作用。有关资料表明,当油浸变压器发生短路故障时,电弧产生的压力升高和油气化形成的气泡会占据原属于油的空间,油会将压力传给变压器油箱体,随短路状态的继续,压力进一步上升,致使油箱体变形和开裂。为了不破坏油箱体,必须在20ms 内切除故障。如采用断路器,因有继电保护再加上自身动作时间和熄弧时间,其全开断时间一般不会少于60ms,这就不能有效地保护变压器。而高遮断容量后备式限流熔断器具有速断功能,加上其具有限流作用,可在10ms之内切除故障并限制短路电流,能够有效地保护变压器。因此,应采用高遮断容量后备式限流熔断器而尽量不用断路器来保护电器,即便负荷为干式变压器,因熔断器保护动作快,也比用断路器好。 c.从继电保护的配合来讲,在大多数情况下,也没有必要在环网柜中采用断路器,这是因为环网配电网络的首端断路器(即110kV或

干式变压器低压出线方式及其接口配合

(1)低压标准封闭母线:工程配线若选用封闭母线(也称插接式母线或密集型母线槽),相应之变压器可提供标准封闭母线端子,方便与外部母排的联接。 带外壳(IP20)产品,在外壳顶盖上配套提供封闭母线法兰;不带外壳(IP00)产品,只提供封闭母排接线端子。 (2)低压标准横排侧出线:当中试高测变压器与低压配电屏并排放置时,为方便其端子间的联接,变压器可提供低压横排侧出线,通常与GGD、GCK、MNS等低压屏相配,变压器厂与开关厂要签署接口配合纪要,确认配合接口详尽尺寸,保证现场安装顺利。 (3)低压标准立排侧出线:与横排侧出线相似,武汉中试高测电气有限公司当选用多米诺屏等母排为竖向布置的低压配电屏时,变压器可提供低压立排侧出线。 目前,我国树脂绝缘干式变压器年产量已达10000MVA,成为世界上干式变压器产销量最大的国家之一。随着低噪(2500KVA以下配电变压器噪声已控制在50DB以内)、节能(空载损耗降低达25%)的SC (B)9系列的推广应用,使得我国干式变压器的性能指标及其制造技术已达到世界先进水平。 随着干式变压器的推广应用,其生产制造技术也获得长足发展,可以预测,未来的干式变压器将在如下几方面获得进一步发展。 (1)节能低噪:随着新的低耗硅钢片,箔式绕组结构,阶梯铁心接缝,环境保护要求,噪声研究的深入,以及计算机优化设计等新材料、新工艺、新技术的引入,将使未来的干式变压器更加节能、更加宁静。 (2)高可靠性:提高产品质量和可靠性,将是人们的不懈追求。在电磁场计算、波过程、浇注工艺、热点温升、局放机理、质保体系及可靠性工程等方面进行大量的基础研究,积极进行可靠性认证,进一步提高干式变压器的可靠性和使用寿命。 (3)环保特性认证:以欧洲标准HD464为基础,开展干式变压器的耐气候(C0、C1、C2)、耐环境(E0、E1、E2)及耐火(F0、F1、F2)特性的研究与认证。 (4)大容量:从50~2500KVA配电变压器为主的干式变压器,向10000~20000KVA/35KV电力变压器拓展,随着城市用电负荷不断增加,城网区域变电所越来越深入城市中心区、居民小区、大型厂矿等负荷中心,35KV大容量的小区中心供电电力变压器将获广泛应用。 (5)多功能组合:从单一变压器向带有风冷、保护外壳、温度计算机接口、零序互感器、功率计量、封闭母线及侧出线等多功能组合式变压器发展。 (6)多领域发展:从以配电变压器为主,向发电站厂用变压器、励磁变压器、地铁牵引整流变压器、大电流电炉变压器、核电站、船用及采油平台用等特种变压器及多用途领域发展。

