随机序列产生及数字特征估计

随机序列产生及数字特征估计
随机序列产生及数字特征估计

实验一:随机序列产生及数字特征估计

一、实验目的

1. 学习和掌握随机数的产生方法。

2. 实现随机序列的数字特征估计。

二、实验原理

1.随机数的产生

随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数通常采用的方法为线性同余法,公式如下:

=1,=mod(k,N)

=(1.1)

序列为产生的(0,1)均匀分布随机数。

下面给出了(1.1)式的3 组常用参数:

①N =1010,k =7,周期5107;

②(IBM随机数发生器)N=2 31, k =216+3,周期510 8;

③(ran0)N= 231- 1,k=75 ,周期2109;

由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理1.1 若随机变量X具有连续分布函数F X(),而R为(0,1)均匀分布随机变量,则

X= F X-1() (1.2)由这一定理可知,分布函数为F X()的随机数可以由(0,1)均匀分布随机数按(1.2)式进行

变换得到。

2.MATLAB 中产生随机序列的函数

(1)(0,1)均匀分布的随机序列,

函数:rand

用法:x = rand(m,n)

功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列

函数:randn

用法:x = randn(m,n)

功能:产生m×n 的标准正态分布随机数矩阵。

如果要产生服从N ()分布的随机序列,则可以由标准正态随机序列产生。

(3)其他分布的随机序列

MATLAB上还提供了其他多种分布的随机数的产生函数,表1.1列出了部分函数。

表1.1 MA TLAB中产生随机数的一些函数

3.随机序列的数字特征估计

对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特性。这里我们假定随机序列X(n)为遍历过程,样本函数为(n),其中n= 0,1,2 ,, N-1 。那么X(n)的均值、方差和自相关函数的估计为

(1.3)

(1.4)

m=0,±1, ±2…

(1.5)

利用MATLAB的统计分析函数可以分析随机序列的数字特征。

(1)均值函数

函数:mean

用法:m = mean(x)

功能:返回按(1.3)式估计X(n)的均值,其中x为样本序列(n)。

(2)方差函数

函数:var

用法:sigma2 = var(x)

功能:返回按(1.4)式估计X(n)的方差,其中x为样本序列(n),这一估计为无偏估计。

(3)互相关函数

函数:xcorr(x,y)

用法:c = xcorr(x,y)

c = xcorr(x)

c = xcorr(x,y,’opition’)

c = xcorr(x,’opition’)

功能:xcorr(x,y)计算X(n)与(n)的互相关,xcorr(x)计算X(n)的自相关。

option选项可以设定为:

‘biased’ 有偏估计,即

m=0,±1, ±2…(1.6)

‘unbiased’ 无偏估计,即按(1.5)式估计。

‘coeff’ m = 0时的相关函数值归一化为1。

‘none’ 不做归一化处理。

三、实验内容及结果

1. 采用线性同余法产生均匀分布随机数1000个,计算该序列均值和方差与理论值之间的误差大小。改变样本个数重新计算。

(1)实验代码:

m.文件代码如下:

function f=suiji1(p)

x=zeros(p,1);

k=7;N=10^10;y0=1; % 第一种方法

x(1)=mod(k*x0,N);

for i=2:1:p

x(i)=mod(k*x(i-1),N);

end

y=x/N;

plot(y)

m=mean(y)

sigma=var(y)

end

(2)实验过程

当p=1000(产生1000个数列)

输入:

suiji1(1000)

m =

0.4813

#理论值为0.5#

sigma =

0.0847

#理论值为1/12 (0.08333)#

得到伪随机数列的图如下:

当p=5000(产生5000个数列)得到伪随机数列的图如下:

输入:

suiji1(5000)

m =

0.4985

#理论值为0.5#

sigma =

0.0852

#理论值为1/12 (0.08333)#

(3)实验结果:

由上述实验过程,可得结果:

均值:m =0.4813 方差:d =0.0847

理论值:m0=0.5,d0=1/12=0.8333,实验结果与理论值相接近,误差比较小。

改变样本个数:N=100000:

m =0.4996 d = 0.0836

可见样本数增大与理论值误差减小,所以样本数越大,误差越小,实验结果越接近理论值。

2. 参数为λ的指数分布的均匀分布函数为利用反函数法产生参数为

0.5的指数分布随机数1000个,测试其方差和相关函数。

(1)实验代码及过程:

输入代码:

a=rand(1,1000);

b=log(1-a)*(-2);

sigma=var(b)

sigma=

4.3328

plot(b)

下图为随机b的图:

再输入:

c=xcorr(b)

plot(c)

(2)实验结果:

方差:sigma =4.3328,相关函数取值绘制在下图中:

结论:

由相关函数取值图可以看到,在中心处相关函数取值大,即相关程度大;在相距远处取值小,即相关程度小。

3、产生N(1,4)的高斯分布,估计均值,方差和相关函数

(1)实验代码及过程

代码如下:

f=randn(1,1000)*2+1;

#或f=normrnd(1,2,1000,1)# m=mean(f);

m =

0.9350

sigma=var(f)

sigma =

4.0139

c=xcorr(f)

plot(f)

plot(c)

(2)、实验结果

结果如下:

均值:m = 0.9350 方差:d = 4.0139

与理论结果接近,结果正确。

四、实验小结

(1)学会了产生随机序列以及估计随机序列的均值、方差、相关函数等数字特征的方法;(2)学习了均匀分布序列的的产生方法、线性同余法,还有三个估计随机序列数字特征的函数,均值函数mean,方差函数var,以及相关函数xcorr的使用;

(3)通过练习,加深了对随机序列的及其数字特征的理解。

随机变量的数字特征试题答案

随机变量的数字特征试题 答案 It was last revised on January 2, 2021

第四章 随机变量的数字特征试题答案 一、 选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A. E (X )=,D (X )= B. E (X )=,D (X )= C. E (X )=2,D (X )=4 D. E (X )=2,D (X )=2 2、设随机变量X 与Y 相互独立,且X~N (1,4),Y~N (0,1),令Y X Z -=,则D (Z )= (C ) A. 1 B. 3 C. 5 D. 6? 3、已知D (X )=4,D (Y )=25,cov (X ,Y )=4,则XY ρ =(C ) A. 0.004 B. C. D. 4 4、设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是(D ) A . D (X+Y )=D (X )+D (Y ) B . D (X+C )=D (X )+C C . D (X -Y )=D (X )-D (Y ) D . D (X -C )=D (X ) 5、设随机变量X 的分布函数为???? ???≥<≤-<=4, 14 2,12 2, 0)(x x x x x F ,则E(X)=(D ) A . 31 B . 21 C .2 3 D . 3 6、设随机变量X 与Y 相互独立,且)61,36(~B X ,)3 1 ,12(~B Y ,则)1(+-Y X D = (C ) A . 34 B . 37 C . 323 D . 3 26

7、设随机变量X 服从参数为3的泊松分布,)31 ,8(~B Y ,X 与Y 相互独立,则 )43(--Y X D =(C ) A . -13 B . 15 C . 19 D . 23 8、已知1)(=X D ,25)(=Y D ,XY ρ=,则)(Y X D -=(B ) A . 6 B . 22 C . 30 D . 46 9、设)3 1 ,10(~B X ,则)(X E =(C ) A . 31 B . 1 C . 3 10 D . 10 10、设)3,1(~2N X ,则下列选项中,不成立的是(B ) A. E (X )=1? B. D (X )=3? C. P (X=1)=0 D. P (X<1)= 11、设)(X E ,)(Y E ,)(X D ,)(Y D 及),cov(Y X 均存在,则)(Y X D -=(C ) A . )(X D +)(Y D B . )(X D -)(Y D C .)(X D +)(Y D -2),cov(Y X D .)(X D +)(Y D +2),cov(Y X 12、设随机变量)2 1 ,10(~B X ,)10,2(~N Y ,又14)(=XY E ,则X 与Y 的相关系数 XY ρ=(D ) A . B . -0.16 C . D . 13、已知随机变量X 的分布律为 25 .025.012p P x X i -,且E (X )=1?,则常数x =( B) A . 2 B . 4 C . 6 D . 8 14、设随机变量X 服从参数为2的指数分布,则随机变量X 的数学期望是(C ) A. B. 0 C. D. 2 15、已知随机变量X 的分布函数为F(x)=?? ?>--other x e x 00 12,则X 的均值和方差分别为(D )

