二次函数的图象特点及其应用

二次函数的图象特点及其应用
二次函数的图象特点及其应用

二次函数的图象特点及其应用

二次函数的图象特点及其应用

课题名称: 二次函数的图象特点及其应用

课题的研究及意义:

数学是一门很有用的学科。古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。现在,就让我们一起领略数学中二次函数的无穷魅力

课题研究内容:

1.发展史:函数就是在某变化过程中有两个变量X和Y,变量Y随着变量X一起变化,而且依赖于X。如果变量X取某个特定的值,Y依确定的关系取相应的值,那么称Y是X的函数。这一要领是由法国数学家黎曼在19世纪提出来的,但是最早产生于德国的数学家菜布尼茨。他和牛顿是微积分的发明者。17世纪末,在他的文章中,首先使用了“function" 一词。翻译成汉语的意思就是“函数。不过,它和我们今天使用的函数一词的内涵并不一样,它表示”幂”、“坐标”、“切线长”等概念。

直到18世纪,法国数学家达朗贝尔在进行研究中,给函数重新下了一个定义,他认为,所谓变量的函数,就是指由这些变量和常量所组成的解析表达式,即用解析式表达函数关系。后来瑞士的数学家欧拉又把函数的定义作了进一步的规范,他认为函数是能描画出的一条曲线。我们常见到的一次函数的图像、二次函数的图像、正比例函数的图像、反比例的图像等都是用图像法表示函数关系的。如果用达朗贝尔和欧拉的方法来表达函数关系,各自有它们的优点,但是如果作为函数的定义,还有欠缺。因为这两种方法都还停留在表面现象上,而没有提示出函数的本质来。

19世纪中期,法国数学家黎紧吸收了莱布尼茨、达朗贝尔和欧拉的成果,第一次准确地提出了函数的定义:如果某一个量依赖于另一个量,使后一个量变化时,前一个量也随着变化,那么就把前一个量叫做后一个量

的函数。黎曼定义的最大特点在于它突出了就是之间的依赖、变化的关系,反映了函数概念的本质属性。

2. 定义:表达式如y=ax^2+bx+c (a≠0,且a,b,c是常数)的函数,我们把y叫做x的一元二次函数. 二次函数有三种表达式:

(1)一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

(2)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)对于二次函数y=ax^2+bx+c 其顶点坐标为(-b/2a,(4ac-b^2)/4a)

(3)交点式:y=a(x-x?)(x-x ?) [仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线

其中x1,2= -b±√b^2-4ac

3.图象特征:一条抛物线,对称轴是x=-b/2a,顶点为(-b/2a,(4ac-b^2)/4a)

当a>0开口向上,在对称轴的左侧y随x的增大而减小, 在对称轴的右侧y 随x的增大而增大

当a<0开口向下, 在对称轴的左侧y随x的增大而增大,在对称轴的右侧y 随x的增大而减小.

4借助二次函数的图象和性质解决有关生活实际问题的基本方法:

数学模型转化实际问题(二次函数的图象和性质)

实际问题(二次函数的图象和性质)回归数学模型

转化关键点:正确建立直角坐标系

1)能够将实际距离(准确的)转化为点的坐标;

2)选择运算简便的方法。

5.应用: 二次函数如空气般,无时无刻不萦绕于我们身边.只是它太平凡,太普通.而使我们似乎觉察不到它在我们身旁.我们无时无刻不在利用二次函数解决难题.

(1)商业:然而有谁理解二次函数的奥妙.二次函数在生活中有许多应用.比如在商场上,二次函数就为必不可少的工具.在实际生活和经济活动中,很多问题都与二次函数密切相关。

在生活中,很多盈利问题都与二次函数有关,尤其是图象。利用二次函数我们可以解决许多盈利问题。如商业利润与广告投资的关系等等.

例如:某企业信息部进行市场调查发现:信息一:如果单独投资A种产品,则所获利润y(A)与投资金额x之间存在正比例关系:y(A)=kx,并且当投资5万元时,可获利润2万元并且当投资2万元时,可获利润2。4万元;当投资4万元时;可获利润3。2万元。而该企业要对A。B两种产品进行10万元投资,怎样才可获得最大利润。假如你无法熟练掌握二次函数,那么你将会失去了商机,用最少投入,获得最大产出,这就是效率。假

如,你是该企业成员,该如何设计投资方案呢?

设:能获得最大利润为y,则=y(A)+y(B)投资产品x万元,则产品(10-x)万元。则y=2/5(10-x)-0.4x2+1.6x=-0.4(x-3/2)2+4.9由二次函数的知识,我们能很明白,当B投资3/2万元,A投资8。5万元时,就能获得最大利润。假如你体会并能掌握二次函数的魄力,解决诸如此类的商业问题,就是小菜一碟。然而,这不过是二次函数被利用于商业竞争的一小部分,二次函数的魄力又何仅限于此呢?