配电变压器选择与台架安装【最新版】

配电变压器选择与台架安装 配电网络建设与改造过程中,配电变压器的选择及台架安装是一个重要环节,为了使配电变压器的分布达到结构合理、供电可靠、运行经济、维修方便,符合配电网络安全供电可靠性、连续稳定运行的要求,配电变压器的选择及台架的安装尤为重要。现就乐昌地区在农村10kV电网建设与改造中,配电变压器的选择与台架安装的技术原则论述如下。 1、变压器的选择 农改中配电变压器的选择包括两个方面,一为变压器位置的选择,二为变压器型号及容量的选择。 1.1变压器的定位选择 由于农村村庄分布有如下特点:农村村庄大部分坐落在地势较平坦或丘陵地带;每个村庄居住几户到几十户村民,部分超过百户,很少超过300户以上的;村与村之间相隔较远,几百米到数公里以上;因此在农村配电变压器的建设与改造中,农村配电变压器的台区应按“小容量、密布点,短半径”的原则来选择,变压器台区应尽可能选择在负荷中心或重要负荷附近,还应尽量避开车辆、行人较多的场所

(如晒坪、打谷场、草坪等),不得选择在水田边、沼泽地、低洼积水地带,不得太近农屋,不得选择在农作物地,不得选择在陡坡大的山坡上,应选择在地质较好、地势平坦,且便于更换和检修设备的地方,同时避开当地村民有风俗争议的地方。乐昌地区采取一村一配电变压器台区的分布方式,有效地缩短了低压供电网络,减少了低压线损。改造后的低压台区400V供电半径一般不大于500m,个别农户的单相线路适当延长,这样,既减少了线路损耗,又提高了电压质量。 1.2变压器的选择 在农村供电系统中,配电变压器是主要供电设备。它肩负着高低压电源的转换,关系到整个高低压供电系统的可靠性、供电质量和经济运行,因此选择配电变压器。必须根据负荷的类型、大小与分布情况进行全面的考虑。 1.2.1配电变压器型号的选择 农网改造前,乐昌地区农村大部分选用高损耗的变压器,而且相当一部分是村民集资购买70年代的变压器。统计表明,配电变压器的损耗约占配电网中总损耗量的30%以上,比例相当高,因此,必须选用新型的节能型变压器,原来高损耗配电变压器已全部淘汰。目前新建和改造的台区,主要采用S9型系列低损耗配电变压器,其线圈

10KV变压器低压侧断路器的选 择与整定 - 2018.1.5

10KV变压器低压侧断路器的选择与整定 一、低压侧断路器的选择与整定 1、变压器低压侧进线断路器长延时过电流脱扣器的整定倍数 在个别的设计中,进线断路器长延时过电流脱扣器整定值为 I r=1.1I n,这是错误的,正确的应为I r=1.0I n (其中,I n为脱扣器额定电流)。因为变压器低压侧进线断路器一般采用框架断路器,通常选用的有ABB、施耐德、西门子、穆勒或国产的常熟断路器厂等的产品,其脱扣器均为四段保护的电子脱扣器;其中长延时过电流脱扣器的整定值为I r=(0.4-1.0)I n,各个产品的整定电流级差是不相同的。 如施耐德的micrologic2.0a/5.0/6.0/7.0脱扣器: I r= (0.4/0.5/0.6/0.7/0.8/0.9/0.95/0.98/1.0) I n。 如ABB的pr121/p脱扣器:I r =(0.4-1.0) I n,级差为0.025 I n; pr121/p、pr123/p脱扣器:I r =(0.4-1.0) I n,级差为0.01 I n 。 常熟ES35脱扣器:I r =(0.4-1.0) I n 所以进线断路器的长延时过电流脱扣器整定为1.1倍的额定电流是做不到的,这个问题的出现可能是与配电变压器低压侧进线断路器长延时过电流整定电流宜为变压器低压侧额定电流的1.1倍之说相混淆了。 2 、变压器低压侧进线断路器的保护整定 长延时过电流脱扣器整定为 式中,为断路器长延时脱扣器可靠系数,取1.1; 为变压器低压侧额定电流。 短延时过电流脱扣器整定为 时限可取0.4s,要与高压侧配合 , 式中,m为过电流倍数,可取2-4;为断路器短延时脱扣器可靠系数,取1.3。

