专升本高数公式大全

专升本高数公式大全
专升本高数公式大全

导数公式:

基本积分表:

三角函数的有理式积分:

2

22212211cos 12sin u

du

dx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:

a

x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=

'='?-='?='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'?

?????????+±+=±+=+=+=+-=?+=?+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C

x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

2222222?

????++-=-+-+--=-+++++=+-=

==-C

a

x a x a x dx x a C

a x x a a x x dx a x C

a x x a a x x dx a x I n

n xdx xdx I n n n

n arcsin 22ln 22)ln(221

cos sin 22

2222222

2222222

22

2

22

2

π

π

三角函数公式: ·诱导公式:

·和差角公式: ·和差化积公式:

·倍角公式:

2

sin

2sin 2cos cos 2cos

2cos 2cos cos 2sin

2cos 2sin sin 2cos

2sin

2sin sin β

αβαβαβ

αβαβαβ

αβαβαβ

αβ

αβα-+=--+=+-+=--+=+α

ββαβαβαβ

αβαβ

αβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±?=

±?±=

±=±±=±1

)(1)(sin sin cos cos )cos(sin cos cos sin )sin( x

x

arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x

x x

x x

x -+=-+±=++=+-=

=+=

-=

----11ln

21)1ln(1ln(:2

:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x

x

x x x x

·半角公式:

αα

αααααααααααα

α

ααα

cos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 12

2

cos 12cos 2cos 12

sin -=

+=-+±=+=-=+-±

=+±=-±=ctg tg

·正弦定理:R C

c

B b A a 2sin sin sin ===·余弦定理:

C ab b a c cos 2222-+=

·反三角函数性质:arcctgx arctgx x x -=

-=2

arccos 2

arcsin π

π

中值定理与导数应用:

拉格朗日中值定理。时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=

---'=-)(F )

()

()()()()()

)(()()(ξξξ

曲率:

.

1

;0.)

1(lim M s M M :.,13202a

K a K y y ds d s K M M s

K tg y dx y ds s =='+''==??='?'???=

=''+=→?的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:α

ααα

α

空间解析几何和向量代数:

α

ααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=

-=-=α

α

αααααααααα

αα22222212221

2sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=

-=

-=-=-==

..sin ,cos ,,cos )()()(22

2

2

2

2

2

21221221221r w v b a c b b b a a a k

j i

b a

c b b b a a a b a b a b a b a b a b a b a b a z z y y x x M M

d z

y

x

z y x

z

y x z y x z

z y y x x z z y y x x

?=?==?=++?++++=++=?=?-+-+-==例:线速度:两向量之间的夹角:是一个数量点的距离:空间θθθ

(马鞍面)双叶双曲面:单叶双曲面:、双曲面:

同号)

(、抛物面:、椭球面:二次曲面:

参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:

1

1

3,,2221

1};,,{,1

302),,(},,,{0)()()(122

222222

22222222

22220000002

220000000000=+-=-+=+=++??

?

??+=+=+===-=-=-+++++=

=++=+++==-+-+-c

z b y a x c z b y a x q p z q y

p x c z b y a x pt

z z nt

y y mt

x x p n m s t p z z n y y m x x C B A D

Cz By Ax d c

z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A

多元函数微分法及应用

z

y z x y x y x y x y x F F y z

F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x

v

v z x u u z x z y x v y x u f z t

v

v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z

u dy y u dx x u du dy y z dx x z dz -

=??-=??=?

-??

-??=-==??+??=??+??===???

??+?????=??=?????+?????==?+?=≈???+??+??=??+??=

, , 隐函数+, , 隐函数隐函数的求导公式:

 

时,

,当

多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

微分法在几何上的应用:

)

,,(),,(),,(30

))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(}

,,{,0),,(0),,(0))(())(())(()()()(),,()

()()

(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x y

x y x x z x z z y z y -=

-=-=-+-+-==??

??

?====-'+-'+-''-=

'-='-??

?

??===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:

上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线

ωψ?ωψ?ωψ?

重积分及其应用:

??

??

??

??????????????

????++-=++=++==>===

=

=

=???

?

????+??? ????+==='

D

z D

y D

x z y x D

y D

x D

D

y D

x D

D D

a y x xd y x fa F a y x yd y x f F a y x xd y x f F F F F F a a M z xoy d y x x I y d y x y I x d y x d y x y M

M y d y x d y x x M

M

x dxdy y z x z A y x f z rdrd r r f dxdy y x f 2

322

2

2

322

2

2

3

22

2

22D

2

2)

(),()

(),()

(),(},,{)0(),,0,0(),(,),(),(),(,),(),(1),()sin ,cos (),(σ

ρσ

ρσ

ρσρσρσ

ρσ

ρσ

ρσ

ρθ

θθ, , ,其中:的引力:轴上质点平面)对平面薄片(位于轴 对于轴对于平面薄片的转动惯量: 平面薄片的重心:的面积曲面

常数项级数:

是发散的

调和级数:等差数列:等比数列:n

n n n q q q q q n

n 1

312112

)1(3211111

2

+++++=

++++--=

++++-

级数审敛法:

散。

存在,则收敛;否则发、定义法:

时,不确定

时,级数发散

时,级数收敛

,则设:、比值审敛法:

时,不确定时,级数发散

时,级数收敛

,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞

→+∞→∞

→+++=??

?

??=><=??

?

??=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ

。的绝对值其余项,那么级数收敛且其和

如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数111

3214321,0lim )0,(+∞→+≤≤?????=≥>+-+-+-+-n n n n

n n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛:

∑∑∑∑>≤-+++++++++时收敛

1时发散p

级数: 收敛;

级数:收敛;

发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中11

1

)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n

n n n

幂级数:

01

0)3(lim

)3(111

1111

221032=+∞=+∞

===

≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n

n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定

时发散时收敛

,使在数轴上都收敛,则必存收敛,也不是在全

,如果它不是仅在原点 对于级数时,发散

时,收敛于

ρρρ

ρρ

函数展开成幂级数:

+++''+'+===-+=+-++-''+-=∞→++n

n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f !

)0(!2)0()0()0()(00lim )(,)()!1()

()(!

)()(!2)())(()()(2010)1(00)(2

0000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ

一些函数展开成幂级数:

)

()!12()1(!5!3sin )11(!

)1()1(!2)1(1)1(1

21532+∞<<-∞+--+-+-=<<-++--++-+

+=+--x n x

x x x x x x n n m m m x m m mx x n n n

m 微分方程的相关概念:

即得齐次方程通解。

代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。

得:的形式,解法:

为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y u u du x dx u dx du u dx du x u dx dy x y u x

y

y x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='??)()(),(),()()()()()()(0

),(),(),(??? 一阶线性微分方程:

?+??=≠?

===+--)

)((0)(,0)()

()(1)()()(C dx e x Q e y x Q Ce y x Q x Q y x P dx

dy

dx

x P dx x P dx

x P 时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程:

二阶常系数齐次线性微分方程及其解法:

2

122,)(2,,(*)0)(1,0(*)r r y y y r r q pr r q p qy y p y 式的两个根、求出的系数;式中的系数及常数项恰好是,,其中、写出特征方程:求解步骤:

为常数;,其中?'''=++?=+'+''式的通解:出的不同情况,按下表写、根据(*),321r r

二阶常系数非齐次线性微分方程

为常数;型,为常数,]sin )(cos )([)()()(,)(x x P x x P e x f x P e x f q p x f qy y p y n l x m x ωωλλλ+===+'+''

相关主题
相关文档
最新文档