人教版高中数学必修二考点练习:几何体的外接球和内切球

人教版高中数学必修二考点练习:几何体的外接球和内切球
人教版高中数学必修二考点练习:几何体的外接球和内切球

几何体的外接球和内切球

一、外接球

1. 一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱的长分别为1,2,3则此球的表面积__________.

2. 棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______.

3. 长方体的共顶点的三个侧面面积分别为3,5,15,则它的外接球表面积为________.

4. 已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________

5. 表面积为43

3

的正四面体的各个顶点都在同一个球面上,则此球的体积为( )

A.23π

B.13π

C.23π

D.223

π

6. 三棱锥P -ABC 中,P A ⊥平面ABC 且P A =2,△ABC 是边长为3的等边三角形,则该三棱锥外接球的表面积为( )

A.4π3 B .4π C .8π D .20π

7. 若三棱锥S -ABC 的所有的顶点都在球O 的球面上,SA ⊥平面ABC ,SA =AB =2,AC =4,∠BAC =π

3

,则球O 的表面积为________.

8. 已知三棱锥的三视图如图所示,则它的外接球的体积是( )

A.43π

B.83π C .2π D .4π

9. 已知正四棱锥的顶点都在同一球面上,且该棱锥的高为4,底面边长为22,则该球的表面积为________.

10. 已知A ,B ,C 是球O 的球面上三点,AB =2,AC =23,∠ABC =60°,且三棱锥O -ABC 的体积为463

,则球O 的表面积为________.

11. 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )

A .π B.3π4 C.π2 D.π4

12. 已知三棱柱ABC -A 1B 1C 1的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12π,则该三棱柱的体积为________.

13. 四面体A -BCD 中,若AB =CD =2,AC =BD =3,AD =BC =2,则四面体A -BCD 的外接球的体积是________.

14. 正四棱锥S ABCD 2S 、A 、B 、C 、D 都在同一球面上,则该球的体积为_______.

15. 已知表面积为4π的球有一内接四棱锥,四边形ABCD 是边长为1的正方形,且SA ⊥平面ABCD ,则四棱锥S -ABCD 的体积为________.

16. 已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )

A .36π

B .64π

C .144π

D .256π

17. 半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体棱长为6,则球的表面积和体积的比为______.

18. 在半球内有一个内接正方体,试求这个半球的体积与正方体的体积之比.

二、内切球

1. 将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为( )

A.4π3

B.2π3

C.3π2

D.π

6

2. 正方体的内切球与其外接球的体积之比为( )

A .1∶ 3

B .1∶3

C .1∶3 3

D .1∶9

3. 有三个球,第一个球内切于正方体的六个面,第二个球与这个正方体的各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积.

4. 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1

S 2

=________.

5. 若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为________.

6. 如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1

V 2

的值是________.

7. 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?

8. 设圆锥的底面半径为2,高为3,求:

(1)内接正方体的棱长; (2)内切球的表面积.

参考答案

几何体的外接球和内切球

一、外接球 1. 略 2. 略

3. 解析 设长方体共顶点的三条棱长分别为a ,b ,c ,

则???

ab =3,bc =5,ac =

15,

解得???

a =3,

b =1,

c =5,

∴外接球半径为a 2+b 2+c 22=32,∴外接球表面积为4π×????322

=9π. 4. 略

5. 如图所示,将正四面体补形成一个正方体.设正四面体的棱长为a .

∵正四面体的表面积为433,∴4×34a 2=433,解得a =233,∴正方体的棱长是63,

又∵球的直径是正方体的体对角线,设球的半径是R ,∴2R =63×3,∴R =2

2

, ∴球的体积为43π·????2

23=23

π,故选A.

6. 解析:选C 由题意得,此三棱锥外接球即以△ABC 为底面、以P A 为高的正三棱柱的外接球,因为△ABC 的外接圆半径r =

32×3×2

3

=1,外接球球心到△ABC 的外接圆圆心的距离d =1,所以外接球的半径R =r 2+d 2=2,所以三棱锥外接球的表面积S =4πR 2=8π. 7. 解析:由题意,得三棱锥S -ABC 是长方体的一部分(如图所示),

所以球O 是该长方体的外接球,其中SA =AB =2,AC =4,设球的半径为R ,则2R =AC 2+SA 2=42+22=25,所以球O 的表面积为4πR 2=20π. 答案:20π

8. 解析:选A 由三视图可知,三棱锥的底面是直角三角形,三棱锥的高为1,其顶点在

底面的射影落在底面直角三角形斜边的中点上,则三棱锥的外接球的球心是底面直角三角形斜边的中点,由此可知此球的半径为1,于是外接球的体积V =43πR 3=43π.

