关于三角形的全部公式

关于三角形的全部公式
关于三角形的全部公式

勾股定理:直角三角形中,直角边的平方和等于斜边的平方。c^2=a^2+b^2 . 正弦定理:

a/sinA=b/sinB=c/sinC=2R (R是外接圆的半径)

余弦定理:

a^2=b^2+c^2-2bccosA

b^2=a^2+c^2-2accosB

c^2=a^2+b^2-2abcosC

面积公式:

1.海伦公式△ABC中三边为a,b,c。p=(a+b+c)/

2.

S(abc)=√[p(p-a)(p-b)(p-c)]即已知三角形三边求面积的海伦公式。

2.已知三角形底a,高h,则S=ah/2

3.已知三角形两边a,b,这两边夹角C,则S=absinC/2

4.设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

5.设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

6.已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]}

7.三阶行列式求面积

| a b 1 |

S△=1/2 * | c d 1 |

| e f 1 |

(注意上式最后取绝对值。)

| a b 1 |

| c d 1 |

| e f 1 |

为三阶行列式,直角坐标系内坐标A(a,b),B(c,d), C(e,f)。

三角形的周长:

L=a+b+c

三角形内角和公式:∠A+∠B+∠C=180°。

常用几何公式大全

常用几何公式大全 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

最全面的三角形面积公式

最全面的三角形面积公式 一提到三角形面积公式,大家都知道。 ① 已知三角形的底边长为a , 高为h ,则 三角形面积S= 底 ? 高 ÷2 2 ah = B 实际上,三角形面积公式太多啦,上面得公式是最基本的公式,根据条件不同,三角形面积公式也不同。 ②已知三角形的周长为l ,内切圆半径为r ,则三角形面积2 lr S = ③已知三角形的三边长的乘积为L ,外接圆半径为R ,则三角形面积4L S R = ④已知三角形AOB 中,向量 OA a =uu r r ,OB b =u u u r r ,则三角形面积S = 此公式也适用于空间三角形求面积。 ⑤已知在平面直角坐标系中,三角形ABC 的三顶点坐标分别为,11(,)A x y ,22(,)B x y , 33C(,)x y , 则三角形面积1 1223 31 1121 x y S x y x y = 的绝对值1223311321321 2 x y x y x y x y x y x y =++---。

特别地,当(0,0)C ,或经过平移后(0,0)C ,此时,三角形面积12211 2S x y x y =-。 ⑥海伦(Heran )公式,已知△ABC 中,1 ,,,()2 AB c BC a CA b p a b c ====++,则 三角形面积S 我国宋朝时期也有类似的三角形面积公式,即秦九韶公式,也叫三斜求积公式。 S = ⑦已知三角形两边及夹角,则三角形面积公式为 111 sin sin sin 222 S ab C bc A ca B = == ⑧已知三角形两角及夹边,则三角形面积公式为 222sin sin sin sin sin sin 2sin()2sin()2sin() c A B b A C a B C S A B A C B C === +++ ⑨已知三角形两角A 、B 及其中一边的对边a ,则三角形面积公式为 2sin()sin 2sin a A B B S A += ⑩已知空间三角形ABC 的顶点111222333(,,), (,,),(,,)A x y z B x y z C x y z 。 则三角形面积212121313131 11 22 i j k S AB AC x x y y z z x x y y z z =?=------ 的绝对值

三角形角度的计算专题

三角形角度的计算专题 一、 选择题 1. 等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40° C .40° D .80° 2. 等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 3.等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40° C .40° D .80° 4.如图2,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;③△ADE 的周长等于AB 与AC 的和;④BF=CF .其中正确的有( ) A .①②③ B .①②③④ C .①② D .① E D C B H F E D C A B H F G 4题 5题 5.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( ) A .80° B .90° C .100° D .108° 二、填空题 6.已知等腰三角形一个内角的度数为30°,那么它的底角的度数是_________. 7.等腰三角形的顶角的度数是底角的4倍,则它的顶角是________. 8.等腰三角形一腰上的高与另一腰的夹角为40°,求底角的度数 9.已知:△ABC 中,AB=AC ,BD 是AC 上的高,且∠CBD=35°,则∠A= . 10.如图,△ABC 中AB=AC ,EB=FC BD =CE ,∠A=52°,则∠DEF 的度数是____ 11.如图,D 、E 在BC 上,AD=BD ,AE=CE ,若∠ADE=45°,∠AED=110°, 则∠B= ,∠C= ; 若∠ADE=40°,则∠BAC= ; 若∠BAC=120°,则∠DAE= . 12. 如图,∠B=∠D=90°,C 是BD 的中点,MC 平分∠AMD ,∠DCM=35°,∠CAB 是 第10题 第11题 A B C D E F 12 D A C B M 第12题