(2)建筑:二次函数在建筑中的运用十分广泛。

如某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。

再如人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷水水流的最高点P到水枪AB所在直线的距离为1m,且水流的着地点C距离水枪底部B的距离为5/2m,那么,水流的最高点距离地面是多少米?水流沿抛物线落下,容易联想到二次函数的图象,从而用有关二次函数的知识解决问题。

二次函数与拱桥问题也有密切联系。也可由二次函数求出桥的高低与游船通行的关系。

(4)战争:战争中也不乏运用二次函数的例子。

如某防空部队进行射击训练时,若导弹运行轨道为一抛物线,可求该抛物线的解析式,再运用函数知识预知导弹能否命中目标。

(5)体育:二次函数也与体育息息相关。

先就篮球来说说:抛物线是指投篮出手后,球在空中飞行的弧形轨迹,以距离投篮为例,可归纳为低,中高三种弧线。

1。球的飞行路线最短,力量容易控制,但由于飞行路线低平,篮圈暴露在求下面的面积很小,不易投中。

2。中弧线:球飞行弧线的最高点大致在篮板的上沿,在一条水平线上球篮的大部分暴露在球的下面,这是一种比较适宜的抛物线。

3。高弧线:球接近于垂直下落,篮圈几乎全暴露在球的下面,球容易入篮。但球的飞行路线太平,不宜控制,实际会降低命中率。

上述投篮的抛物线,只是原地投篮的一种规律,抛物线的高低还与出手力量有关。在实际应用中,应根据不同的距离,队员的高低,跳投时跳起的高度,不同的投篮方式及防守,干扰等采用不同的抛物线投篮。

生活中也不乏用二次函数的知识来计算体育成绩的例子

如一名运动员推铅球,铅球在点A处出手时球距离地面约为1 m,铅球落地在点B处,铅球运行中在运动员前4m处到达最高点C,最高点高为3m。已知铅球经过的路线是抛物线,你能算出该运动员的成绩吗?再如一位运动员在距篮下4m处起跳投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,球达到最大高度3.5m ,已知篮筐中心到地面的距离3.05m , 问球出手时离地面多高时才能中?以上二问题都可先建立坐标系,再运用二次函数相关知识得出结论。类似的还有跳远,足球射门,羽毛球等体育运动。

总结:

数学的魄力,在于其古老与神奇,总是与美联系在一起,只要怀有一颗欣赏之心,就会在生活的每一个角落捕捉到其“魅影”——抛物线。这种魄力是独特的,内在的,正如英国著名哲学家,数学家罗素所说:“数学,如果正确看它,不但拥有真理,而且也具有至高无上的美,正像雕刻的美,是一种冷而严肃的美。这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐那种华丽修饰,它可以纯净到高崇的地步,能够达到严格的只有伟大的的艺术能显示的那种完美的境界。”

二次函数能于历史长河之中经风暴而不朽,难以比拟的艺术美为其塑造朦胧而迷幻的形象,但更为主要的是二次函数在商业,建设,体育等日常生活中不可代替的地位。

在生活中,只要我们善于观察,善于思考,将所学知识与生活结合起来将会感到数学的乐趣。

如有侵权请联系告知删除,感谢你们的配合!

2020年中考数学复习专题训练——二次函数的图像与性质

2020年中考数学复习专题训练——二次函数的图像与性质 考点1:二次函数的顶点、对称轴、增减性 1.关于二次函数y=2x2+4x-1,下列说法正确的是( ) A.图像与y轴的交点坐标为(0,1) B.图像的对称轴在y轴的右侧 C.当时,x<0的值随y值的增大而减小 的最小值为-3 2.如图,函数y=ax2-2x+1和y=ax-a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是( ) 3.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表: x-1013 y-3131 下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有( ) A. 1个 B. 2个 C. 3个 D. 4个 4.已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( )

或6 或6 或3 或6 5.当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为() 或2 或2 6.对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y,则这条抛物线的顶点一定在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 考点2:抛物线特征和a,b,c的关系 1.已知二次函数图形如图所示,下列结论:①abc;②;③;④点(-3,y1),(1,y2) 都在抛物线上,则有y1y 2. 其中正确的结论有( ) 个个个个 2.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是( ) <4ac >0 b=0 b+c=0

二次函数应用题(含答案)

二次函数应用题 一、选择题 1.烟花厂为扬州烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度 与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( ) A.3s B.4s C.5s D.6s 2.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( ) A.5元B.10元C.0元D.3600元 3.一个运动员打高尔夫球,若球的飞行高度y(m)与水平距离x(m)之间的函数表达式为 ,则高尔夫球在飞行过程中的最大高度为( ) A.10m B.20m C.30m D.60m 4.由表格中信息可知,若设,则下列y与x之间的函数关系式正确的是( ) x -1 0 1 1 8 3 A.B. C.D. 5.一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S(米)与时间t(秒)间的关系式为 ,若滑到坡底的时间为2秒,则此人下滑的高度为( ) A.24米B.12米C.米D.6米