9. 解析:

如图,正四棱锥P -ABCD 的外接球的球心O 在它的高PO 1上,设球的半径为R ,因为底面边长为22,所以AC =4.在Rt △AOO 1中,R 2=(4-R )2+22,所以R =5

2,所以球的表面

积S =4πR 2=25π.

答案:25π

10. 解析:∵AB =2,AC =23,∠ABC =60°,∴在△ABC 中,由正弦定理,得2sin C =23

sin 60°,

解得sin C =1

2,又0°

的球面上三点,∴△ABC 外接圆的圆心为BC 的中点,故△ABC 外接圆的半径为2.设球心O 到平面ABC 的距离为d ,∵三棱锥O -ABC 的体积为463,∴13×12×2×23×d =46

3,∴d =22,

∴球O 的半径R =

22

2+22=2

3,∴球O 的表面积为4πR 2=48π.

答案:48π

11. 解析:选B 设圆柱的底面半径为r ,则r 2=12-????122=34,所以圆柱的体积V =34π×1=3π

4. 12. 解析:设球半径为R ,上,下底面中心设为M ,N ,由题意,外接球心为MN 的中点,设为O ,则OA =R ,由4πR 2=12π,得R =OA =3,又易得AM =2,由勾股定理可知,OM =1,所以MN =2,即棱柱的高h =2,所以该三棱柱的体积为

3

4

×(6)2×2=3 3. 答案:3 3

13. 解析:作一个长方体,面对角线分别为2,3,2,设长方体的三棱长分别为x ,y ,z ,则????

?

x 2+y 2=2,x 2+z 2=3,y 2+z 2=4,

则该长方体的体对角线为x 2+y 2+z 2=32

2

,则该长方体的外接球即为四

面体A -BCD 的外接球,则外接球的半径为R =x 2+y 2+z 22=32

4

体积为V =43π????3243=92

8

π.

答案:

92

8

π

14.

【解析】O'

O

H

D

C

B

A

S

15. 解析:由S球=4πR2=4π,解得R=1,即2R=2.四棱锥S-ABCD的直观图如图所示,

其所在的长方体的外接球即四棱锥的外接球,所以SA=4-2=2,所以四棱锥S-ABCD的体积V=

1

3S四边形ABCD·SA=

1

3×1×2=

2

3.

答案:

2

3

16. 解析:选C如图,设球的半径为R,∵∠AOB=90°,∴S△AOB=

1

2R

2.

∵V O-ABC=V C-AOB,而△AOB面积为定值,∴当点C到平面AOB的距离最大时,V O-ABC 最大,∴当C为与球的大圆面AOB垂直的直径的端点时,体积V O-ABC最大,为

1

1

2R

2×R=36,∴R=6,∴球O的表面积为4πR2=4π×62=144π.

17. 略

18. 【解析】解法一:作正方体对角面的截面,如图所示,

设半球的半径为R ,正方体的棱长为a ,那么CC ′=a ,OC =

22

a . 在Rt △C ′CO 中,由勾股定理得CC ′2+OC 2=OC ′2,即a 2+22a ?? ? ???

2=R 2,所以R =6

2a . 从而V 半球=

23πR 3=23

π

62a ?? ? ???

3=62πa 3

.又V 正方体=a 3, 因此V 半球∶V 正方体=

62

πa 3

∶a 3=6π∶2. 解法二:将半球补成整个的球,同时把原半球的内接正方体再补接一个同样的正方体,构成的长方体刚好是这个球的内接长方体,那么这个长方体的对角线便是它的外接球的直径. 设原正方体棱长为a ,球的半径为R ,则根据长方体的对角线性质,得(2R )2=a 2+a 2+(2a )2,即4R 2=6a 2,所以R =

6

2a .从而V 半球=23πR 3=23

π62a ?? ? ???

3=62πa 3

.又V 正方体=a 3, 因此V 半球∶V 正方体=62

πa 3∶a 3

=6π∶2.

二、内切球 1. 答案 A

解析 由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为2,故半径为1,其体积是43×π×13=4π

3

.

2. 设正方体的棱长为1,则正方体内切球的半径为棱长的一半即为1

2,外接球的直径为正方

体的体对角线,∴外接球的半径为

32

, ∴其体积比为4

3π×????123∶43π×????323=1∶3 3.

3. 【解析】设正方体的棱长为a .

(1)正方体的内切球球心是正方体的中心,切点是六个面(正方形)的中心,经过四个切点及球心作截面,如图①,所以有2r 1=a ,r 1=

2

a

,所以S 1=4πr 21=πa 2.