三角形面积计算公式

《三角形面积计算公式》教学设计 四卦小学白保华 教学内容:人教版九年义务教育六年制小学数学第九册三角形面积 教材分析:人教版五年级上册84、85页三角形的面积是本单元教学内容的第二课时,是 在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,教材首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,接着根据平行四边形面积公式推导的方法提出解决问题的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出面积计算公式,这样一方面使学生初步体会到几何图形的位置变换和转化是有规律的,另一方面有助于发展学生的空间观念。 学情分析:学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方 形、平行四边形的面积计算,学生学习时并不陌生,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法探究有关图形的知识,在学习方法上也有一定的基础,教学时从学生的现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变成有趣的、充满想象和富有推理的活动。 教学目标: 1、让学生经历三角形面积计算公式的探索过程,理解三角形面积公式的来源;并能灵活运用公式解决简单的实际问题。 2、在学习活动中,培养学生的实践动手能力,合作探索意识和能力,培养创新意识和能力。 3、通过实践操作,自主探究,使学生进一步学习用转化的思想方法解决新问题培养团结互助的合作思想品质。 教学重点:三角形面积计算公式的推导。 教学难点:运用拼、剪、平移、旋转等方法,发现正方形、长方形、平形四边形及三角形面积的相互联系推导出三角形面积计算公式。 教具准备:多媒体课件一套,投影仪。 学具准备:工具(尺、剪刀),三组学具(①完全相同的锐角三角形、直角三角形、钝角三角形各两个②长方形、正方形、平行四边形各一个③任意三角形若干个) 教学设计: 一、创设问题情境,质疑激励探索 师:同学们,今天老师为大家带来了几位老朋友,你们想和它们见见面吗? 1、课件出示:学生说名称及特征后, 平行四边形 出示关系集合图长方形 正方形

三角形面积公式教学设计(供参考)

三角形面积教学设计 教学内容:人教版五年级上册84----85页 教材分析:三角形的面积是本单元教学内容的第二课时,是在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,教材首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,接着根据平行四边形面积公式推导的方法提出解决问题的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出面积计算公式,这样一方面使学生初步体会到几何图形的位置变换和转化是有规律的,另一方面有助于发展学生的空间观念。学情分析:学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形、平行四边形的面积计算,学生学习时并不陌生,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法探究有关图形的知识,在学习方法上也有一定的基础,教学时从学生的现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变成有趣的、充满想象和富有推理的活动。 教学目标:1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。 2、通过操作使学生进一步学习用转化的思想方法解决新问题。 3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。 4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。 教学重点:理解并掌握三角形面积的计算公式。 教学难点:理解三角形面积的推导过程。 教法与学法:教法:演示讲解、指导实践。 学法:小组合作、动手操作。 教学准备:三角形卡片、多媒体课件 教学过程: 一、情境引入 师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题) [设计意图]通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。 二、探究新知 1、复习平行四边形面积的求法 师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?

三角形角度的计算专题

三角形角度的计算专题 一、 选择题 1. 等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40° C .40° D .80° 2. 等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 3.等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40° C .40° D .80° 4.如图2,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;③△ADE 的周长等于AB 与AC 的和;④BF=CF .其中正确的有( ) A .①②③ B .①②③④ C .①② D .① E D C A B H F E D C A B H F G 4题 5题 5.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( ) A .80° B .90° C .100° D .108° 二、填空题 6.已知等腰三角形一个内角的度数为30°,那么它的底角的度数是_________. 7.等腰三角形的顶角的度数是底角的4倍,则它的顶角是________. 8.等腰三角形一腰上的高与另一腰的夹角为40°,求底角的度数 9.已知:△ABC 中,AB=AC ,BD 是AC 上的高,且∠CBD=35°,则∠A= . 10.如图,△ABC 中AB=AC ,EB=FC BD =CE ,∠A=52°,则∠DEF 的度数是____ 11.如图,D 、E 在BC 上,AD=BD ,AE=CE ,若∠ADE=45°,∠AED=110°, 则∠B= ,∠C= ; 若∠ADE=40°,则∠BAC= ; 若∠BAC=120°,则∠DAE= . 12. 如图,∠B=∠D=90°,C 是BD 的中点,MC 平分∠AMD ,∠DCM=35°,∠CAB 是 第10题 第11题 A B C D E F 12 D A C B M 第12题

