近红外分析仪的概述

近红外分析仪的概述
近红外分析仪的概述

近红外光谱仪的文献综述

1、近红外光谱仪的发展概况

英国科学家William在1800年发现热线,也就是红外线。但是第一台实验用红外光谱分析设备的发明却是在二战前夕。二战结束后,红外光谱仪迎来了飞速发展。红外光谱分为三类:近红外(780~2500nm)、中红外(2500~25000nm)和远红外(25000~1000000nm)[1]。20世纪40年代出现了第一台商用红外光谱仪[2]。但是直到80年代我国才开始近红外光谱仪的应用研究。早期的研究中近红外谱区常常被称为“被遗忘的谱区”。当人们采用摄谱的方法获得了有机化合物的近红外光谱,并对相关基因的光谱特征进行了解析之后,这个“被遗忘的谱区”才在分析技术中占得一席之地。制造技术的提升和计算机技术的发展使得近红外分析技术也得到了飞跃。20世纪50年代,Kaye率先发明了透射式近红外光仪器[3]。早期近红外光谱仪噪声高,缺乏完善的数据处理系统。60年代,Norris 的研究工作极大地促进了近红外光谱仪器的发展。1971年,Dickey-John公司生产了第一台商用近红外光谱仪器并获得了美国专利。1975年Dickey-John公司和Technicon公司联合推出了Infra An-alyzer25型近红外光谱分析仪。这时的近红外光谱仪器在稳定性和温度补偿功能上有了很大的进步。随着微处理器的应用,仪器的测量精确度更高,数据处理系统更完善。80年代出现了高分辨率的傅里叶变换近红外光谱仪器,新技术层出不穷。90年代,声光可调滤光型近红外技术的出现,大大降低了仪器的成本[4]。此时,光纤探头在近红外技术中也得到了应用。现代的近红外光谱分析技术越来越成熟,正朝着小型化、专业化和便捷化的方向发展。

2、近红外光谱仪的原理及特点

在近红外光谱区不同物质的含氢基团(C-H、O-H、N-H等)都有不同的吸收强度和吸收峰位置。朗伯-比尔吸收定律是近红外光谱分析的理论基础:样品光谱特征随其组成成分和内在结构变换而变化[5]。近红外光谱分析技术被广泛用于石油化工、制药、农业等领域。这些行业具有现场分析的特点,所以更多的时候需要结构紧凑、体积小、重量轻的便携式近红外光谱分析仪。近红外分析技术是一门现代分析技术[6],它集合了化学计量学、光谱学和计算机应用等学科。

近红外光谱最主要的技术特点:第一、分析速度很快,大部分的测量可以在1分钟之内完成。第二、分析效率比较高,可以对样品的多个组成成分和性质进行定性、定量的测量。第三,适用样品的范围比较广,可以对液体、固体等不同状态的样品进行测量[7]。

3、近红外光谱仪的分类

近红外光谱仪器的基本结构与一般光谱仪器一样,都是由光源系统、分光系统、样品室、检测器、控制和数据处理系统及记录显示系统组成。根据光的分光方式,近红外光谱仪可分为滤光片型、色散型(光栅、棱镜)、傅里叶变换型(FT)、声光可调滤光型(AOTF)和固定光路多通道检测型五种类型。

3.1滤光片型近红外光谱仪

滤光片型近红外光谱仪可分为波长固定滤光片和波长可扫描滤光片两种形

式。而用得较多的是波长固定滤光片型,它又可分为滤光片固定不动设计方式和通过旋转滤光片架切换波长设计方式。固定滤光片型光谱仪是光谱仪器的最早设计形式[8]。这类仪器工作过程是由光源发出的光经滤光片得到一定带宽的单色光,通过与样品作用后由检测器检测。该类仪器的特点是设计简单、成本低、光通量大、信号记录快、坚固耐用;且可根据需要在固定几个波长下进行测量,灵活方便;但这类仪器单色光的带宽较宽,波长分辨率差,如遇样品基体或温湿变化较大,往往会引起较大的测量误差,需要完善的校正系统,且所选滤光片的波长也需通过扫描型仪器对样品的全谱扫描分析才能确定。第一台商用近红外光谱仪器就是在1971年由Dickey-John公司生产的、使用了6个固定波长滤光片的滤光片型近红外光谱仪。随着滤光

片性能的提高和校正技术发展,这类仪器已广泛用于专用或便携式仪器上,也是近红外光谱技术普及应用的重要发展方向。

3.2色散型近红外光谱仪

近红外光谱仪器的光路系统与紫外-可见光谱仪器的设计基本相同,厂家出于商业利益的考虑,早期近红外测试都是在紫外-可见光谱仪器上的延伸,配上适当的近红外检测器,即形成紫外-可见-近红外分光光度计[4]。如Cary-2300(Varian公司)型,Lambda-9(Perkin-Elamer)型,上海分析仪器厂的710型紫外-可见-近红外分光光度计。现在这种设计方式仍被广泛采用,如北京普析通用公司的TU-1800系列;日立公司的U-4100系列。在这些仪器中,近红外谱区的光源与可见区共用钨灯,单色器采用谱区扩展的光栅和棱镜系统,仅是检测器不同—可见光区采用光电倍增管;近红外谱区采用PbS或硅基检测器(一般在近红外长波区域采用以PbS为光敏元件的检测器,在短波区域采用以硅基为光敏元件的检测器)[8],由继电器或步进电机与谱区同步切换检测器[4]。为了获得较高的分辨率,现代色散型光谱仪器中多使用全息光栅作为光学元件,通过光栅的转动,使单色光按照波长长短依次通过样品室,进入检测器检测。这类仪器的特点是可进行全谱扫描,分辨率较高,仪器价位适中,便于维护;主要缺点是扫描速度慢。但随着光谱技术的不断发展,如使用大口径振动凹面光栅或多通道检测器,使这类仪器的扫描速度已与傅里叶变换型光谱仪相差不多,而且还出现了便携式色散型近红外光谱仪,如吉林大学智能仪器与测控技术研究所自行研制了便携式单光路光栅扫描近红外光谱矿物分析仪,波长范围1300~2500nm,光谱分辨率7nm,波长准确性和重现性均<2nm,全谱扫描时间<70s,重量<5kg。

3.3傅里叶变换型近红外光谱仪

20世纪70年代傅里叶变换技术在中红外光谱仪器上的应用使红外光谱仪器的性能得到革命性的变化,进入20世纪80年代后傅里叶变换红外光谱已成为红外光谱仪器的主导产品。借助于研制中红外光谱仪器的技术,通过调整光源、分束器和检测器,并配合适当的软件,傅里叶变换型近红外光谱仪器应运而生。傅里叶变换型近红外光谱仪的主要光学部件是迈克尔逊(Michelson)干涉仪,其作用是使光源发出的光分成两束后造成一定的光程差再使之复合以产生干涉,所得的干涉图包含了光源的全部频率和强度信息。利用模数(A/D)转换器、计算机、数模(D/A)转换器及傅里叶变换快速计算,可将时域干涉图转化为以波数(或波长)为横坐标的频域光谱,即一般的光谱图。傅里叶近红外光谱仪在近红外区工作时,需选用合适的光源、分束器与检测器。在近红外谱区工作时常用钨灯作为光源;