6.小敏在某次投篮中,球的运动路线是抛物线的一部分(如图),若命中篮圈中心,则他与篮底的距离是( ) A.3.5m B.4m C.4.5m D.4.6m 7.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为,则该企业一 年中应停产的月份是( ) A.1月、2月、3月B.2月、3月、4月 C.1月、2月、12月D.1月、11月、12月 8.如图,点C是线段AB上的一个动点,AB=1,分别以AC和CB为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是( ) A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大 C.当C为AB的三等分点时,S最小D.当C为AB的三等分点时,S最大 二、填空题 9.如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN

九上二次函数的实际应用(最值问题)

第4课时 二次函数的实际应用——面积最大(小)值问题 知识要点: 在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值; 2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值; 4.利用基本不等式或不等分析法求最值. [例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动. (1)运动第t 秒时,△PBQ 的面积y(cm2)是多少? (2)此时五边形APQCD 的面积是S(cm2),写出S 与t 的函数关系式,并指出自变量的取值范围. (3)t 为何值时s 最小,最小值时多少? 答案: 63 363 3360726612626262 1 )1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--?=+-=?-= [例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大? 解:设花圃的宽为x 米,面积为S 平方米 则长为:x x 4342432-=+-(米) 则:)434(x x S -= x x 3442 +-=

22.1.4二次函数的图像和性质 教案

22.1 二次函数(6) 教学目标: 1.使学生掌握用描点法画出函数y =ax 2+bx +c 的图象。 2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。 3.让学生经历探索二次函数y =ax 2+bx +c 的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y =ax 2+bx +c 的性质。 重点难点: 重点:用描点法画出二次函数y =ax 2+bx +c 的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。 难点:理解二次函数y =ax 2+b x +c(a ≠0)的性质以及它的对称轴(顶点坐标分别是x =-b 2a 、(-b 2a ,4ac -b24a )是教学的难点。 教学过程: 一、提出问题 1.你能说出函数y =-4(x -2)2+1图象的开口方向、对称轴和顶点坐标吗? 2.函数y =-4(x -2)2+1图象与函数y =-4x 2的图象有什么关系? (函数y =-4(x -2)2+1的图象可以看成是将函数y =-4x 2的图象向右平移2个单位再向上平移1个单位得到的) 3.函数y =-4(x -2)2+1具有哪些性质? (当x <2时,函数值y 随x 的增大而增大,当x >2时,函数值y 随x 的增大而减小;当x =2时,函数取得最大值,最大值y =1) 4.不画出图象,你能直接说出函数y =-12x 2+x -5 2的图象的开口方向、对称轴和顶点 坐标吗? 5.你能画出函数y =-12x 2+x -5 2的图象,并说明这个函数具有哪些性质吗? 二、解决问题 由以上第4个问题的解决,我们已经知道函数y =-12x 2+x -5 2的图象的开口方向、对称 轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y =-12x 2+x -5 2的图 象,进而观察得到这个函数的性质。 解:(1)列表:在x 的取值范围内列出函数对应值表; x … -2 -1 0 1 2 3 4 … y … -612 -4 -212 -2 - 212 -4 - 612 … (2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。

二次函数图象性质应用(二)(含答案)

学生做题前请先回答以下问题 问题1:___________是研究函数、方程、不等式等的一种重要手段. ①二次函数对称性:两点对称,则______相等;纵坐标相等,则两点______;由(x1,y1),(x2,y1)知,对称轴为直线_________. ②二次函数增减性:y值比大小、取最值,常利用__________,借助____________求解.问题2:利用数形结合,计算二次函数最值问题的具体操作是: 先判断______、______,再结合______、______,确定最值. 二次函数图象性质应用(二) 一、单选题(共10道,每道10分) 1.在二次函数中,当时,y的最大值和最小值分别是( ) A.0,-4 B.0,-3 C.-3,-4 D.0,-2 答案:A 解题思路: 试题难度:三颗星知识点:二次函数的性质 2.已知二次函数,当时,y的取值范围是__________;当 时,则y的取值范围是_________.( )

A., B., C., D., 答案:A 解题思路: 试题难度:三颗星知识点:二次函数的性质 3.已知点和点是抛物线上的两点,且,则m的取值范围是( ) A. B. C. D. 答案:D 解题思路:

试题难度:三颗星知识点:二次函数图象上点的坐标特征 4.已知二次函数,当x>1时,y随x的增大而增大,则m的取值范围是( ) A.m=-1 B.m=3 C. D. 答案:D 解题思路:

试题难度:三颗星知识点:二次函数图象的对称性 5.已知二次函数,当时,y随x的增大而增大,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:二次函数图象的对称性 6.当时,二次函数有最大值4,则实数m的值为( )

二次函数图象性质及应用(讲义及答案)

二次函数图象性质及应用(讲义) ?课前预习 回顾一次函数、反比例函数与二次函数的相关知识,回答下列 问题: 1.对二次函数y =ax2 +bx +c 来说,a,b,c 符号与图象的关系: a 的符号决定了抛物线的开口方向,当时,开口向; 当时,开口向. c 是抛物线与交点的. b 的符号:与a ,根据可推 导.判断下面函数图象的a,b,c 符号: (1)已知抛物线y =ax2 +bx +c 经过原点和第一、二、三象限,那么() A.a > 0,b > 0,c > 0 C.a < 0,b < 0,c > 0 B.a < 0,b < 0,c = 0 D.a > 0,b > 0,c = 0 (2)二次函数y=ax2+bx+c 的图象如图所示,其对称轴为直线x=-1,给出下列结论:①abc>0;②2a-b=0.其中正确的是. 2.函数y 值比大小,主要利用函数的增减性和数形结合.如点 A(x1,y1),B(x2,y2)在直线y=kx+b 上,当k>0,x1<x2时,y1y2.

1

?知识点睛 1.二次函数对称性:两点对称,则相等;纵坐标相等, 则两点;由(x1,y1),(x2,y1)知,对称轴为直线.2.二次函数增减性:y 值比大小、取最值,常利用, 借助求解. 3.观察图象判断a,b,c 符号及组合: ①确定符号及信息; ②找特殊点的,获取等式或不等式; ③代入不等式,组合判断残缺式符号. ?精讲精练 1.若二次函数y=ax2+bx+c 的x 与y 的部分对应值如下表: x -7 -6 -5 -4 -3 -2 y -27 -13 -3 3 5 3 A.5 B.-3 C.-13 D.-27 2.抛物线y=ax2+bx+c 上部分点的横坐标x,纵坐标y 的对应值 如下表: x …-2 -1 0 1 2 … y …0 4 6 6 4 … 从上表可知,下列说法中正确的是.(填写序号) ①抛物线与x 轴的一个交点为(3,0); ②二次函数y =ax2 +bx +c 的最大值为6; ③抛物线的对称轴是直线x =1 ; 2 ④在对称轴左侧,y 随x 的增大而增大. 3.已知二次函数y =x2 - 2mx + 4m - 8 .若x ≥2 时,函数值y 随 x 的增大而增大,则m 的取值范围是;若x≤1 时,函数值y 随x 的增大而减小,则m 的取值范围是. 4.在二次函数y=-x2+2x+1 的图象中,若y 随x 的增大而增大, 则x 的取值范围是. 2 二次函数草图的画法: 1. 一般草图 1找准开口方向、对称轴、顶点坐标,画二次函数; 2根据各点与对称轴的距离描点(或结合函数间关系画图).2. 坐标系下画草图时,往往要根 据四点一线来确定大致图 象.四点:二次函数顶点,二 次函数与y 轴的一个交点,二 次函数与x 轴的两个交点. 一线:二次函数对称轴.

二次函数的图像和性质总结

二次函数的图像和性质 1.二次函数的图像与性质: 解析式 a 的取值 开口方向 函数值的增减 顶点坐标 对称轴 图像与y 轴的交点 时当0>a ;开口向上;在对称轴的左侧y 随x 的增大而减小,在对称轴的 右侧y 随x 的增大而增大。 时当0k 时向上平移;当0>k 时向下平移。 (2)抛物线2 )(h x a y +=的图像是由抛物线2 y ax =的图像平移h 个单位而得到 的。当0>h 时向左平移;当0k 时向上平移;当0>k 时向下平移;当0>h 时向左平移;当0

3.二次函数的最值公式: 形如 c bx ax y ++=2 的二次函数。时当0>a ,图像有最低点,函数有最小值 a b ac y 442-= 最小值 ;时当0?时抛物线与x 轴有两个交点;当0=?抛物线与x 轴有一个交点;当 0

二次函数的实际应用----最值问题以及设计方案问题

二次函数的实际应用——最大(小)值问题 知识要点: 二次函数的一般式c bx ax y ++=2 (0≠a )化成顶点式a b a c a b x a y 44)2(2 2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当a b x 2-=,a b ac y 442-=最小值; 当0 B. 0,0a h >> C. 0,0a k >> D. 0,0a k << 5.函数92 +-=x y 。当-2