(2)球与正方体各棱的切点在每条棱的中点,过球心作正方体的对角面得截面,如图②, 所以有2r 22a ,r 22a ,所以S 2=4πr 22=2πa 2. (3)正方体的各个顶点在球面上,过球心作正方体的对角面得截面,如图③, 所以有2r 33a ,r 33a ,所以S 3=4πr 23=3πa 2.

4. 解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2

=3a 2,其内切球半径为

正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2

=πa 2

6

则S 1S 2=3a 2π6a 2=63

π

. 答案:63π

5. 解析:过圆锥的旋转轴作轴截面,得截面△ABC 及其内切圆⊙O 1和外接圆⊙O 2,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意知⊙O 1的半径为r =1,即△ABC 的边长为23,圆锥的底面半径为3,高为3,故V =1

3

×π×3×3=3π.

答案:3π

6. 解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43

πR 3=3

2

.

答案:32

7. 略 8. 略

高考数学中的内切球和外接球问题

高考数学中的内切球和 外接球问题 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

高考数学中的内切球和外接球问题 一、有关外接球的问题 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 2、求长方体的外接球的有关问题 例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 . 例4已知各顶点都在一个球面上的正四棱柱高为4, 体积为16,则这个球的表面积为(). A. 16π B. 20π C. 24π D. 32π 3.求多面体的外接球的有关问题

例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有 ∴正六棱柱的底面圆的半径2 1=r ,球心到底面的距离2 3 =d .∴外接球的半径22d r R +=. 体积:3 3 4R V π= . 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________. 例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 故其外接球的表面积ππ942==r S . 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有 2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。

八个有趣模型搞定外接球内切球问题(学生版))解析

八个有趣模型——搞定空间几何体的外接球与内切球 类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径) 方法:找三条两两垂直的线段,直接用公式2 2 2 2 )2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 (3)在正三棱锥中,分别是棱的中点,且MN AM ⊥,若侧棱,则正三棱锥ABC S -外接球的表面积是 (4)在四面体中,ABC SA 平面⊥,,1,2,120====∠? AB AC SA BAC 则该四面体的外接 球的表面积为( ) π11.A π7.B π310. C π3 40.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 图2 图3 S ABC -M N 、SC BC 、SA =S ABC -

(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为 1的正方形,则该几何体外接球的体积为 类型二、垂面模型(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC 解题步骤: 第一步:将ABC ?画在小圆面上,A 为小圆直径的一个端点,作小圆的直 径AD ,连接PD ,则PD 必过球心O ; 第二步:1O 为ABC ?的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半 径r D O =1(三角形的外接圆直径算法:利用正弦定理,得 r C c B b A a 2sin sin sin ===),PA OO 2 1 1=; 第三步:利用勾股定理求三棱锥的外接球半径:①2 2 2 )2()2(r PA R +=?22)2(2r PA R +=; ②2 12 2 OO r R +=?2 12OO r R += 2.题设:如图6,7,8,P 的射影是ABC ?的外心?三棱锥ABC P -的三条侧棱相等? 三棱锥ABC P -的底面ABC ?在圆锥的底上,顶点P 点也是圆锥的顶点 图6 P A D O 1 O C B 图7-1 P A O 1 O C B 图7-2 P A O 1 O C B 图8 P A O 1 O C B 图5 A D P O 1O C B

空间几何体的外接球和内切球问题说课材料

空间几何体的外接球和内切球问题

空间几何体的外接球和内切球问题 类型1 外接球的问题 1.必备知识: (1)简单多面体外接球的球心的结论. 结论1:正方体或长方体的外接球的球心是其体对角线的中点. 结论2:正棱柱的外接球的球心是上下底面中心的连线的中点. 结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点. (2)构造正方体或长方体确定球心. (3)利用球心O 与截面圆圆心O 1的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心. 2.方法技巧:(1)几何体补成正方体或长方体.(2)轴截面法(3)空间向量法 1AB DC AD BC BD AC ======例1-1、正四面体的棱长都为,求此四面体外接球和内切球的半径 例1-2、四面体中,, 求此四面体外接球的表面积 例1-3.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.9 训练1(创新110页) 某几何体的三视图如图所示,则该几何体的外接球的表面积为( ) A.25π B.26π C.32π D.36π 训练2(创新110页)已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 进行折叠,使折叠后的∠BDC =π2 ,则过A ,B ,C ,D 四点的球的表面积为( ) A.3π B.4π C.5π D.6π 例2-1(创新110页)体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,P A ⊥平面ABC ,P A =2,∠ABC =120°,则球O 的体积的最小值为( ) A.773 π B.2873π C.19193π D.76193 π 例2-1(创新109页)三棱锥P -ABC 中,平面P AC ⊥平面ABC ,AB ⊥AC ,P A =PC =AC =2,AB =4,则三棱锥P -ABC 的外接球的表面积为( ) A.23π B.234π C.64π D.643π 类型2 内切球问题 1.必备知识: (1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等. (2)正多面体的内切球和外接球的球心重合. (3)正棱锥的内切球和外接球球心都在高线上,但不一定重合. 2.方法技巧:体积分割是求内切球半径的通用做法.