常用分束器有石英分束器、CaF-Si分束器、KBr-Ge分束器等;常用检测器有PbS,InSb,InAs,Si和Ge检测器等。傅里叶变换型近红外光谱仪器与其他类型仪器相比,由于具有信噪比高、分辨率高、波长准确且重复性好、稳定性好等优点,而往往作为研究型仪器的首选。当然,由于其重要部件—迈克尔逊干涉仪中有移动部件,所以需要较稳定的工作环境。近几年推出的傅里叶变换型近红外光谱仪器对干涉仪作了改进,近似地消除了移动部件的需要,提高了仪器的使用稳定性。

3.4声光可调滤光型近红外光谱仪

声光可调滤光型近红外光谱仪器被认为是20世纪90年代近红外光谱技术最突出的进展,其分光系统是根据各向异性双折射晶体声光衍射原理,采用有较高的声光品质和较低声衰减的双折射晶体(常用的双折射晶体有TeO2、石英和锗等,而TeO2由于具有较高的声光品质因素被广泛采用)制成的。由于对一固定的超声波频率,仅有很窄的光谱带被衍射,因而连续改变超声频率就能实现衍射光波的快速扫描。这种声光作用早在20世纪30年代初就已经得到实验的证实,并从理论上加以阐述,但其得到实际应用还是最近20年的事情,目前在国防和工业领域中正得到越来越广泛的应用。由于采用声光器件分光,该仪器的最大特点是无机械移动部件,测量速度快、精度高、准确性好,提高工作的可靠性和维修费用,可以稳定地长时间工作。它的分辨率也很高,目前可以达到0.01nm;波长调节速度快,一般4000波长·s-1。声光可调滤光型近红外光谱仪的这些优点使其近年来在工业在线分析和便携式测量中得到越来越多的应用[9]。德国BRAN& LUEBBE公司推出的声光可调滤光型近红外光谱仪器成功地用于在线分析,其波长范围为900~1700nm;Brimrose公司推出的声光可调滤光型近红外光谱仪器波长从650~2200nm,扫描速度达4000波长点·s-1;天津市先石光学技术有限公司推出的乳品成分快速分析仪和近红外成分监测仪声光可调滤光型近红外光谱仪器光谱范围为1100~2200nm,光谱分辨率为4nm,波长精确度为0.5nm,波长重复性为0.01nm,波长转换时间<250μs,扫描速度为4000波长点·s-1[10]。美国Brimrose 公司和Jet Propulsion实验室联合设计一种微型电晶体近红外光谱仪,这种基于AOTF的反射型近红外微型光谱仪主要用于航天领域,使用发光二极管(LED)阵列作为光源,光纤作为光波传输介质,该光谱仪重量<250g,扫描速度达4000波长点·s-1。

3.5固定光路多通道检测型近红外光谱仪

固定光路多通道检测型近红外光谱仪器是20世纪90年代发展起来的一类仪器,其原理是光源发出的光先经过样品池,再由光栅分光,光栅不需转动,经光栅色散的光聚焦在多通道检测器的焦面上同时被检测。在近红外短波区域使用的多通道检测器有两种:一种是二极管阵列(PDA)检测器,另一种是采用CCD检测器。这类仪器采用全息光栅分光,加之检测器的通道数达1024或2048个,可获得很高的分辨率。由于检测器对所有波长的单色光同时检测,在1秒钟内可完成几十次或上百次的扫描累加,从而得到较高的信噪比和灵敏度[11]。采用全谱信息,可以方便地进行定性和定量分析。由于仪器光路固定,整个仪器内无移动性部件,仪器波长精度和重现性得到保证,使用的耐久性和可靠性得到提高。因此,这类仪器也很适合作为现场分析仪器和在线分析仪器使用。

[1]王学琳,孙淑萍,铁梅.现代仪器,1991,(6):1.

[2] Williams P,Norris K.Near-Infrared Technology in the Agricultural and Food Industries.Second Edition.Minnesota:American Association of Cereal Chemists,Inc,2001.109.

[3] Kaye W.Spectrochim.Acta,1955,7:181.

[4] 严衍禄,赵龙莲,韩东海,等.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005.82.

[5] 中华人民共和国国家技术监督局,GB 8322-87,中华人民共和国国家标准—分子吸收光谱法术语,北京:中国标准出版社,1987.

[6] Abney W.,Festing,E.R.,On the Influence of the Atomic Grouping in the Molecules of Organic Bodies on their Absorption in the Infra-Red Region of the Spectrum,Philosophical Transactions,1881,172:887.

[7] 高振洪.近红外光谱分析仪器的应用与发展.科技创新导报,2012.02:27.

[8] 徐文爱,袁洪福,等.现代科学仪器,1997,(3):9.

[9]Finch P.Measurement & Control,1994,27(5):138.

[10] 何嘉耀,彭荣飞,张展霞.光谱学与光谱分析,2002,22(1):67.

[11] 柯以侃,董慧茹,分析化学手册第三分册-光谱分析,北京:化学工业出版社,1998,176.

原子吸收光谱仪

原子吸收光谱仪高效、精确、可靠 Agilent 200 系列原子吸收系统

2Agilent 240Z AA Agilent 240FS AA 原子吸收解决方案系列 –A gilent 240 AA 将灵活性和硬件的可靠性相结合,为预算有限的用户提供高性价比的高性能火焰/石墨炉/氢化物分析原子吸收仪器 –A gilent 240FS/280FS AA 是快速高效的火焰原子吸收系统,其快速序列式操作可将样品通量增加一倍,从而大幅降低运行成本。它们可以轻松地进行多元素分析,是食品与农业或任何高通量实验室的理想选择 –A gilent 240Z/280Z AA 塞曼石墨炉原子吸收 (GFAA) 系统高效而精确,提供优异的石墨炉性能和准确的背景校正 –A gilent Duo系统可以成倍提高您的工作效率,它能够真正实现火焰和石墨炉同时分析,没有转换延时 安捷伦 AA 系列具有高效、易用和极其可靠的特性。该系列产品具有适用于任何分析所需要的高性能,并且同样适用于重视可靠性和易用性的常规实验室。 高效、精确、可靠

3 Agilent 280FS AA Agilent 280Z AA 满足您的应用需求 安捷伦始终致力于为您的应用提供有效的解决方案。我们的各种技术、平台和专家指导可帮助您 获得成功。 FS 火焰原子吸收系统 240FS/280FS AA + SIPS 20铁、钾、镁和钠FAME (脂肪酸甲酯) 中的钠和钾(SIPS 配件提供自动校准常量元素 银和铂族元素240Z/280Z AA 纯工艺用水中的钠、钙和硅元素 铅、钴和镍 水和土壤中的有毒元素 (US EPA 方法 200.9)电子产品与塑料产品中的铅、镉和铬 (WEEE/RoHs)

近红外谷物分析仪.