电机启动电流与配电变压器的选择

电机的启动方法与配电变压器的选择 1.问题的提出: 电机启动时的电流一般是电机额定电流的2~7倍,这对电网有较大的影响,国家标准电能质量供电电压允许偏差(GB 12325—90)规定10kV及以下三相供电电压允许偏差为额定电压的±7%。国家标准GB-T-3811-2008 起重机设计规范7.2.1.2规定电压波动不得超过额定值的±10%,这样,如何选择配电站的降压变压器呢? 2.单电动机直接启动场合的降压变压器容量的选择: 2.1由于电机采用直接启动的方法电路简单,价格低廉,对于主要运行设备是风机(泵类)的企业,采用直接启动的方案,无疑会减少该企业的综合投资费用。拖动风机(泵类)的电动机一般都是四极(或二极)鼠笼型电动机,它们的直接启动电流时额定电流的6倍,如果只有一台380V三相鼠笼电机直接启动,电网电压下降15%——已经超过了最大±10%的标准,则电动机启动电流Iq的安培数与降压变压器次级容量S2的KVA数由下式计算可见:S2=√3[380V-15%380V]Iq/1000 cosФ=1.732(380-57) Iq /0.85*1000=1.73*323*Iq /850= 559.436Iq/850=0.66Iq 则有: S2= 0.66Iq 式(1) 由于变压器的平均功耗为7.5%,则变压器容量S与S2的关系为: S=(100+7.5)% S2=1.075S2 则有: S= 1.075S2 式(2) 根据上述式(1)、式(2),我们选择电动机直接启动的方案时电动机功率P与变压器容量S配备见下表(1) 2.2.数台电动机直接启动场合的降压变压器容量的选择 当用户有N台电机同时启动时,则有: S=1.075*N*S2*=N*(1.075*0.66)Iq=0.71*N*Iq, 通常,电动机直接启动时:Iq(A)=12*P(KW), 则有: S(Kva)=0.71*N*Iq=0.71*N*12P=8.52*N*P(KW) 式(3) 假设,有2台30KW的电动机直接启动,需要配备多大的降压变压器呢? 根据式(3)有 S(Kva)=8.52*N*P=8.52*2*30=511.2KVa

如何选择配电变压器一、二次侧熔丝的容量

如何选择配电变压器一、二次侧熔丝的容量 刘晓军在城镇和农村电力设备供用电安全检查中,经常会遇到配电变压器本身或二次侧出线短路时,其一次侧或二次侧或一、二次侧熔丝未熔断,发生变电所线路开关跳闸或配电变压器烧损事故,造成长时间停电和重大的直接和间接的经济损失,对工农业生产和城乡人民生活产生很大影响。配电变压器一、二次侧熔丝是运行中的配电变压器本身及二次侧短路和过负荷的主要保护方式,其中一次侧熔丝的主要作用是作为配电变压器本身和二次侧出线短路故障的后备保护,二次侧熔丝的主要作用是作为配电变压器过负荷和二次侧出线短路故障的主保护。配电变压器一、二次侧熔丝的正确选择,对于配电变压器的安全经济运行,提高供电可靠性都十分重要的。 发生类似事故的主要原因是配电变压器的一、二次侧熔丝容量选择不正确造成的。当配电变压器本身或二次侧出线发生短路事故时,由于配电变压器的一、二次侧熔丝容量选择不正确,容量过大,短路电流无法使其熔断,造成配电变压器脱离一、二次侧熔丝保护,从而发生变电所线路开关跳闸或配电变压器烧损事故。 配电变压器一、二次侧熔丝容量的选择方法,根据按额定容量和实际负荷容量可分两种。

1按额定容量选择方法 按照配电变压器额定容量选择一、二次侧熔丝容量时,又根椐配电变压器有无铭牌情况,区别计算。 ⑴有铭牌情况 对于有铭牌的配电变压器,在铭牌上标明了配电变压器的额定容量一、二次侧额定电流和阻抗电压等参数,在选择一、二次侧熔丝容量时,根据铭牌上标明的一、二次侧额定电流,按运行规程规定进行选择。 变压器规程规定 ①100kV A以下的变压器,一次侧熔丝容量可按2~3倍额定电流选择,考虑到熔丝的机械强度,一般一次侧熔丝容量不小于10A,二次侧熔丝容量应按二次额定电流选择。 ②100kV A及以上的变压器,一次侧熔丝容量可按 1.5~2倍额定电流选择,二次侧熔丝容量应按二次额定电流选择。 例1:一台75kV A、10kV/400V的配电变压器,铭牌上标明:一次额定电流为4.33A,二次额定电流为108A,问如何选择一、二次侧熔丝容量? 解:由于铭牌标明:I1N=4.33A I2N=108A 根据运行规程规定: 一次侧熔丝电流I1=(2~3)I1N 二次侧熔丝电流I2=I2N