【精品】2019年高考数学中的内切球和外接球问题

【精品】2019年高考数学中的内切球和外接球问题 一、 有关外接球的问题 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 2、求长方体的外接球的有关问题 例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 . 例4已知各顶点都在一个球面上的正四棱柱高为4, 体积为16,则这个球的表面积为( ). A. 16π B. 20π C. 24π D. 32π 3.求多面体的外接球的有关问题 例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有 ??????==h x x 2436893 6 ?????==213x h

∴正六棱柱的底面圆的半径21=r ,球心到底面的距离2 3= d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________. 例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 故其外接球的表面积ππ942==r S . 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。 【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径为R 2体对角线长l 即2 222c b a R ++=

数学研究课题---空间几何体的外接球与内切球问题.

高中数学课题研究 几何体与球切、接的问题 纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理. 下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见. 首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。 定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球. 1 球与柱体的切接 规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体 如图所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==;二 是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则GO R a ==;三是球为正方体的 外接球,截面图为长方形11ACA C 和其外接圆,则12 A O R a '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.

内切球和外接球问题专题复习

内切球和外接球问题 一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1 (2006年广东高考题)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 解析:要求球的表面积,只要知道球的半径即可.因为正方体内接于球,所以它的体对角线正好为球的直径,因此,求球的半径可转化为先求正方体的体对角线长,再计算半径. 故表面积为27π. 例2 一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 解析:要求球的体积,还是先得求出球的半径,而球的直径正好是正方体的体对角线, 23所以球的半径为3.因此,由正方体表面积可求出棱长,从而求出正方体的体对角线是 43π. 故该球的体积为 2、求长方体的外接球的有关问题 例3 (2007年天津高考题)一个长方体的各顶点均在同一球面上,且一个顶点上的三 1,2,3,则此球的表面积为. 条棱长分别为 解析:关键是求出球的半径,因为长方体内接于球,所以它的体对角线正好为球的直径。长方体体对角线长为14,故球的表面积为14π. 例4、(2006年全国卷I)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为(). A. 16π B. 20π C. 24π D. 32π 解析:正四棱柱也是长方体。由长方体的体积16及 高4可以求出长方体的底面边长为2,因此,长方体的长、 宽、高分别为2,2,4,于是等同于例3,故选C. 3.求多面体的外接球的有关问题 例5. 一个六棱柱的底面是正六边形,其侧棱垂直于 底面,已知该六棱柱的顶点都在同一个球面上,且该六棱

空间几何体的内切球与外接球问题

空间几何体的内切球与外接球问题 1.[2016·全国卷Ⅱ] 体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B.32 3π C .8π D .4π [解析]A 因为正方体的体积为8,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球的表面积为4π·(3)2=12π. 2.[2016·全国卷Ⅲ] 在封闭的直三棱柱ABC - A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2 C .6π D.32π 3 [解析]B 当球与三侧面相切时,设球的半径为r 1,∵AB ⊥BC ,AB =6,BC =8,∴8-r 1+6-r 1=10,解得r 1=2,不合题意;当球与直三棱柱的上、下底面相切时,设球的半径为r 2, 则2r 2=3,即r 2=32.∴球的最大半径为32,故V 的最大值为43π×????323=92 π. 3.[2016·郑州模拟]在平行四边形ABCD 中,∠CBA =120°,AD =4,对角线BD =23,将其沿对角线BD 折起,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一球面上,则该球的体积为________. 答案:2053 π;解析:因为∠CBA =120°,所以∠DAB =60°,在三角形ABD 中,由余弦 定理得(23)2=42+AB 2-2×4·AB ·cos 60°,解得AB =2,所以AB ⊥BD .折起后平面ABD ⊥平面BCD ,即有AB ⊥平面BCD ,如图所示,可知A ,B ,C ,D 可看作一个长方体中的四个顶点,长方体的体对角线AC 就是四面体ABCD 外接球的直径,易知AC =22+42=25, 所以球的体积为205 3 π. 4.[2016·山西右玉一中模拟]球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S-ABC 的体积的最大 值为( ) A . 3 3 B .3 C .23 D .4 选A ;[解析] (1)由于平面SAB ⊥平面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球的对称性可知,当S 在“最高点”,即H 为AB 的中点时,SH 最大,此时棱锥S -ABC 的体积最大. 因为△ABC 是边长为2的正三角形,所以球的半径r =OC =23CH =23×32×2=23 3 . 在Rt △SHO 中,OH =12OC =3 3 ,

(完整版)高考数学中的内切球和外接球问题.