三角函数公式总结)

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA = a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

形心重心的理论计算公式

§3-4 重心和形心 一、重心的概念: 1、重心的有关知识,在工程实践中是很有用的,必须要加以掌握。 2、重力的概念:重力就是地球对物体的吸引力。 3、物体的重心:物体的重力的合力作用点称为物体的重心。 无论物体怎样放置,重心总是一个确定点,重心的位置保持不变。 二、重心座标的公式: (1)、重心座标的公式 三、物体质心的坐标公式 在重心坐标公式中,若将G=mg,G i=m i g代入并消去g,可得物体的质心坐标公式如下: 四、均质物体的形心坐标公式 若物体为均质的,设其密度为ρ,总体积为V,微元的体积为V i,则G=ρgV,G i=ρgV i,代入重心坐标公式,即可得到均质物体的形心坐标公式如下:

式中V=∑Vi。在均质重力场中,均质物体的重心、质心和形心的位置重合。 五、均质等厚薄板的重心(平面组合图形形心)公式: 令式中的∑A i.x i=A.x c=S y; ∑A i.y i=A.y c=S x 则S y、S x分别称为平面图形对y轴和x轴的静矩或截面一次矩。 六、物体重心位置的求法工程中,几种常见的求物体重心的方法简介如下: 1、对称法 凡是具有对称面、对称轴或对称中心的简单形状的均质物体,其重心一定在它的对称面、对称轴和对称中心上。对称法求重心的应用见下图。 2、试验法对于形状复杂,不便于利用公式计算的物体,常用试验法确定其重心位置, 常用的试验法有悬挂法和称重法。 (1)、悬挂法 利用二力平衡公理,将物体用绳悬挂两次,重心必定在两次绳延长线的交点上。 悬挂法确定物体的重心方法见图 (2)、称重法 对于体积庞大或形状复杂的零件以及由许多构件所组成的机械,常用称重法来测定

三角形中的角度计算

三角形中的角度计算 要进行三角形的角度计算,首先要搞清楚三角形角度之间的关系变化。 1、内角和定理 在△ABC 中,∠A+∠B+∠C=180° 2、外角定理 三角形的一个外角等于和它不相邻的两个内角的和 3、直角三角形的两锐角 直角三角形的两个锐角之和等于90° 4、等腰三角形的三角的关系 已知等腰三角形的顶角为n °,则两底角为2 1(180°-n °);已知等腰三角形的一个底角为 n °,则另一个底角也是n °,顶角为180°-2n °. 三角形中的角度计算主要分以下三种形式: 1、方程法, 2、推理代换法, 3、特殊值法 1、方程法 例1、在△ABC 中,AB=AC ,CD 平分∠C ,∠ADC=150°,求∠B [分析] (1)所求的∠B 在△DBC 内,已知的∠ADC 是△DBC 的外角,所以有∠ADC=∠B+∠BCD 。∠B 是等腰△ABC 的顶角,∠BCD 是底角的一半,可以用∠B 表示,所以可利用方程式求∠B 。 (2)因为∠A 是底角,∠ACD 是底角的一半, ∠ADC 是已知角,所以可以先求出∠A 。 解法1、设∠B=x ,则∠ACB=21(180°-x),∠BCD=4 1(180°-x),由三角形的内角和定理,可得∠B+∠BCD=∠ADC ,即 x+4 1(180°-x)=150° 所以x=140° 解法2、设∠A=x ,则∠ACB=x,∠ACD= 21x 。因为∠A+∠ACD+∠ADC=180°, 所以 x+2 1x+150°=180° 解得x=20°,即∠A=20° ∴∠B=180°-2×20°=140° 例2、在△ABC 中,∠A :∠B=5:7,∠C 比∠A 大10°,求∠C 解:设∠C=x,则∠A=x -10°,∠B= 57(x-10°),所以有 x+(x -10°)+5 7(x -10°)=180° 解得x=60°,即∠C=60° 例3、D 是△ABC 的BC 边上一点,AD=BD ,AB=AC=CD ,求∠BAC [分析]因为AD=BD ,AB=AC=CD ,所以有∠B=∠BAD=∠C , C B A