(文章)应用二次函数求实际问题的最值

应用二次函数求实际问题的最值 运用二次函数解决实际问题中的最大(小)值问题是近几年来各地中考命题的一个热点,解决这类问题的关键是从实际问题中抽象出二次函数的模型,然后再应用二次函数的有关性质去寻找实际问题的最佳答案,请看几个典型的例子. 例1. 张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米. (1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围). (2)当x 为何值时,S 有最大值?并求出最大值. (参考公式:二次函数2 y ax bx c =++(0a ≠),当2b x a =-时,2 44ac b y a -=最大(小)值) 分析:(1)由矩形的面积公式建立函数关系式;(2)利用二次函数的顶点坐标公式求解. 解:(1)由题意得(322)S AB BC x x ==- ,2232S x x ∴=-+; (2)20a =-< ,S ∴有最大值.32822(2)b x a ∴=-=-=?-. 2243212844(2) ac b S a --===?-最大值,8x ∴=时,S 有最大值是128. 说明:解决几何类问题时,图形的有关公式是寻找解题思路的有效途径. 例2.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.

数学:二次函数图象性质应用(三九年级训练考试卷)

学生做题前请先回答以下问题 问题1:a,b,c符号与图象的关系: a的符号决定了抛物线的________,当_______时,开口________;当________时,开口________;c是抛物线与________交点的________;b的符号与a________,根据________可推导. 问题2: ①确定________符号及________的信息; ②找特殊点的___________,获取等式或不等式; ③________代入不等式,组合判断残缺式符号.(残缺型式子是指不同时含有a,b,c三个系数的式子,例如有时式子中只含有a,b时,我们就称之为残缺式或残缺型) 二次函数图象性质应用(三) 一、单选题(共6道,每道16分) 1.二次函数图象的一部分如图所示,其对称轴为直线,且过点 .下列说法:①;②;③;④若是抛物线上的两点,则.其中正确的是( ) A.①② B.②③ C.①②④ D.②③④ 2.小轩从如图所示的二次函数的图象中,观察得到如下四个结论: ①;②;③;④.其中正确的结论是( )

A.①②③ B.②③④ C.①②④ D.①②③④ 3.已知二次函数的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).下列结论:①;②b-2a=0;③;④. 其中正确的是( ) A.③ B.②③ C.③④ D.①② 4.已知二次函数的图象如图所示,有下列结论: ①;②2a+b=0;③;④.其中正确的有( )

A.1个 B.2个 C.3个 D.4个 5.抛物线的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图.则以下结论:①;②; ③c-a=2;④方程有两个相等的实数根.其中正确的有( ) A.1个 B.2个 C.3个 D.4个 6.已知二次函数的图象经过(),(2,0)两点,且,图象与y轴正半轴的交点在(0,2)的下方.则下列结论:①;②; ③;④.其中正确的是( ) A.①② B.②③ C.①②④ D.①②③④

二次函数最大利润应用题(含答案)

二次函数最大利润应用题 参考答案与试题解析 1.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、 线段CD分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2 (单位:元) 与产量x(单位:kg)之间的函数关系. (1)请解释图中点D的横坐标、纵坐标的实际意义; (2)求线段AB所表示的y 1 与x之间的函数表达式; (3)当该产品产量为多少时,获得的利润最大?最大利润是多少? 【解答】解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元; (2)设线段AB所表示的y 1与x之间的函数关系式为y=k 1 x+b 1 , ∵y=k 1x+b 1 的图象过点(0,60)与(90,42), ∴ ∴, ∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90); (3)设y 2与x之间的函数关系式为y=k 2 x+b 2 , ∵经过点(0,120)与(130,42), ∴, 解得:, ∴这个一次函数的表达式为y 2 =﹣0.6x+120(0≤x≤130), 设产量为xkg时,获得的利润为W元, 当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250; 当90≤x≤130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535, 由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,∴当x=90时,W=﹣0.6(90﹣65)2+2535=2160, 因此当该产品产量为75kg时,获得的利润最大,最大值为2250.

二次函数图像性质及应用

.. 二次函数图象性质及应用 一选择题 1.已知抛物线y=﹣x2+2x﹣3,下列判断正确的是() A.开口方向向上,y 有最小值是﹣2 B.抛物线与x轴有两个交点 C.顶点坐标是(﹣1,﹣2) D.当x<1 时,y 随x增大而增大 2.若二次函数y=x2+bx+5 配方后为y=(x-2)2+k,则b、k 的值分别为() A.0、5 B.0、1 C.﹣4、5 D.﹣4、1 3.将抛物线先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是 A. B. 3 y2- - )2 y2- =x + (5 =x D.3 (52+ )2 (5 - =x )2 y C. 3 4.把抛物线y=﹣2x2+4x+1 图象向左平移2个单位,再向上平移3个单位,所得的抛物线函数关系式是() A.y=﹣2(x-1)2+6 B.y=﹣2(x-1)2﹣6 C.y=﹣2(x+1)2+6 D.y=-2(x+1)2-6 5.函数y=ax+b 和y=ax2+bx+c 在同一直角坐标系内的图象大致是() A. B. C. D. 6.二次函数y=ax2+bx+c 的图象如图,则a bc,b2﹣4ac,2a+b,a+b+c 这四个式子中,值为正数的有() A.4 个 B.3 个 C.2 个 D.1 个 第6题图第8题图 7.二次函数y=ax2+bx+c 对于x的任何值都恒为负值的条件是() A.a>0,△>0 B.a>0,△<0 C.a<0,△>0 D.a<0,△<0 8.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是() A.y=x2-x-2 B.y=﹣x2﹣x+2 C.y=﹣x2﹣x+1 D.y=﹣x2+x+2