干式变压器的低压出线方式

干式变压器的低压出线方式 干式变压器低压出线方式有哪些?SC(B)9系列大致含义? 干式变压器低压出线方式有哪些? 1、低压标准封闭母线:工程配线若选用封闭母线(也称插接式母线或密集型母线槽),相应之干式变压器可提供标准封闭母线端子,方便与外部母排联接。 带外壳(IP20)产品,外壳顶盖上配套提供封闭母线法兰;不带外壳(IP00)产品,只提供封闭母排接线端子。 2、低压标准横排侧出线:当干式变压器与低压配电屏并排放置时,为方便其端子间联接,变压器可提供低压横排侧出线,通常与GGD、GCK、MNS等低压屏相配,变压器厂与开关厂要签署接口配合纪要,确认配合接口详尽尺寸,保证现场安装顺利。 3、低压标准立排侧出线:与横排侧出线相似,当选用多米诺屏等母排为竖向布置低压配电屏时,变压器可提供低压立排侧出线。 SC(B)9系列是什么东西? 树脂绝缘干式变压器是我公司引进国外先进技术,自主开发了SC9、SCB9系列以及SC10、SCB10系列干式变

压器,由于线圈被环氧树脂包封,所以难燃,防火、防爆、免维护,无污染,体积小,可直接安装在负荷中心。一般现在有些使用的ZSG三相干式变压器也是基于这个理念的。同时科学合理的设计和浇注工艺,使产品局部放电量更小,噪声低,散热能力强,在强迫风冷条件下可以在125%额定负载下长期运行,并配有智能温控仪,具有故障报警,超温报警,超温跳闸以及黑匣子功能,并通过RS485串行接口与计算机相连,可以集中监视和控制。 由于我们公司干式变压器具有以上特点,因此广泛应用于输变电系统,如宾馆饭店,机场,高层建筑,商业中心,住宅小区等重要场所,以及地铁,冶炼,电厂,轮船,海洋钻井平台等环境恶劣场所。

10kV配电变压器保护配置方式的合理选择

10kV配电变压器保护配置方式的合理选择 【摘要】本文对10 kV环网供电单元和终端用户10 kV配电变压器采用断路器、负荷开关加熔断器组合的保护配置方式进行技术进行了经济比较,供配电网的设计和运行管理部门参考。 【关键词】10kV配电变压器断路器负荷开关熔断器保护配置 无论是在环网供电单元、箱式变电站或是终端用户的高压室结线方式中,如配电变压器发生短路故障时,保护配置能快速可靠地切除故障,对保护10kV高压开关设备和变压器都非常重要。保护方式的配置一般有两种:一种利用断路器;另一种则利用负荷开关加高遮断容量的后备式限流熔断器组合。这两种配置方式在技术和经济上各有优缺点,以下对这两种方式进行综合比较分析。 1 环网供电单元接线形式 1.1 环网供电单元的组成 环网供电单元由间隔组成,一般至少有3个间隔,包括2个环缆进出间隔和1个变压器回路间隔。 1.2 环网供电单元保护方式的配置 环缆馈线与变压器馈线间隔均采用负荷开关,通常为具有接通、隔断和接地功能的三工位负荷开关。变压器馈线间隔还增加高遮断容量后备式限流熔断器来提供保护。实际运行证明,这是一种简单、可靠而又经济的配电方式。 1.3 环网供电单元保护配置的特点 负荷开关用于分合额定负荷电流,具有结构简单、价格便宜等特点,但不能开断短路电流,高遮断容量后备式限流熔断器为保护元件,可开断短路电流,如将两者有机地结合起来,可满足配电系统各种正常和故障运行方式下操作保护的要求。断路器参数的确定和结构的设计制造均严格按标准要求进行,兼具操作和保护两种功能,所以其结构复杂,造价昂贵,大量使用不现实。环网柜中大量使用负荷开关加高遮断容量后备式熔断器组合装置,把对电器不尽相同的操作与保护功能分别由两种简单、便宜的元件来实现,即用负荷开关来完成大量发生的负荷合分操作,而采用高遮断容量后备式限流熔断器对极少发生短路的设备起保护作用,很好地解决问题,既可避免使用操作复杂、价格昂贵的断路器,又可满足实际运行的需要。使用负荷开关加高遮断容量后备式限流熔断器组合不比断路器效果差,可费用却可以大大降低。 1.4 负荷开关加高遮断容量后备式熔断器组合的优点