高考数学中的内切球和外接球问题 一、有关外接球的问题 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.考查学生的空间想象能力以及化归能力.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 2、求长方体的外接球的有关问题 例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为. 例4已知各顶点都在一个球面上的正四棱柱高为4, 体积为16,则这个球的表面积为(). A. 16π B. 20π C. 24π D. 32π

3.求多面体的外接球的有关问题 例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有 ?? ???? ==h x x 24368936 ?? ???= =213 x h ∴正六棱柱的底面圆的半径2 1 =r ,球心到底面的距离2 3 =d .∴外接球的半径22d r R +=. 体积:3 3 4R V π= . 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________. 例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 故其外接球的表面积ππ942==r S . 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。

空间几何的外接球和内切球 优质专题

空间几何体的外接球与内切球 专题 类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径) 图2 图3 图4 方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 π9 解:(1)162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C ; ( 2)933342=++=R ,ππ942==R S (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 。π36 解:引理:正三棱锥的对棱互垂直。证明如下: 如图(3)-1,取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角形ABC 的中心, ∴⊥SH 平面ABC ,∴AB SH ⊥,

BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD , ∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直, 本题图如图(3)-2, MN AM ⊥,MN SB //, ∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥, 故三棱锥ABC S -的三棱条侧棱两两互相垂直, ∴36)32()32()32()2(2222=++=R ,即3642=R , ∴正三棱锥ABC S -外接球的表面积是π36 (4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠?AB AC SA BAC 则该四面 体的外接球的表面积为( D )π11.A π7.B π3 10 . C π3 40.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 (6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和 边长为1的正方形,则该几何体外接球的体积为 解析:(4)在ABC ?中,7120cos 2222=??-+= BC AB AB AC BC , 7=BC ,ABC ?的外接球直径为3 7 22 37sin 2= =∠= BAC BC r , ∴340 4)3 72( )2()2(2222= +=+=SA r R ,340π=S ,选D (5)三条侧棱两两生直,设三条侧棱长分别为c b a ,,(+∈R c b a ,,),则 (3)题-2 A

解决几何体的外接球与内切球

解决几何体的外接球与内切球,就这6个题型! 一、外接球的问题 简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径尺或确定球心0的位置问题,其中球心的确定是关键. (一)由球的定义确定球心 在空间,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心. 由上述性质,可以得到确定简单多面体外接球的球心的如下结论. 结论1:正方体或长方体的外接球的球心其体对角线的中点. 结论2:正棱柱的外接球的球心是上下底面中心的连线的中点. 结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点. 结论4:正棱锥的外接球的球心在其高上,具体位置可通过计算找到. 结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心. (二)构造正方体或长方体确定球心

长方体或正方体的外接球的球心是在其体对角线的中点处.以下是常见的、基本的几何体补成正方体或长方体的途径与方法. 途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造正方体. 途径2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥都分别可构造长方体和正方体. 途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体. 途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体. (三)由性质确定球心 利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.

二、内切球问题 若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。 1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。 2、正多面体的内切球和外接球的球心重合。 3、正棱锥的内切球和外接球球心都在高线上,但不重合。 4、基本方法:构造三角形利用相似比和勾股定理。 5、体积分割是求内切球半径的通用做法。

外接球内切球问题标准答案

1 球与柱体 规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体 发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题 例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A . 22 B .1 C .212 + D .2 1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的 棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正 方体的外接球的道理是一样的,故球的半径222 2l a b c R ++== 例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为( )A.10π 3 B.4π C.8π3 D.7π3

1.3 球与正棱柱 例3 正四棱柱1111ABCD A B C D 的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最 值,为 . 2 球与锥体 规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题. 2.1 球与正四面体

高中必备比例及外接球内切球问题(含答案)