二次函数的实际应用(利润最值问题)

第3课时 二次函数的实际应用——最大(小)值问题 知识要点: 二次函数的一般式c bx ax y ++=2 (0≠a )化成顶点式a b a c a b x a y 44)2(2 2-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当a b x 2-=,a b ac y 442-=最小值; 当0

2021中考数学专题08 二次函数在实际应用中的最值问题

专题二次函数在实际应用中的最值问题 1、某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率; (2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y (元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大? (3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元? 2、农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表: (1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式; (2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大? (3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)3、怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元. (1)该店每天卖出这两种菜品共多少份;

(2)该店为了增加利润,准备降低A 种菜品的售价,同时提高B 种菜品的售价,售卖时发现,A 种菜品售价每降0.5元可多卖1份;B 种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少. 4、“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现, 影城每天售出的电影票张数y (张)与电影票售价x (元/张)之间满足一次函数: y=﹣4x+220(10≤x≤50,且x 是整数),设影城每天的利润为w (元)(利润=票房收入﹣运营成本). (1)试求w 与x 之间的函数关系式; (2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元? 5、把函数21:23(0)C y ax ax a a =--≠的图象绕点(,0)P m 旋转180,得到新函数2C 的图 象,我们称2C 是1C 关于点P 的相关函数.2C 的图象的对称轴与x 轴交点坐标为(,0)t . (1)填空:t 的值为 (用含m 的代数式表示) (2)若1a =-,当12 x t ≤≤时,函数1C 的最大值为1y ,最小值为2y ,且121y y -=,求2C 的解析式; (3)当0m =时,2C 的图象与x 轴相交于,A B 两点(点A 在点B 的右侧).与y 轴相交于点D .把线段AD 原点O 逆时针旋转90,得到它的对应线段''A D ,若线''A D 与2C 的图象有公共点,结合函数图象,求a 的取值范围. 6、湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养 天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本). (1)设每天的放养费用是万元,收购成本为万元,求和的值; (2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可

二次函数图像性质及应用

. . . .. . 二次函数图象性质及应用 一选择题 1.已知抛物线y=﹣x2+2x﹣3,下列判断正确的是() A.开口方向向上,y 有最小值是﹣2 B.抛物线与x轴有两个交点 C.顶点坐标是(﹣1,﹣2) D.当x<1 时,y 随x增大而增大 2.若二次函数y=x2+bx+5 配方后为y=(x-2)2+k,则b、k 的值分别为() A.0、5 B.0、1 C.﹣4、5 D.﹣4、1 3.将抛物线先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是 A. B. 3 (52+ )2 )2 =x D.3 (5 + =x y2- - y2- - y C. 3 =x (5 )2 4.把抛物线y=﹣2x2+4x+1 图象向左平移2个单位,再向上平移3个单位,所得的抛物线函数关系式是() A.y=﹣2(x-1)2+6 B.y=﹣2(x-1)2﹣6 C.y=﹣2(x+1)2+6 D.y=-2(x+1)2-6 5.函数y=ax+b 和y=ax2+bx+c 在同一直角坐标系内的图象大致是() A. B. C. D. 6.二次函数y=ax2+bx+c 的图象如图,则a bc,b2﹣4ac,2a+b,a+b+c 这四个式子中,值为正数的有() A.4 个 B.3 个 C.2 个 D.1 个 第6题图第8题图 7.二次函数y=ax2+bx+c 对于x的任何值都恒为负值的条件是() A.a>0,△>0 B.a>0,△<0 C.a<0,△>0 D.a<0,△<0 8.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是() A.y=x2-x-2 B.y=﹣x2﹣x+2 C.y=﹣x2﹣x+1 D.y=﹣x2+x+2