10kV变压器低压侧短路电流计算及低压配电柜选型

10kV变压器低压侧短路电流计算及低压配电柜选型 摘要:随着中国经济的快速发展,电力工业为经济发展提供了可靠的物质保障。在国内增加用电量,如何确保电力供应的安全性和可靠性是一个值得关注的重要 课题。本文分析了10kV配电盘中高低压开关的特点,并对确保10kV配电柜中高 低压开关的安全性提出了一些建议。希望它可以作为电力工业发展和中国电力工 业发展的指南。 关键词:10kV配电房;高低压开关;选择;保护 引言 配电房是电力系统的核心环节之一,对维护电力系统的正常运转具有重要的 影响。配电房内置有许多种类的器械设备,需要做好相互之间的配合,才能保证 电力系统的稳定性。在10kV配电房中,高低压开关之间保护配合不合理将会为 电力系统的运转添加很多麻烦,这严重影响了电力系统的正常运转。为维护电力 系统的稳定性,国家逐渐完善了城乡电网,规范了10kV配电房内的相关设备, 大大方便了电力系统的管理。 一、高低压配电设备设计范围 1.1本工程新建拐排二站公用箱式变压器1台;2、由10kV沙田F3泗盛线三 盛支线N1公用电缆分接箱敷设电缆 ZRC-YJV22-8.7/15kV -3×120mm2/285m(新敷)至新建拐排二站公用箱式变压器; 1.2新增线路部分 1)高压线路部分: 新敷设10kV电力电缆ZRC-YJV22-8.7/15kV-3×120共285米;其中235米沿原 有电缆沟敷设,50米沿新顶4孔管敷设;新安装10kV户内型电缆终端头共2套,其中3×120共 2套。 2)低压线路部分: 新敷设1kV电力电缆ZRC-YJV220.6/1kV-4×240共197米;其中197米沿新建 电缆埋管敷设;新安装1kV电缆终端头共2套,其中4×240共 2套; 1.3新增高压设备部分 新安装全绝缘SF6负荷开关柜2台;新安装800kVA终端型预装式箱变(配干变)1台; 1.4新增低压配电部分 新装户内GCK-800低压柜3面,其中进线柜1面,出线柜1面,无功补偿柜 1面;无功补偿按配变容量20%补偿,即160kVar,采用动态无功补偿装置; 1.5新增电缆通道及设备基础部分 新建800kVA预装式箱变基础1座(两侧井口),箱变镀锌围栏1套; 新建2层2列行车排管71米;新建1层2列行车排管117米;新建电缆排管工作井6座,其中: a)2层2列排管行人直线井3座; b)1层2列排管行车人转角井1座; c)1层2列排管行车工作井1座; d)1层2列排管行车转角井1座; 1.6新增配电房部分 新建CSG-10B-YB-M13-02预装箱式变电站1间,面积为2.3米×3.3米(长×