余弦定理公式大全

4.6 正弦、余弦定理 解斜三角形 建构知识结构 1.三角形基本公式: (1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2C =cos 2B A + (2)面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) (3)射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 2.正弦定理: 2sin sin sin a b c R A B C ===外 证明:由三角形面积 111 sin sin sin 222S ab C bc A ac B === 得sin sin sin a b c A B C == 画出三角形的外接圆及直径易得:2sin sin sin a b c R A B C === 3.余弦定理:a 2 =b 2 +c 2 -2bccosA , 222 cos 2b c a A bc +-=; 证明:如图ΔABC 中, sin ,cos ,cos CH b A AH b A BH c b A ===- 222222 2 2 sin (cos )2cos a CH BH b A c b A b c bc A =+=+-=+- 当A 、B 是钝角时,类似可证。正弦、余弦定理可用向量方法证明。 要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题. 4.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角; 有三种情况:bsinA

三角形的面积计算公式的推导

“三角形的面积计算公式的推导”教学活动设计 一、活动主题的提出 数学实践活动是教师结合学生相关数学方面的生活经验和知识背景,引导学生以自主探索或合作交流的方式,展开形式多样、丰富多彩的学习活动。“三角形面积计算公式的推导”教材是通过拼的方法探究计算方法的,从表面上看,学生动手操作了,也探究了公式的形成过程,但实际上学生仅仅机械地拼了一拼,做了一次“操作工”,他们并没有自己的猜想和创造,没有真正参与知识的产生和形成,教材所提供的学习材料缺乏思维含量,缺少挑战性,学生体会不到思考的乐趣,思维得不到充分发展,为了培养学生的探究意识和探究水平,促动学生探究的有效性,特安排主题活动“三角形面积计算公式的推导”。 二、活动目标 1.探索并掌握三角形的面积计算公式,培养学生应用已有知识解决新问题的水平。 2.使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观点和初步的推理水平。 3.在探索活动中使学生获得积极地情感体验,感受数学的乐趣,体会成功的喜悦,进一步培养学生学习数学的兴趣。 三、课前准备 1.分组:每4人为一小组。 2.每人准备3张正方形纸片。 3.每位同学准备尺子、剪刀、铅笔。 四、时间:一课时(不包括活动前的准备) 五、活动过程 1.检查学生课前的准备情况。 2.揭示课题 师:三角形的面积能够怎样计算呢?这就是我们这节课要研究的问题。 板书课题:三角形面积的计算公式 3.探究操作 师:(先每4人一小组分好小组)每人拿出一张正方形纸片,在上面剪一刀,要求剪下一个三角形。当然你用笔和尺子把想剪的三角形在正方形上画出来,不剪也能够。(学生剪、画) 汇报展示。(选择如下三种图) ①②③ 师:这三种剪法中哪种剪法剪下的三角形面积你能计算?你是怎么知道的? 学生观察、思考、分析、推理、小组讨论、汇报。 第三种(图③)剪法剪下的三角形面积能计算,三角形面积正好是这个正方形面积的一半,只要把剪下的两个三角形重叠在一起,就能够发现他们完全一样(形状

形心重心计算公式

形心重心计算公式

网络教程 绪论 第一章静力学基本概念 第二章平面力系 第三章重心和形心 第四章轴向拉伸与压缩 第五章剪切与挤压第六章圆轴的扭转第七章平面弯曲内力第八章梁的强度与刚度 第九章强度理论 第十章组合变形 第十一章质点的运动第十二章刚体基本运动 第十三章点的合成运动 第十四章刚体平面运动 第十五章功和动能定理 第十讲重心和形心 目的要求:掌握平面组合图形形心的计算。 教学重点:分割法和负面积法计算形心。 教学难点:对计算形心公式的理解。 教学内容: §3-4 重心和形心 一、重心的概念: 1、重心的有关知识,在工程实践中是很有用的,必须要加以掌握。 2、重力的概念:重力就是地球对物体的吸引力。 3、物体的重心:物体的重力的合力作用点称为物体的重心。 无论物体怎样放置,重心总是一个确定点,重心的位置保持不变。 二、重心座标的公式: (1)、重心座标的公式 三、物体质心的坐标公式 在重心坐标公式中,若将G=mg,G i=m i g代入并消去g,可得物体的质心坐标公式如下:

四、均质物体的形心坐标公式 若物体为均质的,设其密度为ρ,总体积为V,微元的体积为V i,则G=ρgV,G i=ρgV i,代入重心坐标公式,即可得到均质物体的形心坐标公式如下: 式中V=∑Vi。在均质重力场中,均质物体的重心、质心和形心的位置重合。 五、均质等厚薄板的重心(平面组合图形形心)公式: 令式中的∑A i.x i=A.x c=S y; ∑A i.y i=A.y c=S x 则S y、S x分别称为平面图形对y轴和x轴的静矩或截面一次矩。 六、物体重心位置的求法工程中,几种常见的求物体重心的方法简介如下: 1、对称法 凡是具有对称面、对称轴或对称中心的简单形状的均质物体,其重心一定在它的对称面、对称轴和对称中心上。对称法求重心的应用见下图。 2、试验法对于形状复杂,不便于利用公式计算的物体,常用试验法确定其重心位置,常用的试验法有悬挂法和称重法。 (1)、悬挂法

初二数学三角形中相关角度的计算规律及应用专题 重要

B A O C 1 2 例1 初二数学三角形中相关角度的计算规律及应用(理解性记忆并能熟练运用考试必考) 一、三角形内角和定理与角平分线规律及应用 例1:在△ABC 中,BO 与CO 分别是∠ABC 和∠ACB 的平分线,且相交于点O ,探究∠O 与∠A 是否有关系?若有关系,试分析有怎样的关系? 研究分析:∠O =180°- (∠1+∠2) 而∠1+∠2= 12 (180°-∠A) =90°- 1 2 ∠A ∴∠O=180°- (90°- 12 ∠A) =90°+ 1 2 ∠A 由例1总结出重要规律:三角形的两个内角平分线交 于一点,所形成角的度数等于90°加上第三角的一半,即为∠O = 90°+ 1 2 ∠A 。 例2:已知如图:在△ABC 中,BO 、CO 分别平分∠CBE 和∠BCF ,且交于点O ,则∠O 与 ∠A 的关系又如何呢? 分析:∠O = 180°-(∠1+∠2) 而∠1+∠2 = 1 2 (180°+ ∠A) ∴∠O =180°- [ 1 2 (180°+ ∠A)] = 180°- 90°- 1 2 ∠A = 90°- 1 2 ∠A 由例2总结出重要规律:三角形的两个外角平分线交于一点,所形成角的度数等于90°减去第三角的一半。即为 ∠O = 90°- 1 2 ∠A 。 例3:已知如图:PB 与PC 分别为内角∠ABC 和外角∠ACD 的平分线, 且交于点P , 探究:∠A 与∠P 的关系。 分析:∠P=∠2-∠1, ∠2= 1 2 (∠A+∠ABC) ∠1= 1 2 (180°-∠A - ∠BCA ) ∴∠P= 12 (∠A+∠ABC )- 12 (180°-∠A - ∠BCA ) = 12 ∠A + 12 ∠ABC - 90°+ 12 ∠A+ 12 ∠BCA =∠A - 90°- 12 (180°-∠A) = 1 2 ∠A 由例3总结出重要规律:三角形的一个内角平分线与一个外角平分线交于一点,所形成角的度数等于第三角的一半。即为∠P = 1 2 ∠A 。 规律的应用 1、 如图,在△ABC 中,外角∠CAE 和∠ACD 的平分线AP 与CP 交于点P ,且∠B=57°,则∠APC= 。 2、如图,在△ABC 中,∠B 、∠C 的平分线相交于点E ,且∠A=110°,求∠E= 。 3、如图:在△ABC 中,∠A=90°,∠B =32°,OA 、OB 、OC 分别平分∠A 、∠B 、∠C , 例2 2 1 A B O E C F 例3 C P B A D 1 2