二次函数性质一览表

二次函数性质一览表 表达式(a≠0) a值图像 开 口 方 向 对称 轴 顶点 坐标增减性最值举例 ① y=ax2a>0 向 上 y轴 (0, 0) ①当x>0 时,y随x的 增大而增大 ②当x<0 时,y随x的 增大而减小 当x=0 时,y 有最小 值,即 y最小值=0 y= 4 3x2 y=3x2 a<0 向 下 y轴 (0, 0) ①当x>0 时,y随x的 增大而减小 ②当x<0 时,y随x的 增大而增大 当x=0 时,y 有最大 值,即 y最大值=0 y=-5x2 y= 3 1 x2 ② y=ax2+ k a>0 向 上 y轴 (0, k) ①当x>0 时,y随x的 增大而增大 ②当x<0 时,y随x的 增大而减小 当x=0 时,y 有最小 值,即 y最小值=k y=4x2+5 y=3x2-1 a<0 向 下 y轴 (0, k) ①当x>0 时,y随x的 增大而减小 ②当x<0 时,y随x的 增大而增大 当x=0 时,y 有最大 值,即 y最大值=k y=-2x2+3 y=-3x2-2 ③ y=a(x-h)2a>0 向 上 直线 x=h (h, 0) ①当x>h 时,y随x的 增大而增大 ②当x<0 时,y随x的 增大而减小 当x=h 时,y 有最小 值,即 y最小值=0 y=2(x-3 )2 y= 2 1(x+2 )2

a <0 向下 直线x=h (h ,0) ①当x >h 时,y 随x 的增大而减小 ②当x <0时,y 随x 的增大而增大 当x=h 时,y 有最大 值,即 y 最大值=0 y=-3(x-2)2 y=-2(x+1)2 ④y=a(x-h)2+k a >0 向上 直线x=h (h ,k ) ①当x >h 时,y 随x 的增大而增大 ②当x <h 时,y 随x 的增大而减小 当x=h 时,y 有最小 值,即 y 最小值=k y=5(x-2)2+1 y=2(x-1)2-3 y=3(x+1)2+2 y=4(x+2)2-4 a <0 向下 直线x=h (h ,k ) ①当x >h 时,y 随x 的增大而减小 ②当x <h 时,y 随x 的增大而增大 当x=h 时,y 有最大 值,即 y 最大值=k y=-2(x-1)2+3 y=-3(x-2)2+1 y=-4(x+1)2+3 y=-5(x+2)2+4 ⑤ y=ax 2+bx+c 可化为: y=a(x+ ) 2a b 2+a b a c 442 - a >0 向上 直线x=-a b 2 (-a b 2, a b ac 442 -) ①当x >-a b 2时, y 随x 的增大而增大 ②当x <-a b 2时,y 随x 的增大而减小 当x=-a b 2时,y 有最小值,即y 最小值=a b a c 442 - y=2x 2+3x +4 y=3x 2-3x +4 y=4x 2-3x -4 y=5x 2+3x -4

二次函数的最值及其应用

二次函数的最值及其应用 若自变量是全体实数,则当x=-a b 2时,y 最值= 2 44ac b a - (2008年南京市中考题)已知二次函数y=x2+bx+c 中,函数y 与自变量x 的部分对应值如下表: x … -1 0 1 2 3 4 … y … 10 5 2 1 2 5 … (1)求该二次函数的关系式; 当x 为何值时,y 有最小值,最小值是多少? 分析:(1)任选表中两组对应值待入y=x2+bx+c 可求b 、c 。(2)得出y=x2+bx+c 后代x=-a b 2时,y 最值= 2 44ac b a - 解:(1)根据题意,当x=0时,y=5;当x=1时,y=2。 所以???++==c b c 125 解得???=-=54 c b 所以,该二次函数关系式为y=x2-4x+5 (2)因为y=x2-4x+5,所以当x=124 ?- =2时,y 有最小值,最小值为 1 44 5142 ?-??=1 一、 求实际问题中的二次函数的最值 例2 (2008年黄冈市中考题) 四川汶川大地震发生后,我市某工厂A 车间接到生产一批帐篷的紧急任务,要求必须在12天(含12天)内完成。已知每项帐篷的成本价为800元,该车间平时每天能生产帐篷20顶。为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高。这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶,由于机器损耗等原因,当每天生产的帐篷数达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元。设生产这批帐篷的时间为x 天,每天生产的帐篷为y 顶。 (1) 直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2) 若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那 一天的全部利润捐献给灾区,设该车间每天的利润为W 元,试求出W 与x 之间的函数关系式,并求出该车间捐献给灾区多少钱? 分析:(1)由题意直接列出。(2)当1≤x ≤5时,由一次函数的增减性得W 的最大值;当5<x ≤12时,由二次函数的增减性得W 的最大值。 解:(1)y=2x+20(1≤x ≤12) (2)当1≤x ≤5时, W=(1200-800)×(2x+20)=800x+8000