仪器名称:近红外谷物分析仪 仪器型号:1241 仪器产地:丹麦 生产厂家:丹麦福斯 1. 应用范围及特点: 近红外分析仪可快速检测分析小麦、大麦、玉米、油菜籽、大豆、花生、豆粕、低温谷物、面粉、植物油等样品中的水分、蛋白质、水溶性氮、脂肪、纤维、灰分等相关成分。并可无损检测颗粒状、粉末状、膏状、液体、植物块茎等多种形式样品。 2. 主要技术指标: 2.1测定时间:1-5秒 2.2样品方式:颗粒、粉末状、膏状体、液体、植物块茎等样品均可检测。液体和膏状体样品可自动进出料并自动控温。 2.3工作方式:非接触性、对颗粒状及粉状样品采用敞开式漫反射检测,对液体等透明样品采用透反射式检测,采用二极管阵列铟镓砷检测器、固定光栅连续扫描多通道检测 2.4波长范围:900-1700 nm,波长准确度< 0.3 nm,波长精度< 0.15 2.5光谱扫描速度:100次/秒 2.6光学系统:内置汞灯参考光源,固定光栅,二极管阵列检测器 2.7测量精度:测量相对误差< 3%,绝对误差< 0.3% 2.8内部接口:LAN网络接口,2个USB端口以及打印机端口 2.9内置独立工作计算机:Windows XP操作系统,Pentium Ⅲ 1G 处理器,30G硬盘,256M 的内存,10/100网卡,液晶触摸式显示屏和内置虚拟键盘。日常操作软件Simplicity,可进行定量分析和仪器校准工作,操作简便,具有建立、组合、修正定标曲线和开机自检、结果显示、异常样品标示功能,可升级。 2.10联网功能:可实现数据传输,仪器维护,远程诊断等功能 2.11检测样品量:1g -300g 2.12环境温度:5 - 35℃ 2.13电源要求:220伏,AC,+ 10V;50Hz 3. 基本配置: 3.1主机1台 3.2触摸式显示屏1个 3.3零配件:聚光灯1件,空气过滤器4件,参考清洁组件1件,保险6件。 本机不需专用工具

荧光光谱分析仪工作原理

X 荧光光谱分析仪工作原理 用x 射线照射试样时,试样可以被激发出各种波长得荧光x 射线,需要把混合得x 射线 按波长(或能量)分开,分别测量不同波长(或能虽:)得X 射线得强度,以进行左性与定疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一泄波长,同时又有一立能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图. 用X 射线照射试样时,试样可以被激发出各种波长得荧光X 射线,需要把混合得X 射 线按波长(或能疑)分开,分别测量不同波长(或能量)得X 射线得强度,以进行定性与左疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一左波长,同时又有一左能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图。 (a )波长色散谱仪 (b )能虽色散谱仪 波长色散型和能量色散型谱仪原理图 现将两种类型X 射线光谱仪得主要部件及工作原理叙述如下: X 射线管 酥高分析器 分光晶体 计算机 再陋电源

丝电源 灯丝 电了悚 X则线 BeiV 輪窗型X射线管结构示意图 两种类型得X射线荧光光谱仪都需要用X射线管作为激发光源?上图就是X射线管得结构示意图。灯丝与靶极密封在抽成貞?空得金属罩内,灯丝与靶极之间加高压(一般为4OKV), 灯丝发射得电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生得一次X射线, 作为激发X射线荧光得辐射源.只有当一次X射线得波长稍短于受激元素吸收限Imi n时,才能有效得激发出X射线荧光?笥?SPAN Ian g =EN-U S >lmin得一次X射线其能量不足以使受激元素激发。 X射线管得靶材与管工作电压决立了能有效激发受激元素得那部分一次X射线得强度。管 工作电压升高,短波长一次X射线比例增加,故产生得荧光X射线得强度也增强。但并不就是说管工作电压越髙越好,因为入射X射线得荧光激发效率与苴波长有关,越靠近被测元素吸收限波长,激发效率越髙。A X射线管产生得X射线透过彼窗入射到样品上, 激发岀样品元素得特征X射线,正常工作时,X射线管所消耗功率得0、2%左右转变为X 射线辐射,其余均变为热能使X射线管升温,因此必须不断得通冷却水冷却靶电极。 2、分光系统 第?准讥器 平面晶体反射X线示意图 分光系统得主要部件就是晶体分光器,它得作用就是通过晶体衍射现彖把不同波长得X射线分开.根据布拉格衍射左律2d S in 0 =n X ,当波长为X得X射线以0角射到晶体,如果晶面间距为d,则在出射角为0得方向,可以观测到波长为X =2dsi n 0得一级衍射及波长为X/2, X /3 ------ ―等髙级衍射。改变()角,可以观测到另外波长得X

红外光谱分析仪基础知识全解

红外光谱分析仪基础知识 前言 (2) 第一章红外光谱法及相关仪器 (4) 一. 红外光谱概述 (4) 1. 红外光区的划分 (4) 2. 红外光谱法的特点 (5) 3. 产生红外吸收的条件 (5) 二. 红外光谱仪 (6) 1. 红外光谱仪的主要部件 (6) 2. 红外光谱仪的分类 (9) 3. 红外光谱仪各项指标的含义 (12) 三.红外光谱仪的应用 (15) 四.红外试样制备 (16) 四.红外光谱仪的新进展 (17)

前言 分析仪器常使用的分析方法是光谱分析法,光谱分析法可分为吸收光谱分析法和发射光谱分析法,而吸收光谱分析法又是目前应用最广泛的一种光谱分析方法:它包括有核磁共振,X射线吸收光谱,紫外-可见吸收光谱,红外光谱,微波谱,原子吸收光谱等。但最常用的则是原子吸收光谱、紫外-可见吸收光谱和红外光谱,这些方法的最基本原理是物质(这里说物质都是指物质中的分子或原子,下同)对电磁辐射的吸收。还有拉曼光谱和荧光光谱,也是比较常用的手段,它们的原理是基于物质发射或散射电磁辐射。其实物质与电磁辐射的作用还有偏振、干涉、衍射等,由此发展而成的是另外一系列的仪器,如椭偏仪、测糖仪、偏光显微镜、X射线衍射仪等等,这些仪器都不是基于光谱分析法,不是我们介绍的重点。 吸收光谱可分为原子吸收光谱和分子吸收光谱。当电磁辐射与物质相互作用时,就会发生反射、散射、透射和吸收电磁辐射的现象,物质所以能够吸收光是由物质本身的能级状态所决定的。例如原子吸收可见光和紫外光,可以使核外电子由基态跃迁到激发态,相应于不同能级之间的跃迁都需吸收一定波长的光。因此,如有一波长连续的光照射单原子元素的蒸气(如汞蒸气、钠蒸气等),将会产生一系列的吸收谱线。由于在一般情况下原子都处于基态,通常只有能量相当于从基态跃迁到激发态的所谓主系谱线出现在原子的吸收光谱中。 而分于吸收光谱则比较复杂。它们不是分立的谱线而是许多吸收带。因为每一个分子的能量包括三部分,即分子的电子能量、振动能量和转动能量。每一种能量都是量子化的。当电子有一种能级跃迁到另一能级时,可能同时还伴有振动能级和转动能级的跃迁。应此分子吸收光谱是一系列的吸收带。通常引起原子或分子中外层价电子的跃迁需要1.5-8.0ev的能量,其相应的辐射波长在 150nm-800nm之间,这是紫外-可见吸收光谱的波长范围。引起振动跃迁或振动-转动跃迁的能量是0.05-1.2ev,相应的辐射波长在1.0-25μm之间,这是红外光谱的范围。