浅谈配电工程中变压器的选择及安装

浅谈配电工程中变压器的选择及安装 摘要:进入21世纪以来,我国电力系统的建设工作进入了一个全新的时期。由于我 国现有的配电系统具有覆盖范围广、运行负荷大等特点,同时受到运行环境以及各种自然、人为因素的影响,发生电气故障的现象极为普遍,并且可能导致配电系统在运行中出现较大的安全隐患。因此,在配电工程的建设中,一定要注意对于变压器的选择与安装,这样才能保证配电系统的安全、稳定、高效运行。 关键词:配电工程;变压器;选择;安装 在我国社会主义经济建设工作中,电力是保证各行业、各领域,以及群众日常生活的基础能源供应,与其他矿物质能源相比,其具有高效、节能、环保的优势。目前,我国的电力系统建设已经逐渐形成了一个基本覆盖全国并且具有一定规模的网络,随着现代电力工程技术的不断发展和应用,对于电力系统的安全性能和稳定性能也提出了更高的技术标准。目前,国内电力系统中将电压为l0 kV及以下的电力线路称为配电线路,电压为 35kV及以上的高压电力线路称为送电线路,其中配电线路是将电力能源由变电所直接输 送到用户,为终端电力设备的运行提供稳定能源的线路。近年来,国内各地区频繁出现配电线路安全事故甚至造成较大的经济损失和人员伤亡,其根本原因在于在配电工程建设中变压器的选择与安装难以达到规定的技术标准。 目前,在国内建设的配电系统中,为了保障整体电力管网的安全运行,一般会根据技术标准与设计要求在配电工程中选择和安装相适应的变压器,起到继电保护的作用。变压器是配电系统的基础设备之一,具有变阻抗、变压、变流等多方面的作用。在配电系统中,根据变压器的容量和重要程度设置性能良好、可靠的继电保护装置,对保障整体及局部配电系统的安全、稳定运行都具有深远的意义。 1、配电工程中变压器的选择 1.1 变压器型号的选择在配电工程的建设过程中,变压器型号的选择对于T程的质量 和稳定性具有重要的影响。变压器的型号选择要综合分析配电线路负荷的类型、大小、分布情况等因素,并且结合配电线路建设的具体要求。在国内传统的配电工程建设中,变压器的型号选择普遍缺少对于配电线路运行中各类数据的科学分析和计算,导致配电线路中不稳定因素及能源浪费的现象客观存在。随着现代电力技术的不断发展以及各类新型变压器的研发与应用,对于变压器型号的选择更要坚持科学、合理、实用的原则,并且根据配电线路的供电范围,最终确定变压器的容量。在我国城乡配电工程建设中,变压器容量的选择一般是根据实际负荷及5~l0年电力发展计划来选定。

10KV变压器保护配置方案(1)

10KV变压器保护配置方案(1) 摘要:10kV配电变压器的保护配置主要有断路器、负荷开关或负荷开关加熔断器等。负荷开关投资省,但不能开断短路电流,很少采用;断路器技术性能好,但设备投资较高,使用复杂,广泛应用不现实;负荷开关加熔断器组合的保护配置方式,既可避免采用操作复杂、价格昂贵的断路器,弥补负荷开关不能开断短路电流的缺点,又可满足实际运行的需要 关键词:10kV配电变压器断路器负荷开关熔断器保护配置无论是在环网供电单元、箱式变电站或是终端用户的高压室结线方式中,如配电变压器发生短路故障时,保护配置能快速可靠地切除故障,对保护10kV高压开关设备和变压器都 非常重要。保护方式的配置一般有两种:一种利用断路器;另一种则利用负荷开关加高遮断容量的后备式限流熔断器组合。这两种配置方式在技术和经济上各有优缺点,以下对这两种方式进行综合比较分析。 1环网供电单元接线形式 环网供电单元的组成 环网供电单元由间隔组成,一般至少有3个间隔,包括2个环缆进出间隔和1个变压器回路间隔.

环网供电单元保护方式的配置 环缆馈线与变压器馈线间隔均采用负荷开关,通常为具有接通、隔断和接地功能的三工位负荷开关。变压器馈线间隔还增加高遮断容量后备式限流熔断器来提供保护。实际运行证明,这是一种简单、可靠而又经济的配电方式。 环网供电单元保护配置的特点 负荷开关用于分合额定负荷电流,具有结构简单、价格便宜等特点,但不能开断短路电流,高遮断容量后备式限流熔断器为保护元件,可开断短路电流,如将两者有机地结合起来可满足配电系统各种正常和故障运行方式下操作保护的要求。断路器参数的确定和结构的设计制造均严格按标准要求进行,兼具操作和保护两种功能,所以其结构复杂,造价昂贵,大量使用不现实。环网柜中大量使用负荷开关加高遮断容量后备式熔断器组合装置,把对电器不尽相同的操作与保护功能分别由两种简单、便宜的元件来实现,即用负荷开关来完成大量发生的负荷合分操作,而采用高遮断容量后备式限流熔断器对极少发生短路的设备起保护作用,很好地解决问题,既可避免使用操作复杂、价格昂贵的断路器,又可满足实际运行的需要。3种保护配置方式的技术-经济比较可以看出:

相关文档
最新文档