九年级数学:二次函数图象性质应用练习

九年级数学:二次函数图象性质应用练习 学生做题前请先回答以下问题 问题1:___________是研究函数、方程、不等式等的一种重要手段. ①二次函数对称性:两点对称,则______相等;纵坐标相等,则两点______;由 (x 1,y 1 ), (x 2,y 1 )知,对称轴为直线_________. ②二次函数增减性:y值比大小、取最值,常利用__________,借助____________求解. 问题2:利用数形结合,计算二次函数最值问题的具体操作是: 先判断______、______,再结合______、______,确定最值. 二次函数图象性质应用(二) 一、单选题(共10道,每道10分) 1.在二次函数中,当时,y的最大值和最小值分别是( ) A.0,-4 B.0,-3 C.-3,-4 D.0,-2 2.已知二次函数,当时,y的取值范围是__________;当 时,则y的取值范围是_________.( ) A., B., C., D., 3.已知点和点是抛物线上的两点,且,则m的

取值范围是( ) A. B. C. D. 4.已知二次函数,当x>1时,y随x的增大而增大,则m的取值范围是( ) A.m=-1 B.m=3 C. D. 5.已知二次函数,当时,y随x的增大而增大,则实数a的取值范围是( ) A. B. C. D. 6.当时,二次函数有最大值4,则实数m的值为( ) A. B. C. D. 7.当时,二次函数有最小值2,则实数m的值为( )

A.1 B.3或-3 C.1或-3 D.0,1或3 8.已知二次函数(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为( ) A.1或-5 B.-1或5 C.1或-3 D.1或3 9.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论: ①abc>0; ②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有( ) A.5个 B.4个 C.3个 D.2个 10.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0).下列结论:①ab<0;②b2>4a;③0-1时,y>0.其中正确结论的个数是( )

二次函数的应用(最值问题)

二次函数的应用(最值问题) 教学目标: 知识与技能:利用二次函数y=ax2+bx+c(a≠0)的图象与性质解决简单的实际问题。能理解函数图象的顶点、端点与最值的关系,并能应用这些关系解决实际问题。 过程与方法: 1、能将实际问题转化为二次函数问题,进而建立数学模型解决,从中体会数学建模的思想和数学来源于生活又服务于生活。 2、从“数”(解析式)和“形”(图象)的角度理解二次函数与实际生活中“最值“问题之间的联系,体会”数形结合“的思想。 情感态度:通过用二次函数解决实际生活中的问题,体验函数知识的实际应用价值,感受数学与人类生活的密切联系。 重点:应用二次函数解决实际生活及几何图形中有关的最值问题。 难点: 1、正确构建数学模型。 2、对函数图象顶点、端点与最值关系的理解与应用。 教学方法与手段: 由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启 发探究式“为主线开展教学活动,解决问题。以学生动手动脑探究为主,必要时加以 小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到”不 但使学生学会,而且使学生会学“的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。 教学过程: 一、复习导入: 1、二次函数y=ax2+bx+c(a≠0)的图象是一条___,他的对称轴是﹍﹍,顶点坐标是﹍﹍。 2、当a>0时,抛物线开口向﹍,有最﹍点,当x=﹍时,函数有最﹍值是﹍﹍;当a<0时,抛物线开口向﹍,有最﹍点,当x=﹍时,函数有最﹍值,是﹍﹍。

二、探究问题 问题一:利润最值问题 提问:利润公式?利润=(售价-进价)×销售量 出示问题: 小丽、小强和小红到某超市参加社会实践活动,在活动中他们参与了某种水果的销售工作。已知该水果的进价为8元/千克,下面是他们在活动结束后的对话。 小丽:如果以10元/千克的价格销售,那么每天可售出300千克。 小强:如果每千克的利润为3元,那么每天可售出250千克。 小红:如果以13元/千克的价格销售,那么每天可获取利润750元。 (1)请根据他们的对话填写下表 (2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系?并求y(千克)与x(元)的函数关系式。 (3)设该超市销售这种水果每天获取的利润为W元,求W与x之间的函数关系式。当销售单价为何值时,每天可获得的利润最大?最大利润是多少元? (4)若物价部门规定,这种水果的售价不能高于11元/千克,当销售单价为何值时,每天可获得的利润最大?最大利润是多少元? 让学生小组活动,并让学生说出每一个信息是由哪一句话得出的?如何想的?然后独立求出解析式并小组订正,最后独立求出最值,集体板演订正。最后一问教师引导得出。 小结:对于二次函数求最值问题应设一个量为自变量x,所求问题为函数,建立二次函数模型,写出函数关系式。要注意自变量的取值范围,在取值范围内利用顶点或端点求最值。 问题二:线段长度最值问题 如图,抛物线y=-5/4x2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于 另一点B,过点B作BC⊥x轴,垂足为点 C(3,0)。

相关文档
最新文档