高考必背比例 1. 三角形重心(中线的交点)分各条中线的比是2:1(这个在证明和计算题中可直接用,不会扣分) 2.圆的内接四边形对角互补 3.正方体的体对角线长a 根3(正方体边长a) 4.还有圆的相交弦定理在与球体有关的计算题中很有用处 5.正三角形四心共点(中心,重心,内心,外心) 外接球内切球问题 外接球半径:四分之根号六 正四面体 r=(a 根6)/12 R=(a 根6)/4 h=(a 根6)/3 正八面体 r=(a 根6)/6 R=(a 根2)/2 1. (陕西理?6)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( ) A .4 33 B .33 C . 43 D .123 2. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若 12AB AC AA ===,120BAC ∠=?,则此球的表面积等于 。 3.正三棱柱111ABC A B C -内接于半径为2的球,若,A B 两点的球面距离为π,则正三棱 柱的体积为 . 4.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为 A .3 B .13π C .23 π D .3 5.已知正方体外接球的体积是 π332,那么正方体的棱长等于( ) A.22 B.332 C.324 D.3 34 6.(2006山东卷)正方体的内切球与其外接球的体积之比为 ( ) A . 1∶3 B . 1∶3 C . 1∶33 D . 1∶9 7.(2008海南、宁夏理科)一个六棱柱的底面是正六边 形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98 ,底面周长为3,则这个球的体积为 . 8. (2007天津理?12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱 的长分别为1,2,3,则此球的表面积为 . 9.(2007全国Ⅱ理?15)一个正四棱柱的各个顶点在一个直径为2 cm 的球面上。如果正四 棱柱的底面边长为1 cm ,那么该棱柱的表面积为 cm 2. 10.(2006辽宁)如图,半径为2的半球内有一内接正六棱锥P ABCDEF -,则此正六棱

几何体的外接球与内切球问题归纳

几何体的外接球与内切球问题归纳 2020.9.10 课前测验: 1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为. 2..正三棱锥底面边长为3,侧棱与底面成60°角,则正三棱锥的外接球的体积为() A.4πB.16πC.D. 3.一个四面体所有棱长都为4,四个顶点在同一球面上,则球的表面积为() A.24πB.C.D.12π 4.已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,且两两垂直,△ABC是边长为2的正三角形,则球O的体积为() A.8πB.4πC.πD.π 5.在正三棱柱ABC﹣A′B′C′中,AA′=,AB=2,则该正三棱柱外接球的表面积是()A.7πB.C.D.8π 例1、在三棱锥P﹣ABC中,P A=PB=PC=2,且P A,PB,PC两两互相垂直,则三棱锥P﹣ABC的外接球的体积为() A.4πB.8πC.16πD.2π 变式训练:已知三棱锥S﹣ABC,△ABC是直角三角形,其斜边,SC⊥平面ABC,SC=6,则三棱锥的外接球的表面积为() A.144πB.72πC.100πD.64π 例2、已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC =,则球O的体积为() A.B.C.D. 变式训练:已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC,∠BAC=120°,SA=AB =AC=2,则球O的表面积为() A.4πB.C.20πD.36π 例3、已知正三棱锥S﹣ABC的侧棱长为,底面边长为6,则该正三棱锥外接球的体积是()A.16πB.C.64πD.

高考数学中的内切球和外接球问题

高考数学中的内切球和外接球问题 一、 有关外接球的问题 一、直接法(公式法) 1、求正方体的外接球的有关问题 例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______________ . 例2一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为______________. 2、求长方体的外接球的有关问题 例3一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3,则此球的表面积为 . 例4已知各顶点都在一个球面上的正四棱柱高为4, 体积为16,则这个球的表面积为( ). A. 16π B. 20π C. 24π D. 32π 3.求多面体的外接球的有关问题 例5一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为8 9,底面周长为3,则这个球的体积为 . 解 设正六棱柱的底面边长为x ,高为h ,则有 ??????==h x x 2436893 6 ?????==213x h

∴正六棱柱的底面圆的半径21=r ,球心到底面的距离2 3= d .∴外接球的半径22d r R +=. 体积:334R V π=. 小结 本题是运用公式222d r R +=求球的半径的,该公式是求球的半径的常用公式. 二、构造法(补形法) 1、构造正方体 例5 若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是_______________. 例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 . 故其外接球的表面积ππ942==r S . 小结:一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为c b a ,,,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222c b a R ++=. 出现“墙角”结构利用补形知识,联系长方体。 【原理】:长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径为R 2体对角线长l 即2 222c b a R ++=

简单几何体的外接球与内切球问题

简单几何体的外接球与内切球问题 定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。 定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。 1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。 2、正多面体的内切球和外接球的球心重合。 3、正棱锥的内切球和外接球球心都在高线上,但不重合。 4、基本方法:构造三角形利用相似比和勾股定理。 5、体积分割是求内切球半径的通用做法。 一、 直棱柱的外接球 1、 长方体的外接球: 长方体中从一个顶点出发的三条棱长分别为c b a ,,,则体对角线长为222c b a l ++=,几何体的外接球直径R 2为体对

角线长l 即2 2 22c b a R ++= 2、 正方体的外接球: 正方体的棱长为a ,则正方体的体对角线为a 3,其外接球的直径R 2为a 3。 3、 其它直棱柱的外接球: 方法:找出直棱柱的外接圆柱,圆柱的外接球就是所求直棱柱的外接球。 例1、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98 ,底面周长为3,则这个球的体积为 . 例2、已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是 A.16π B.20π C.24π D.32π 二、 棱锥的外接球 1、 正棱锥的外接球 方法:球心在正棱锥的高线上,根据球心到各个顶点的距离是球半径,列出关于半径的方程。 例3、正四棱锥 S ABCD -S A B C D 、、、、都在同一球面上,则此球的体积