各种三角形边长的计算公式-三角形三边公式

各种三角形边长的计算公式 解三角形 解直角三角形(斜三角形特殊情况): 勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2,其中a和b分别为直角三角形两直角边,c为斜边.勾股弦数是指一组能使勾股定理关系成立的三个正整数.比如:3,4,5.他们分别是3,4和5的倍数.常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等. 解斜三角形: 在三角形ABC中,角A,B,C的对边分别为a,b,c.则有(1)正弦定理a/SinA=b/SinB= c/SinC=2R (R为三角形外接圆半径) (2)余弦定理a^2=b^2+c^2-2bc*CosA b^2=a^2+c^2-2ac*CosB c^2=a^2+b^2-2ab*CosC 注:勾股定理其实是余弦定理的一种特殊情况.(3)余弦定理变形公式cosA=(b^2+C^2-a^2)/2bC cosb=(a^2+c^2-b^2)/2aC cosC=(a^2+b^2-C^2)/2ab 斜三角形的解法: 已知条件定理应用一般解法 一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解. 两边和夹角(如a、b、c) 余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解. 三边(如a、b、c) 余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C 在有解时只有一解.

两边和其中一边的对角(如a、b、A) 正弦定理由正弦定理求出角B,由A+B+C=180

˙求出角C,在利用正弦定理求出C边,可有两解、一解或无解. 勾股定理(毕达哥拉斯定理) 内容:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.几何语言:若△ABC满足∠ABC=90°,则AB2+BC2=AC2勾股定理的逆定理也成立,即两条边长的平方之和等于第三边长的平方,则这个三角形是直角三角形几何语言:若△ABC满足,则∠ABC=90°. [3]射影定理(欧几里得定理) 内容:在任何一个直角三角形中,作出斜边上的高,则斜边上的高的平方等于高所在斜边上的点到不是两直角边垂足的另外两顶点的线段长度的乘积.几何语言:若△ABC满足∠ABC=90°,作BD⊥AC,则BD2=AD×DC 射影定理的拓展:若△ABC满足∠ABC=90°,作BD⊥AC,(1)AB2=BD·BC (2)AC2;=CD·BC (3)ABXAC=BCXAD 正弦定理 内容:在任何一个三角形中,每个角的正弦与对边之比等于三角形面积的两倍与三边边长和的乘积之比几何语言:在△ABC中,sinA/a=sinB/b=sinC/c=2S三角形/abc 结合三角形面积公式,可以变形为a/sinA=b/sinB=c/sinC=2R(R是外接圆半径) 余弦定理 内容:在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦几何语言:在△ABC中,a2=b2+c2-2bc×cosA 此定理可以变形为:cosA=(b2+c2-a2)÷2bc

三角形面积公式的五种推导方法

三角形面积公式的五种 推导方法 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

三角形面积公式的五种推导方法 摘自:《小学数学网》六年制小学数学第九册《三角形面积的计算》一节,教材上是这样安排的:一、明确目标;二、用数格的方式不能确定三角形的面积;三、能否转化成以前学过的图形进行计算四、拿两个全等的直角三角形可以拼成以前学习过的学习过的长方形和平行四边形,直角三角形的面积是长方形和平行四边形面积的一半;五、验证锐角三角形和钝角三角形是否也能拼成平行四边形;六、三次试验确定所有类型的三角形能转化成平行四边形,两者的关系是“等底等高,面积一半”;七、总结三角形的面积公式。 我们在多次的课堂教学实践和课下辅导过程中,发现上面的几个“环节”有些地方不太符合学生的认知特点。具体分析一下: 第一步没什么问题,每个教师都有自己的导入新课的方式。 第二步也没有什么:学生在学习长方形和正方形的面积时用的是“数格”的方式。学习平行四边形时用的是切割再组合的方式,就是所谓的“转化”。在大部分学生对面积这个概念的理解还不十分透彻的情况下,面对三角形,学生们的首选方法就是“数格”。因为这是学生学习有关面积计算的第一经验,第一印象,第一个技巧。也是最简单,最直接(当然也是最麻烦)的方法。关于第三步:教材上只有一句话:能不能把三角形转化成已经学过的图形再计算面积。这是化未知为已知的思维方式,我们常给初中学生提起这些认知策略,但它的基础却在小学阶段和学生的日常生活经验中。教材把这个重要的数学思想一笔带过,把挖掘其内涵,为学生建立辩证观念的重任留给了老师。但很多老师并不特别重视这句话,只是把它当作一个过渡句,当成进入下面环节的引言。