AntarisII傅立叶变换近红外分析仪-ThermoFisherScientific

Antaris II傅立叶变换近红外分析仪 Antaris II是ThermoFisher分子光谱部(Nicolet)推出的最新一代专业傅立叶变换近红外光谱系统,该仪器为制药、高分子、化工化学、烟草、农业食品等领域的样品分析提供了全新、可靠、快速方便的分析工具。 1.新的设计理念和标准 y结构化的模块设计,即一台仪器上可同时集成积分球漫反射、透射、光纤探头、漫透射检测模块,各检测模块采用各自独立的高灵敏度InGaAs检测器; y建立在高可靠性和稳固性基础上的高性能 y强调高重现性,包括系统自身重现性和系统间重现性(模型数据资源共享) y高适应能力,可用于实验室,也可用于工厂车间,灵活的发挥NIR技术的优势 2.优越性 y建立在Nicolet成熟和先进的傅立叶红外制造工艺和严格的认证标准基础上 y采用Nicolet专利的电磁式动态准直干涉仪技术 y精密对针定位的光学部件封装技术,免调整的永久准直 y波长准确性、重现性、系统间重现性等方面具备目前最高性能指标 y Antaris是第一个采用结构化模块设计技术的近红外仪器, Antaris II还具备同时检测药片/凝胶等样品的透射光谱和漫反射光谱的能力 y所有检测模块,包括光纤探头均能自动采集背景 y在仪器维护方面为用户考虑得更为周全,其光源只需用户自己从外部更换,且更换

后无需任何光路调整 y全新工业标准的RESULT操作系统软 件,其管理模式、拓展能力、操作方 便性、规范性均非常规实验室软件能 比 y独立的光谱化学计量学软件TQ Analyst,将复杂的数据处理和分析程 序化,将强大灵活的数据处理技术融 于直观友好的图形化界面和随处可见 的自动优化及帮助信息中 y Antaris II采用的是开放式的数据格 式,能够将各家公司的光谱数据直接 转移到其软件中 3.硬件技术 ①.干涉仪: y采用尼高力最先进的高光通量自动调整和高速动态准直(每秒13万次)技术的DSP 电磁式干涉仪,具有超高检测稳定性、可靠性和精度,是目前作为傅立叶近红外仪 器心脏部件最先进的技术; y采用CaF2分束器,在近红外光谱图的一、二、三倍倍频和合频区域(光谱范围12000-3800cm-1或833-2631nm)具有更高的能量分布。 ②.光学台: y所有光学镜面采用专利的STONEHENCE合金模块化镜面设计,光学镜面在整体合金座上用金刚石精密抛光形成,光路传输效率更高; y所有光学器件精密对针定位,完全不需要任何光路调整,具有极高的重复性、热稳定性和可靠性; y严格的系统间元器件公差限制和工艺精 度要求,是卓越模型转移精度的保证。 ③.检测器:所有采样模块均有自己独立的高 灵敏度InGaAs检测器。 ④.电子控制技术: y仪器与电脑间高速USB接口,更方便可 靠; y可通过OPC或PLC技术与实验室信息管 理系统如LIMS或工业控制系统如DCS 进行数据交换。

仪器分析实验有机化合物的红外光谱分析解读

仪器分析实验有机化合物的红外光谱分析 2015年4月21日 有机化合物的红外光谱分析 开课实验室:环境资源楼312 【实验目的】 1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作; 2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程; 3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。 【基本原理】 ? 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对物质进行定性和定量分析。特别是对化合物结构的鉴定,应用更为广泛。 ? 红外吸收法: 类型:吸收光谱法; 原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。这是因为分 子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对化合物进行定性和定量分析; 条件:分子具有偶极矩。 【仪器与试剂】 1、仪器: 傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机; 玛瑙研钵; 红外灯。 2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。 【实验步骤】 1、样品制备 (1)固体样品:KBr压片法 在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的

光谱分析仪多少钱

光谱分析仪的分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量。它符合郎珀-比尔定律A= -lg I/I o= -LgT = KCL 式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。下面就让合肥卓越分析仪器有限责任公司为您简单介绍一下光谱分析仪多少钱,希望可以帮助到您! 光谱分析仪是根据原子所发射的光谱来测定物质的化学组分的。不同物质由不同元素的原子所组成,而原子都包含着一个结构紧密的原子核,核外围绕着不断运动的电子。每个电子处于一定的能级上,具有一定的能量。在正常的情况下,原子处于稳定状态,它的能量是最低的,这种状态称为基态。但当原子受到能量(如热能、电能等)的作用时,原子由于与高速运动的气态粒子和电子相互碰撞而获得了能量,使原子中

外层的电子从基态跃迁到更高的能级上,处在这种状态的原子称激发态。 电子从基态跃迁至激发态所需的能量称为激发电位,当外加的能量足够大时,原子中的电子脱离原子核的束缚力,使原子成为离子,这种过程称为电离。原子失去一个电子成为离子时所需要的能量称为一级电离电位。离子中的外层电子也能被激发,其所需的能量即为相应离子的激发电位。处于激发态的原子是十分不稳定的,在极短的时间内便跃迁至基态或其它较低的能级上。 合肥卓越分析仪器有限责任公司是一家生产销售红外碳硫,直读光谱,智能元素分析仪,分光光度计专业化公司,公司数年来生产化学分析仪器,直读光谱分析仪,理化实验室工程,理化分析检测人员培训服务遍及全国各省市地区。 公司多年来对耐磨材料、耐热材料、球墨铸铁、球铁灰铁分析检测,分析研究投入大量人力、财力,总结丰富经验。为用户提供了可靠可行