内切球和外接球常见解法

内切与外接 1 球与柱体 1.1 球与正方体 例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( ) A .22 B .1 C .212+ D 21.2 球与长方体 长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222 2l a b c R ++== 例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为( ) A.10π3 B.4π C.8π3 D.7π3

1.3 球与正棱柱 例3 正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最 值,为 . 2 球与锥体 规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题. 2.1 球与正四面体 2222233a R r a R r CE +=-=,=,解得:66,.R r ==

例4 将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为( ) A.326 3 + B. 2+ 26 3 C. 4+ 26 3 D. 4326 3 + 2.2 球与三条侧棱互相垂直的三棱锥 例5 在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23 SA=,则正三棱锥S-ABC外接球的表面积是______ 2.3 球与正棱锥 球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R.这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积. 例6 在三棱锥P-ABC中,PA=3侧棱PA与底面ABC所成的角为60°,则该三棱锥外接球的体积为()

空间几何体的内切球和外接球问题

空间几何体的内切球与外接球问题 1.[2016·全国卷Ⅱ] 体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A.12π B 、32 3π C.8π D.4π [解析]A 因为正方体的体积为8,所以正方体的体对角线长为23,所以正方体的外接球的 半径为3,所以球的表面积为4π·(3)2 =12π、 2.[2016·全国卷Ⅲ] 在封闭的直三棱柱ABC - A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值就是( ) A.4π B 、9π2 C.6π D 、32π 3 [解析]B 当球与三侧面相切时,设球的半径为r 1,∵AB ⊥BC ,AB =6,BC =8,∴8-r 1+6-r 1=10,解得r 1=2,不合题意;当球与直三棱柱的上、下底面相切时,设球的半径为r 2,则2r 2=3, 即r 2=32、∴球的最大半径为32,故V 的最大值为43π×? ????323=92π、 3、[2016·郑州模拟] 在平行四边形ABCD 中,∠CBA=120°,AD =4,对角线BD =23,将其沿 对角线BD 折起,使平面ABD⊥平面BCD,若四面体ABCD 的顶点在同一球面上,则该球的体积为________. 答案: 205 3 π;解析:因为∠CBA =120°,所以∠DAB =60°,在三角形ABD 中,由余弦定理得(23)2 =42 +AB 2 -2×4·AB ·cos 60°,解得AB =2,所以AB ⊥BD 、折起后平面ABD ⊥平面BCD ,即有AB ⊥平面BCD ,如图所示,可知A ,B ,C ,D 可瞧作一个长方体中的四个顶点,长方体的 体对角线AC 就就是四面体ABCD 外接球的直径,易知AC =22+42 =25, 所以球的体积为205 3 π、 4、[2016·山西右玉一中模拟] 球O 的球面上有四点S,A,B,C,其中O,A,B,C 四点共面,△ABC 就是边长为2的正三角形,平面SAB⊥平面ABC,则棱锥S -ABC 的体积的最大值为( ) A 、 3 3 B 、 3 C .2 3 D .4 选A;[解析] (1)由于平面SAB ⊥平面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球的对称性可知,当S 在“最高点”,即H 为AB 的中点时,SH 最大,此时棱锥S -ABC 的体积最大. 因为△ABC 就是边长为2的正三角形,所以球的半径r =OC =23CH =23×32×2=23 3 、 在Rt △SHO 中,OH =12OC =3 3, 所以SH = ? ????2332-? ?? ??332 =1, 故所求体积的最大值为13×34×22 ×1=33 、

内切球、外接球问题--原创

处理球的“内切”“外接”问题 一、球与棱柱的组合体问题: 1正方体的内切球: 设正方体的棱长为a ,求(1)内切球半径;(2)外接球半径;(3)与棱相切的球半径。 (1)截面图为正方形EFGH 的内切圆,得2 a R =; (2)与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截面图,圆O 为正方形EFGH 的外接圆,易得a R 2 2=。 (3) 正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面1AA 作截面图得,圆O 为 矩形C C AA 11的外接圆,易得a O A R 2 31= =。 2.在球面上有四个点P 、A 、B 、C .如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===,求这个球的表面积是______. 【构造直三角形,巧解正棱柱与球的组合问题 正棱柱的外接球,其球心定在上下底面中心连线的中点处,由球心、底面中心及底面一顶点构成的直角三角形便可得球半径。】 3.已知底面边长为a 正三棱柱111C B A ABC -的六个顶点在球1O 上,又知球2O 与此正三棱柱的5个面都相切,求球1O 与球2O 的体积之比与表面积之比。 分析:先画出过球心的截面图,再来探求半径之间的关系。 解:如图6,由题意得两球心1O 、2O 是重合的,过正三棱柱的一条侧棱1AA 和它们的球心作截面,设正三棱柱底面边长为a ,则a R 6 32=,正三棱柱的高为a R h 3 322==,由O D A Rt 11?中,得 图3 图4 图 5 图6