形心重心的理论计算公式

形心重心的理论计算公式

式中V=∑Vi。在均质重力场中,均质物体的重心、质心和形心的位置重合。 五、均质等厚薄板的重心(平面组合图形形心)公式: 令式中的∑A i.x i=A.x c=S y; ∑A i.y i=A.y c=S x 则S y、S x分别称为平面图形对y轴和x轴的静矩或截面一次矩。 六、物体重心位置的求法工程中,几种常见的求物体重心的方法简介如下: 1、对称法 凡是具有对称面、对称轴或对称中心的简单形状的均质物体,其重心一定在它的对称面、对称轴和对称中心上。对称法求重心的应用见下图。 2、试验法对于形状复杂,不便于利用公式计算的物体,常用试验法确定其重心位置, 常用的试验法有悬挂法和称重法。 (1)、悬挂法 利用二力平衡公理,将物体用绳悬挂两次,重心必定在两次绳延长线的交点上。 悬挂法确定物体的重心方法见图 (2)、称重法 对于体积庞大或形状复杂的零件以及由许多构件所组成的机械,常用称重法来测定

其重心的位置。例如,用称重法来测定连杆重心位置。如图。 设连杆的重力为G ,重心C点与连杆左端的点相距为Xc,量出两支点的距离L,由磅秤读出B端的约束力F B, 则由∑M A(F)=0 F B.L-G.x c=0 x c=F B.L/G (3)、分割法: 工程中的零部件往往是由几个简单基本图形组合而成的,在计算它们的形心时,可先将其分割为几块基本图形,利用查表法查出每块图形的形心位置与面积,然后利用形心计算公式求出整体的形心位置。此法称为分割法。 下面是平面图形的形心坐标公式: (4)、负面积法: 仍然用分割法的公式,只不过去掉部分的面积用负值。 3、查表法在工程手册中,可以查出常用的基本几何形体的形心位置计算公式。 下面列出了几个常用的图形的形心位置计算公式和面积公式。

三角形的面积计算公式

三角形的面积计算公式 三角形的面积计算公式1.已知三角形底a,高h,则 S=ah/22.已知三角形三边a,b,c,则(海伦公式)(p=(a+b+c)/2)S=√[p(p-a)(p-b)(p-c)]=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]3.已知三角形两边a,b,这两边夹角C,则S=1/2 * absinC4.设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/25.设三角形三边分别为a、b、c,外接圆半径为R则三角形面积=a bc/4R6.S△=1/2 *| a b 1 || c d 1 || e f 1 || a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!7.海伦--秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.8.根据三角函数求面积S= ½ab sinC=2R² sinAsinBsinC= a²sinBsinC/2sinA注:其中R为外切圆半径。9.根据向量求面积SΔ)= ½√(|AB|*|AC|)²-(AB*AC)

三角形面积的计算

三角形面积的计算 教学目标 1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算. 2.培养学生观察能力、动手操作能力和类推迁移的能力. 3.培养学生勤于思考,积极探索的学习精神. 教学重点 理解三角形面积计算公式,正确计算三角形的面积. 教学难点 理解三角形面积公式的推导过程. 教学过程 一、复习引入 (一)教师提问:我们学过了哪些平面图形的面积?计算这些图形面积的公式是什么? 教师:今天我们一起研究“三角形的面积”(板书课题) (二)共同回忆平行四边形面积的计算公式的推导过程. 二、探究新知 (一)数方格面积. 1.用数方格的方法求出第69页三个三角形的面积.(小组内分工合作) 2.演示课件:拼摆图形 3.评价一下以上用“数方格”方法求出三角形面积. (二)推导三角形面积计算公式. 1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小. 2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢? 3.用两个完全一样的直角三角形拼. (1)教师参与学生拼摆,个别加以指导 (2)演示课件:拼摆图形 (3)讨论 ①两个完全一样的直角三角形拼成一个大三角形(第三种拼法)能帮助我们推导出三角形面积公式吗?为什么? ②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系? 4.用两个完全一样的锐角三角形拼. (1)组织学生利用手里的学具试拼.(指名演示) (2)演示课件:拼摆图形(突出旋转、平移) 教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系? 5.用两个完全一样的钝角三角形来拼. (1)由学生独立完成. (2)演示课件:拼摆图形