近红外光谱仪厂家

【导语】近几年,随着化学计量学、光纤和计算机技术的发展,在线近红外光谱分析技术正以惊人的速度应用于包括农牧、食品、化工、石化、制药、烟草等在内的许多领域,为科研、教学以及生产过程控制提供了一个十分广阔的使用空间。那么今天我们一起走入下文了解一下关于近红外光谱仪。 【近红外光谱仪注意事项】 由于近红外光在常规光纤中有良好的传输特性,且其近红外光谱仪较简单、分析速度快、非破坏性和样品制备量小、几乎适合各类样品(液体、粘稠体、涂层、粉末和固体)分析、多组分多通道同时测定等特点,近红外光谱仪成为在线分析仪表中的一枝奇葩。近红外光谱仪的一个重要特点就是技术本身的成套性,即必须同时具备三个条件: (1)各项性能长期稳定的近红外光谱仪,是保证数据具有良好再现性的基本要求; (2)功能齐全的化学计量学软件,是建立模型和分析的必要工具; (3)准确并适用范围足够宽的模型。 这三个条件的有机结合起来,才能为用户真正发挥作用。因此,在购买仪器时必须对仪器提供的模型使用性有足够的认识,特别避免个别商家为推销仪器所做的过度宣传的不良诱导,为此付出代价的厂家有之,因此,一定要对厂家提供模型与技术支持情况有详细了解。 【近红外光谱仪厂家】

山东润通科技有限公司是一家致力于环境在线监测系统、数据采集传输系统、大数据云智慧平台的研发、生产、销售及技术服务为一体的高新技术企业、双软认证企业。 公司拥有多项自主知识产权与完善的体系认证,主要产品有RAIN-VI系列VOCs在线监测系统、水质在线监测系统,R-I7000系列数据采集传输系统,润通云智慧平台。 润通人本着“更用心更专业”的服务理念,为客户提供满意的产品和服务,为员工创造良好的工作和生活环境,为社会做出贡献。为改善人类环境而努力奋斗。山东润通科技有限公司是一家致力于环境在线监测系统、数据采集传输系统、大数据云智慧平台的研发、生产、销售及技术服务为一体的高新技术企业、双软认证企业。 公司拥有多项自主知识产权与完善的体系认证,主要产品有RAIN-VI系列VOCs在线监测系统、水质在线监测系统,R-I7000系列数据采集传输系统,润通云智慧平台。 润通人本着“更用心更专业”的服务理念,为客户提供满意的产品和服务,为员工创造良好的工作和生活环境,为社会做出贡献。为改善人类环境而努力奋斗。

在线近红外光谱分析仪的研制及应用

第30卷 第3期2009年3月 仪器仪表学报 Chinese Journal of Scientific I nstru ment Vol 130No 13Mar .2009  收稿日期:2008202 Received Date:2008202  3基金项目:国家自然科学基金(50574035)、浙江省重大应用电子技术和新型电子元器件专项(2007C11091)、浙江省自然科学基金人才基金 (R104315)资助项目 在线近红外光谱分析仪的研制及应用 3 叶华俊 1,2 ,刘立鹏2,夏阿林1,张学峰2,王健 1 (1 杭州电子科技大学电子信息学院 杭州 310018; 2 聚光科技(杭州)有限公司 杭州 310052) 摘 要:针对过程分析应用领域,研制了一种在线近红外光谱分析仪。详细描述了该仪器系统的主要组成结构,展现各模块 功能特点。对该仪器进行性能测试,结果显示该分析仪性能稳定,超过了USP1119(美国国家药典)规定的指标要求。实验室中的汽油样本建模实验和现场的重烷基苯与白糖应用结果表明,该仪器具有响应速度快、建模能力强、预测精度高、可同时预测多种组分、使用维护方便、维护成本低和可靠性高等优点,能够适应各种复杂的应用环境。关键词:近红外;光谱分析;在线 中图分类号:TG115.3 文献标识码:A 国家标准学科分类代码:460.40 D evelop m en t and appli ca ti on of on 2li n e near i n frared spectroscopy ana lyzer Ye Huajun 1,2 ,L iu L i peng 2,Xia A lin 1,Zhang Xuefeng 2,W ang J ian 1 (1E lectronic Infor m ation College ,Hangzhou D ianzi U niversity,Hangzhou 310018,China; 2Focused Photonics (Hangzhou ),Inc .,Hangzhou 310052,China ) Abstract:An on 2line near infrared s pectr oscopy analyzer was devel oped f or p r ocess analysis app licati ons .The fea 2tures and configurati on of the analyzer are described in detail .The perf or mance tests reveal that the analyzer perf or m s well and meets the require ments of USP1119.Further more,the analyzer has been successfully app lied t o laborat ory and field .App licati on results de monstrate that the analyzer has the merits of fast ti m e res ponse,excellent modeling capability,high accuracy and l ow maintenance cost,and can deal with comp lex industrial envir onment .Key words:near infrared;s pectr oscopy analysis;on 2line 1 引 言 近红外光谱区域按AST M 定义是指波长在780~2526n m 之间电磁波。这一区域兼备了可见光区信号容易获取与红外光区光谱分析信息量丰富两方面的优点。由于近红外区的倍频与合频吸收强度弱,光谱谱带宽而复杂,重叠严重,在早期限制了近红外光谱技术的应用。光电与计算机技术的不断发展,特别是化学计量学在分析领域的广泛应用,大大 推动了近红外分析技术的发展[1] 。 近红外光谱分析技术被誉为“多快好省的绿色 分析技术”,是最符合目前工业生产需求的一种分析技术,在发达国家被广泛应用于大型工业生产过程的在线分析。在线近红外光谱分析技术主要具有以下优势:1)仪器简单,分析速度快;2)无浪费、无污染,容易实现无损和在线检测;3)适应性广,几乎适合各类样品(液体、粘稠体、涂层、粉末和固体)分析;4)多组分多通道同时测定;5)可使用光纤,实现远程分析检测。基于以上优点,近红外光谱分析已成为现代过程分析中的主流技术之一。 经济的快速发展,必将导致生产模式由粗放型

现代近红外光谱分析仪工作原理

现代近红外光谱分析仪工作原理 现代近红外光谱分析仪工作原理 2011年02月08日 20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。如果自己建立模型,就需要操作人员了解和熟悉化学计量学知识和软件,而外商在中国的代理机构缺乏这方面的专业人才,不能有效地根据用户的需要组织培训,因此,用户对这项技术缺乏全面了解,影响到了它的推广使用。其次,进口仪器价格昂贵,售后技术服务费用也往往超出大多数用户的承受能力。 现代近红外光谱分析技工作原理 近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的。近红外光谱记录的是分子中单个化学键的基频振动的倍频和合频信息,它常常受含氢基团X-H(X-C、N、O)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。 由于倍频和合频跃迁几率低,而有机物质在NIR光谱区为倍频与合频吸收,所以消光系数弱,谱带重叠严重。因此从近红外光谱中提取有用信息属于弱信息和多元信息,需要充分利用现有的光机技术、电子技术和计算机技术进行处理。计算机技术主要包括光谱数据处理和数据关联技术。光谱数据处理是消除仪器因素(灯及测量方式等)环境因素(如温度等)和样品物态(如颜色、形态等)等对光谱的影响。常采用的方法有平滑、微分、基线漂移扣减、多元散射校正(MSC)和有限脉冲响应滤波(FIR)等也可以用小波变换来进行部分处理。数据关联技术主要是化学计量学方法。化学计量学的发展使多组分分析中多元信息处理理论和技术日益成熟,解决了近红外光谱区重叠的问题。通过关联技术可以实现近红外光谱的快速分析。在近红外光谱的应用中我们所关心的是被测样品的组成或各种物化性质,因此,如何提取这些有用信息是近红外光谱分析的技术核心。现在的许多研究与应用表明,