22 222221125633333a a a R a R =???? ??+???? ??=+???? ??=,a R 1251=∴ 1:5::2 22121==∴R R S S ,1:55:21=V V 二 棱锥的内切、外接球问题 4 .正四面体的外接球和内切球的半径是多少? 分析:运用正四面体的二心合一性质,作出截面图,通过点、线、面关系 解之。 解:如图1所示,设点O 是内切球的球心,正四面体棱长为a .由图形的 对称性知,点O 也是外接球的球心.设内切球半径为r ,外接球半径为R . 在BEO Rt ?中,222EO BE BO +=,即22233r a R +??? ? ??=,得a R 46=,得r R 3= 【点评】由于正四面体本身的对称性可知,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即内切球的半径为 4h ( h 为正四面体的高),且外接球的半径 4 3h ,从而可以通过截面图中OBE Rt ?建立棱长与半径之间的关系。 5.正三棱锥S ABC -,底面边长为3,侧棱长为2,则其外接球和内切球的半径是多少 6. 正四棱锥S ABCD -,底面边长为2,侧棱长为3,则其外接球和内切球的半径是多少 练习: 1.(球内接正四面体问题)一个四面体的所有棱长都为2,四个顶点在同一球面上, 则此球的表面积为 2. (球内接长方体问题)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1, 2,3,则此球的表面积为 。 3.设,,,P A B C 是球O 面上的四点,且,,PA PB PC 两两互相垂直,若PA PB PC a ===, 则球心O 到截面ABC 的距离是 .4.(球内接正三棱锥问题)在正三棱锥S ABC -中,侧棱SC SAB ⊥侧面,侧棱2SC =, 则此正三棱锥的外接球的表面积为 5.(球内接棱柱问题) 则此球的体积为 . 6.(正三棱柱内切球、外接球问题)一个正三棱柱恰好有一个内切球(球与三棱柱的两个底面和三个侧面都相切)和一个外接球(球经过三棱柱的6个顶点),则此内切球与外接球表面积之比为 。 7.(球内接正四棱锥问题)半径为R 的球内接一个各棱长都相等的正四棱锥.则四棱锥的体积为 . 8.(正三棱锥球内切问题) 正三棱锥的高为3, 底面边长为正三棱锥内有一个球与其四个面相切. 则图 1

难点突破:立体图形的外接球与内切球问题

2019届高三数学第一轮复习教学案 18:难点突破:立体图形的外接球与内切球问题 一、基础知识与概念: 球的截面:用一个平面去截球,截面是圆面;用一个平面去截球面,截面是圆. 大圆:截面过球心,半径等于球半径(截面圆中最大) ;小圆:截面不过球心. 球心和截面圆心的连线垂直于截面. 2 2 2 球心到截面的距离 d 与球半径R 及截面圆半径r 的 关系:R =d +r . 几何体的外接球:几何体的顶点都在球面上;几何体的内切球:球与几何体的各个面都相切. 二、多面体的外接球(球包体) 模型1:球包直柱(直锥):有垂直于底面的侧棱(有垂底侧边棱) 1. 2. 3. 4. 球 包 直 柱 球包正方体 球 包 直 锥 球包长方体 球包四棱柱 球包三棱柱 球径公式:R =」(m +r 2 杠2丿 (r 为底面外接圆半径) 模型2: “顶点连心”锥:锥体的顶点及球心在底面的投影都是底面多边形外接圆的圆心(两心一顶连成线) 实例:正棱锥 球径计算方程:(h -R )2 +r 2 = R 2 = h 2-2hR + r 2=0二 R =4 2h (h 为棱锥的高,r 为底面外接圆半径) 特别地, (1) 边长为a 正四面体的外接球半径: (2) 底面边长为a ,高为h 的正三棱锥的外接球半径: R = (3) 底面边长为a ,高为h 的正四棱锥的外接球半径: R = 例:1. (2017年全国卷III 第8题)已知圆柱的高为1,它的两个底面的圆周在直径为 2的同一个球的球面上,则该圆 柱的体积为 兀 C. 2 —二 ....... X y : r = ------- CJ r = ------ 3 ■沁- 2/工4买£ f"' I ?

相关文档
最新文档