三角形中相关角度的计算规律及应用

1 三角形中相关角度的计算规律及应用 淮南市谢家集区杨公中学 夏明海 三角形是最简单的多边形,初中几何教学中常通过对角线或添加辅助线把复杂的图形转化为三角形来研究和讨论,使问题简化后得以解决,可见三角形是初中几何的最基础的内容,在几何教学中尤显重要。三角形内角和定理与角平分线、高线是探索和研究三角形问题的重要知识点。在教学实践中把他们巧妙的结合起来,使得解决问题更为方便。 以素质教育为标准的新课标,对教材内容的深度、广度和难度都做了适当的调整,目前形势下,众多的教辅材料进入了学生的书包。其深度和难度明显超出了新课标的要求,如果学生不能很好的灵活应用基础知识,是很难完成作业的。为此对教师的课堂教学提出了新的要求。除要使学生对基础内容理解和掌握外,还要求教师把基本知识进行升华,教会学生准确、灵活的运用所学知识解决相应问题,同时要把基本内容进行归纳总结,抽象出规律性的东西。同时也培养了学生的综合分析能力和逻辑思维能力。 由于我在课堂教学中摸索出点滴的教学经验——三角形中相关角度的计算规律及其应用。愿和同行们进行交流,共同分享这份快乐,共同进步。 一、三角形内角和定理与角平分线规律及应用 例1:在△ABC 中,BO 与CO 分别是∠ABC 和∠ACB 的平分线,且相交于点O ,探究∠O 与∠A 是否有关系?若有关系,试分析有怎样的关系? 研究分析:∠O =180°- (∠1+∠2) 而∠1+∠2= 1 2 (180°-∠A) =90°- 1 2 ∠A ∴∠O=180°- (90°- 1 2 ∠A) =90°+ 1 2 ∠A 由例1总结出规律:三角形的两个内角平分线交 于一点,所形成角的度数等于90°加上第三角的一半,即为∠O = 90°+ 1 2 ∠A 。 例2:已知如图:在△ABC 中,BO 、CO 分别平分∠CBE 和∠BCF ,且交于点O ,则∠O 与 ∠A 的关系又如何呢? 分析:∠O = 180°-(∠1+∠2) 而∠1+∠2 = 1 2 (180°+ ∠A) ∴∠O =180°- [ 1 2 (180°+ ∠A)] = 180°- 90°- 1 2 ∠A = 90°- 1 2 ∠A B A O C 1 2 例1 E F

三角恒等变形公式大全

和角差角: cos(α±β)=cosαcosβ干sinαsinβ sin(α±β)=sinαcosβ±cosαsinβ tan(α±β)=(tanα±tanβ)/(1干tanαtanβ) 二倍角公式: sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)] 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=(3tanα-tan^3(α))÷(1-3tan^2(α)) sin3α=4sinα×sin(60-α)sin(60+α) cos3α=4cosα×cos(60-α)cos(60+α) tan3α=4tanα×tan(60-α)tan(60+α) 万能代换公式: 半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 和角差角: cos(α±β)=cosαcosβ干sinαsinβ sin(α±β)=sinαcosβ±cosαsinβ tan(α±β)=(tanα±tanβ)/(1干tanαtanβ) 二倍角公式: sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)] 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=(3tanα-tan^3(α))÷(1-3tan^2(α)) sin3α=4sinα×sin(60-α)sin(60+α) cos3α=4cosα×cos(60-α)cos(60+α) tan3α=4tanα×tan(60-α)tan(60+α) 万能代换公式: 半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 和角差角: cos(α±β)=cosαcosβ干sinαsinβ sin(α±β)=sinαcosβ±cosαsinβ tan(α±β)=(tanα±tanβ)/(1干tanαtanβ) 二倍角公式: sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)] 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=(3tanα-tan^3(α))÷(1-3tan^2(α)) sin3α=4sinα×sin(60-α)sin(60+α) cos3α=4cosα×cos(60-α)cos(60+α) tan3α=4tanα×tan(60-α)tan(60+α) 万能代换公式: 半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 和角差角: cos(α±β)=cosαcosβ干sinαsinβ sin(α±β)=sinαcosβ±cosαsinβ tan(α±β)=(tanα±tanβ)/(1干tanαtanβ) 二倍角公式: sin(2α)=2sinαcosα=2tan^2(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α)) tan(2α)=2tanα/[1-tan^2(α)] 半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

相关文档
最新文档