原子吸收光谱分析仪器原理及组成

原子吸收光谱分析仪器原理及组成 摘要 论述了原子吸收光谱分析的基本原理及仪器的主要构成,仪器主要有5部分组成:(1)光源:发射待测元素的锐线光谱:(2)原子化器:产生待测的原子蒸汽;(3)光禄系统:分光、分出共振线波长;(4)电路系统:包括信号变成电信号的转换器.放大电路.计算处理等电路;(5)显示系统等,旨在该类仪器用户逐 渐增多的情况下,获得交流和提高。 原子吸收光谱分析仪器具有灵敏度高(町达到10一~10 g/L)重复性和选择性好.操作简便、快速.结果准确、可靠。检测时样品用量少(在几微升至儿十微升之间),测量范同广(几乎能用来分析所有的金属元素和类金属元素元件)等优点。其可应用于冶金、化工、地质、农业及医药卫生等许多方面;在环境监测、食品卫生和生物机体内微量金属元素的测定以及医学和生物化学检验等应用也口益广泛。 人体中含有许多对维持正常生理过程有审要意义的金属元素,如钾、钠、钙、镁、铁、铜、锌、锰、钼和钴等。人体的血液、汗液、尿液、头发及机体组织。由于受环境和饮食污染会引进体内铅、汞、镉和砷等有害元素。埘这些金属元素的分析结果,可以反映机体内的生理过程及受环境污染中毒的情况。原子吸收光谱分析仪器既可用于血液、尿液、粪便及生物组织中微量元素的分析.也可对内脏、毛发、骨骼等 经一定处理后,进行分析测定 1 原子吸收光谱分析方法的基本原理 在自然界中.一切物质的分子均由原子组成,而原于是由一个原子核和核外电子构成。原子核内有中子和质子,质子带正电.核外电予带负电;其电子的数日和构型决定了该元素的物理和化学性质。电了按一定的轨道绕核旋转;根据电子轨道离核的距离,有不同的能量级,可分为不同的壳层。每一壳层所允许的电子数是一定的。当原子处于正常状态时.每个电子趋向占有低能量的能级,这时原子所处的状态叫基态(E0)。在热能、电能或光能的作用下,原子中的电子吸收一定的能量.处于低能态的电子被激发跃迁到较高的能态。原子此时的状态叫激发态(Eq)。原子从基态向激发态跃迁的过程是吸能的过程。处于激发态的原子是不稳定的,一般在10-10 ~-10-8s 内就要返回到基态(E0)或较低的激发态(Ep )。此时,原子释放出多余的能量,辐射出光子束,其辐射能量的大小由下列公式表示:AE=Eq-Ep(或E0)=hf=hc/λ (1)式中:h——普朗克常数为6.6234x10-27erg.s;f和λ ——电子从Eq能级返回到Ep(或E0)能级时所发射光谱的频率和波长;C——光速。Eq 、Ep 或E0。值的大小与原子结构有关,不同元素,其Eq、Ep 和E0。不相同,一般元素的原子只能发射由其Eq Ep 或Eo。决定的特定波长或频率的光,即:f=Eq。一E p(或E0)/h (2)每种物质的原子都具有特定的原子结构和外层电子排列,因此不同的原子被激发后.其电子具有不同的跃迁。能辐射出不同波长光,就是说.每种元素都有其特征的光谱线。由于谱线的强度与元素的含量成正比,以此可测定元素的含量,作定量分析。

NIR近红外分析仪的使用及模型校正

摘要:油品在线调合系统已经在全球各大炼油厂大规模实施,并取得了很大的投资回报率,经过十几年不断完善,汽油在线调合技术已经非常成熟,在国内也逐渐得到成功应用。 兰州石化于近年正式投用了汽油在线管道调合系统,该系统采用在线检测nir近红外分析仪系统和dcs集散控制系统,实现在线测定组份油的辛烷值等质量指标以及控制管道调合成品油的质量指标,随时优化和控制调合配方,使调合后成品油的辛烷值等质量指标达到设定目标控制值的一种在线管道优化调合方式,通过这种调合方式来挖掘汽油组份辛烷值的潜力,避免汽油辛烷值超标而造成质量过剩的一项新的调合技术。 关键词:在线调合,nir近红外分析仪,模型建立,模型校正 第1章汽油在线管道调合的原理 1.1 近红外线分析仪的工作原理 nir光谱包含了样品的大量组成结构信息,样品性质与其组成结构是相关的,因此根据样品nir光谱可以预测样品的性质,其技术关键在于在两者之间建立一种定量关系,依靠这种关系,就能从未知样品的nir光谱求出其性质或组成数据。建模的大致过程为:在模型建立时,选取具有代表性的样品集,测定其nir光谱数据,再使用传统的标准方法测定其性质数据,通过用偏最小二乘法建立的分析模型,对这些光谱数据进行分析,从而得到物料的参数数据。在利用nir进行未知样品分析时,先测定其nir光谱,再根据已建立的模型来预测未知样品的性质数据。 1.2 近红线分析仪模型建立的过程 近红外分析仪模型的建立大致为以下七步:采样、进行光谱分析、按照要求在实验室对所有样品进行常规分析、将实验室分析值输入到spectron软件的lab data中、利用model studio软件对光谱数据进行处理、利用unscrambler软件进行离线建模工作、完成软件设定后,运行统计unscrambler 软件,建立数学模型。在建模型时,要反复计算,去除偏离太大的界外点,建立数学模型[1]。 实际调合车用汽油时辛烷值范围比较宽,这是实验室对大量数据统计的反映,从数学模型统计参数斜率、相关系数的计算结果可以看出,仪表模型参数基本满足生产需要。 采用最简单的模型评价方法将建好的各参数模型安装到m412的spectron软件中。在线校正模型应用到在线分析后,需要对模型的准确性进行验证和校正。在调合过程中,对组份和调合总管进行采样分析,对不理想的近红外模型加以校正和更新。 我们之所以要对模型校正,就是为了让在线调合系统的“眼睛”能够准确的看到油品的性质,为系统拿出最佳调合方案奠定基础,从而实现降低汽油调合成本,调合出清洁化的汽油产品。 第2章以93号汽油为例分析模型校正 2.1在线调合93号车用汽油性能指标分析 实验室采集分析的93号汽油数据比较多,为了便于分析对比模型校正的意义,这里用93号汽油在线优化调合的情况做分析对比。辛烷值数据分析仪显示分别是:93.25、93.09、93.53、92.58、92.88、92.19、93.26、93.42;实验室数据为:92.3、92.2、93、92.8、93.4、93.1、93.5、93.6;数据误差值依次为0.95、0.89、0.53、-0.22、-0.52、-0.91、-0.24、-0.18[2]。 93号汽油的研究法辛烷值从以上数据可以看出,实验室分析数据变化趋势比较大,而近红外分析仪采集数据的变化趋势相对小些。但是从装置出来的油品辛烷值稍有波动时分析仪的测量误差会很大。当调合出的93号汽油辛烷值质量过剩时,近红外线分析仪的测量值才与实验室分析数据相接近。当油品辛烷值略低于质量要求时,分析仪测量误差会增大,而且是正偏差。测量模型极其不稳定,测量值忽大忽小。最大差值0.95,最小差值0.18,平均误差

X荧光光谱分析仪工作原理

X荧光光谱分析仪工作原理 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。下图是这两类仪器的原理图。 现将两种类型X射线光谱仪的主要部件及工作原理叙述如下: 1.X射线管

两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。上图是X射线管的结构示意图。灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生的一次X射线,作为激发X射线荧光的辐射源。只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。笥?SPAN lang=EN-US>lmin的一次X射线其能量不足以使受激元素激发。 X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。 X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。 2.分光系统

常规样品的红外光谱分析

常规样品的红外光谱分析 PB07206298龚智良 实验目的 1.初步掌握两种基本样品制备技术及傅立叶变换光谱仪器的简单操作; 2.通过图谱解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 实验原理 红外光谱:红外光谱是分子的振动转动光谱,也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动引起的偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些区域的光透射强度减弱。记录红外光的百分透射比或波长关系曲线,就得到红外光谱。从分子的特征吸收可以鉴定化合物和分子结构,进行定性和定量分析。红外光谱尤其在物质定性分析中应用广泛,它操作简便,分析速度快,样品用量少且不破坏样品,能提供丰富的结构信息,因此红外光谱法往往是物质定性分析中优先考虑的手段。 能产生红外吸收的分子为红外活性分子,如CO?分子;不能产生红外吸收的分子为非红外活性分子,如O?分子。 中红外区为基本振动区:4000-400cm-1研究应用最多。 红外吸收的波数与相应振动的力常数关系密切。双原子分子的基本频率计算公式为 ??=12????? 其中?为约化质量 μ=m??m? m?+m? 对于多原子分子,其振动可以分解为许多简单的基本振动,即简正振动。一般将振动形式分为两类:伸缩振动和变形振动。 各种振动都具有各自的特征吸收。 仪器结构和测试技术 Fourier变换红外光谱仪(FTIR仪):能够同时测定所有频率的信息,得到光强随时间变化的谱图,称时域图,这样可以大大缩短扫描时间。由于不采用传统的色散元件,其分辨率和波数精度都较好。傅立叶变换红外谱仪主要由光源(硅碳棒、高压汞灯)、Michellson干涉仪、检测器、计算机和记录仪组成。测试样品时,由于样品对某些频率的红外光吸收,从而得到不同样品的干涉图。红外光是复合光,检测器接收到的信号是所有频率的干涉图的加合。 对试样的要求:试样应该为纯物质,纯度大于98%,以便于和纯化合物进行比较;样品中不能含游离水;试样的浓度和测试厚度应选择适当,以使大多数吸收峰的透射比处于10%-80%。 制样方法:对于液体样品有液膜法、液体吸收池法;对于固体样品有压片法、糊状法;对于特殊的样品还有薄膜法(包括熔融法和热压成膜法、溶液制膜法);对于气态样品一般都灌注于气体池中进行测试。 除了常规的测试技术外,红外光谱测试还有衰减全发射和偏振红外光谱等特殊的测试技术。 实验步骤、现象及讨论 固体样品制备:使用KBr压片法。用一个玛瑙研钵将少量KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀,并使其颗粒大小比所检测的光波长更小(约2μm以下)。在一个具有抛光面的金属模具上方一个圆形纸环,用刮勺将研磨好的粉末移至环中,盖上另一块模具,放入油压机中进行压片。KBr压片形成后,用夹具固定测试。注意样品制备过程中一定要将粉末研得足够细,判断的标准是粉末粘在研钵壁上比较紧。整个操作过程在红外灯下进行,这样可以减少样品制备过程中吸水的量。在制备固体样品之前,要用酒精棉球把刮勺、研钵、研杵擦干净。 液体样品的制备:取一对NaCl窗片,用刮勺沾一滴未知液体在一块窗片上,然后用另外一块窗片覆

近红外光谱仪器比较

近红外光谱仪器比较  一 基本构成   近红外光谱仪的光学部分由:光源、分光系统、测样附件和检测器等部分构成。  (1)光源 近红外光谱仪器最常用的光源是卤钨灯,性能稳定,价格也相对较低。发光二 极管LED是一种新型光源,波长范围可以设定,线性度好,适于在线或便携式 仪器。  (2)测样附件:液体多使用透射式测量池,也可采用透射式光纤探头。  (3)检测器:可分为 单点检测器和阵列检测器 金陵石化汽油调和的是单点检测器。 在短波区域多采用Si检测器或CCD阵列检测器。  在长波区 多采用PbS 或 InGaAs 或其阵列检测器。InGaAs 检测器的响应速 度快,信噪比和灵敏度高,但响应范围相对较窄,价格也较贵。PbS 检测器的 响应范围较宽,价格约为InGaAs检测器的1/5,但其响应呈较高的非线性。为 了提高检测器的灵敏度,扩展响应范围,在使用时往往采用半导体或液氮制冷, 以保持较低的恒定温度。  二 光谱仪的类型   色散型光谱仪由于固有的缺点:扫描速度慢、分辨率低、信噪比低、重复性差。   检测器的作用:检测光通过样品后的能量。选用检测器要满足下面三点要求:  (1)具有较高的检测灵敏度(2)快的响应速度(3)较宽的测量范围   按单色器分类,市场上存在的NIR光谱仪可分为:滤光片型、光栅色散型、傅里叶变换型(FT)、声光可调滤光器型(AOTF)四类。   除采用 单色器 分光外,也有仪器采用多个不同波长的发光二极管作为光源,即 LED型近红外光谱仪。  1.滤光片型  滤光片型仪器采用干涉滤光片进行分光。光学滤光片是建立在光学薄膜干涉原理上的精密光学滤光器件,利用入射和反射之间相位差产生的干涉现象,得到带宽相当窄的单色光,其半波宽可在10nm以下,基本能达到单色器的分光质量。  优点:采样速度快、比较坚固、可制造现场分析的手提式仪器。  缺点:只能在单一或少数几个波长下测定,波长数目有限,若样品的基体发生变化,往往会引起较大的测量误差。  2.光栅扫描型  原理:光源发出的复色光束,经准直后通过入射狭缝,照射到单色器(光栅)上,将复色光色散为单色光,从单色器出射的不同波长单色光的出射角度不同,通过转动光栅按照波长顺序依次通过出射狭缝,与待测样品发生作用后,到达检测器被检测。  优点:结构不复杂、容易制造。与中红外相比,由于近红外光谱仪区可采用高能量的光源和高灵敏度的检测器,其信噪比较高。  缺点:仪器的分辨率较傅里叶变换型仪器稍差,波长的准确性也有所下降。因光栅转动,不利于仪器的稳定性。  光栅型的新进展:基于MEMS(微电子机械系统)开发出来的新型的近红外光谱仪 3.阵列检测器  固定光路阵列检测器型仪器是20世纪90年代发展起来的一种新型的仪器。  原理:此类仪器多采用后分光方式,即光源发出的光首先经过样品,再由光栅分光,光栅不需要转动,经过色散后的光聚焦在阵列检测器的焦面上同时被检测。

荧光光谱分析

第十七章荧光光谱分析 当紫外线照射到某些物质的时候,这些物质会发射出各种颜色和不同强度的可见光,而当紫外线停止照射时,所发射的光线也随之很快地消失,这种光线被称为荧光。 西班牙的内科医生和植物学家N.Monardes于1575年第一次记录了荧光现象。17世纪,Boyle和Newton等著名科学家再次观察到荧光现象。17世纪和18世纪,又陆续发现了其它一些发荧光的材料和溶液,但是在荧光现象的解释方面却没有什么进展。1852年,Stokes在考察奎宁和叶绿素的荧光时,用分光计观察到其荧光的波长比入射光的波长稍长,才判明这种现象是这些物质在吸收光能后重新发射不同波长的光,而不是由光的漫射所引起的,从而导入了荧光是光发射的概念。同时,他由发荧光的矿物“萤石”推演而提出“荧光”这一术语。1867年,Coppelsroder进行了历史上首次的荧光分析工作,应用铝-桑色素配合物的荧光进行铝的测定。1880年,Liebeman提出了最早的关于荧光与化学结构关系的经验法则。到19世纪末,人们已经知道了600种以上的荧光化合物。20世纪以来,荧光现象被研究得更多了。例如,1905年Wood发现了共振荧光;1914年Frank和Hertz利用电子冲击发光进行定量研究;1922年Frank和Cario发现了增感应光;1924年Wawillow进行了荧光产率的绝对测定;1926年Gaviola进行了荧光寿命的直接测定等。 荧光分析方法的发展离不开仪器应用的发展。19世纪以前,荧光的观察是靠肉眼进行的,直到1928年,才由Jette和West研制出第一台光电荧光计。早期的光电荧光计的灵敏度是有限的,1939年Zworykin和Rajchman发明光电倍增管以后,在增加灵敏度和容许使用分辨率更高的单色器等方面,是一个非常重要的阶段。1943年Dutton和Bailey提出了一种荧光光谱的手工校正步骤,1948年由Studer推出了第一台自动光谱校正装置,到1952年才出现商品化的校正光谱仪器。 荧光光谱分析法除了可以用作组分的定性检测和定量测定的手段之外,还被广泛地作为一种表征技术应用于表征所研究体系的物理、化学性质及其变化情况。例如,在生命科学领域的研究中,人们经常可以利用荧光检测的手段,通过检测某种荧光特定参数(如荧光的波长、强度、偏振和寿命)的变化情况来表征生物大分子在性质和构象上的变化。 很多化合物由于本身具有大的共轭体系和刚性的平面结构,因而具有能发射荧光的内在本质,我们称这些化合物为荧光化合物。在某些所要研究的体系中,由于体系自身含有这种荧光团而具有内源荧光,人们就可以利用其内源荧光,通过检测某种荧光特性参数的变化,对该体系的某些性质加以研究。但是,如果所要研究的体系本身不含有荧光团而不具有内源荧光,或者其内源性质很弱,这时候就必须在体系中外加一种荧光化合物即所谓荧光探针,再通过测量荧光探针的荧光特性的变化来对该体系加以研究。例如,如果我们要检测体系的极性,便可以将对极性敏感的荧光探针加入到体系中,然后通过对荧光探针的荧光特性的检测,求得体系的极性,或通过探针的荧光特性的变化来表征体系的极性的变化情况。 荧光分析法之所以发展如此迅速,应用日益广泛,其原因之一是荧光分析法具

BASTAK-NIR-近红外谷物分析仪

专业经营各类实验仪器、科研仪器设备 BASTAK-NIR-近红外谷物分析仪 近红外光谱分析技术现阶段已相对成熟,各种不同类型和型号的近红外分析仪在市场上都有销售,其用处较为广泛。 近红外谷物分析仪是“十?五”国家科技攻关计划“科学仪器研制与开发”成果的改进型。主要用于颗粒固态和粉末样品的品质分析,特别适合工业或农业生产中颗粒、籽粒样品的无损检测,可快速非破坏检测谷物等农作物产品的内部品质,包括各种组分如蛋白质、淀粉、脂肪等。 近红外谷物分析仪采用CCD检测器的微型光纤光谱仪,光学系统无任何移动部件,大大提高了仪器的稳定性;独特的透射式样品池,充分获得被测样品内部信息,具有更高的分析精度;配合往复运动的样品池,极大地提高仪器的性能;专门设计的光谱仪整体恒温系统模块,恒温精度达到±0.3度。 近红外谷物分析仪通过特殊设计的光源模块,减少了对样品的热辐射,同时相对增强了与N-H基团吸收有关谱区的能量;专门设计的光准直系统模块,可以较大限度利用分析光能量;配有光程、体积可调的样品池,可以适应不同规格的样品;整机采用高度模块化

专业经营各类实验仪器、科研仪器设备设计,仪器的可靠性高、一致性好,便于维护仪器可以定期进行波长校正,可实现分析模型传递;以国家农产品近红外光谱库资源为支撑,可加载某些重要农作物的分析模型。 南京欧熙科贸有限公司专业经营各类实验仪器、科研仪器设备,代理各大国际知名品牌仪器,如德国Lambrecht气象站,Spectrum 农业用仪器,进口全自动太阳光度计,意大利重金属分析仪,澳大利亚 Next Instruments 近红外谷物分析仪, 法国GBX 水分活度仪,日本FUDOH 蛋品高胶强度测定仪,美国Organomation氮吹仪等,服务于环境,食品,生命科学、工业、制药以及商业实验室等众多领域。 公司本身以高校及企事业科研院所的技术力量为依托,具备了扎实的专业基础和丰富的实践经验。公司自成立以来与众多国内外知名仪器设备制造商长期保持良好的合作关系,作为一家专注于为客户提供简捷﹑快速有效解决方案的科研产品供应商,以不懈的努力、真诚的服务和更加优惠的价格来回报广大客户一直是我公司不变的承诺。公司领导年富力强,锐意进取,品质优良,带领了一支朝气蓬勃、团结勤奋的销售和服务队伍。我们将一如既往为各行业的实验室建设改进、人员培训、仪器设备选型、调试安装、维修维护并代办检定等提供多层次的贴心服务。与时俱进,共创美好未来。真诚欢迎各界朋友、新老客户来公司参观、指导、洽谈业务,对我们的工作给予指正与帮助。

相关文档
最新文档