第二章随机变量的分布和数字特征习题课

第二章 随机向量的分布和数字特征的习题课 一:选择题: 1. 若随机变量 21,X X 的分布函数为)(1x F 与)(2x F 则a ,b 取值为( )时,可使F(x)=a )(1x F -b )(2x F 为某随机变量的分布函数。 A.3/5,-2/5 B.2/3,2/3 C.-1/2,3/2 D.1/2,-3/2 分析:由分布函数在±∞的极限性质,不难知a,b 应满足a-b=1,只有选项A 正确。 [答案 选:A] 2. 设 X ~?(x ),且? (-x )= (x ),其分布函数为F (x ),则对任意实数a , F (-a )=( )。 A.1-?a x 0)(?d x B . 2 1 -?a x 0)(? d x C .F(a) D .2F(a)-1 分析:①是偶函数,可结合标准正态分布来考虑;②?a x 0)(? d x =F(a)-F(0);③F(0)=0.5;④F(a)+F(-a)=1 [答案 选:B] 3.设X ~N (μ,2σ),则随着σ的增大,P (|X -μ|<σ)( )。 A.单调增大 B.单调减少 C.保持不变 D.增减不定 [答案 选:C] 4.设随机变量X 与Y 均服从正态分布,X ~N(μ,16),Y ~N(μ,25), 记P{X ≤μ+4}=1p ,P{Y ≤μ+5}=2p ,则( )正确。 A.对任意实数μ,均有1p =2p B. 对任意实数μ,均有1p <2p C.只对个别的μ值才有 1p =2p D. 对任意实数μ,均有1p >2p [答案 选: A]

5. 设X 是随机变量且)0,()(,)(2>==σ μσμX D X E ,则对任意常数c , ( )成立。 222)(.c EX c X E A -=- 22)()(.μ-=-X E c X E B 22)()(.μ-<-X E c X E C 22)()(.μ-≥-X E c X E D 分析: [答案 选:D ] 由2 )(,)(σμ==X D X E ,得2222 )()(μσ+=+=EX X D EX )2()(222c cX X E c X E +-=-∴ 2 2 2 2 2 2 2) (22c c c c cEX EX -+=+-+=+-=μσμμσ )2()(222μμμ+-=-X X E X E 2 22222222σ μμμσμμ=+-+=+-=EX EX 显然2 2 )()(μ-≥-X E c X E 二:题空题 1. 设在每次伯努里试验中,事件A 发生的概率均为p,则在n 次伯努 里试验中,事件A 至少发生一次的概率为( ),至多发生一次的概率为( )。 [答案 填:(1-(1-p)n ); ((1-p)n +np(1-p)1-n )] 由伯努里概型的概率计算公式,,据题意可知, 事件A 至少发生一次的概率为k n k n k k n p p C -=-∑)1(1或n n p p C )1(100--, 事件 A 至多发生一次的概率为 k n k k K N p p C -=-∑)1(1 =n n p p C )1(00-+111)1(--n n p p C

四、随机变量的数字特征(答案)

概率论与数理统计练习题 、选择题: 二、填空题: 1 4.设随机变量 X 的密度函数为f(x) e |x| ( x ),则E(X) 0 三、计算题: 1.袋中有5个乒乓球,编号为1 , 2, 3, 4, 5,从中任取3个,以X 表示取出的3个球中最大编 号,求E(X) 解:X 的可能取值为3, 4, 5 E(X) 3 丄 4 色 5 3 4.5 10 10 5 1/5 1/6 1/5 1/15 11/30 系 _____ 第四章 专业 ______ 班 _________ 随机变量的数字特征(一) 学号 1 ?设随机变量 X 的可能取值为0, 1, 相应的概率分布为 0.6,0.3 , .01,则 E(X) 0.5 2 .设X 为正态分布的随机变量,概率密度为 f(x) 2?2 e (x 1)2 2 8 ,贝U E(2X 1) ,则 E(X 3X 2) 116/15 1 ?设随机变量X ,且 E(X)存在,则 E(X)是 (A )X 的函数 (B )确定常数 随机变量 (D )x 的函数 2 .设X 的概率密度为 f(x) 1 x e 9 9 0 ,则 E( 9X) 3 ?设 x x e 9 dx 1 (B) 9 x x e 9dx (C ) (D ) 1 是随机变量, E( )存在,若 ¥,则 E() E() (B)罟 (C ) E() P(X 3) 1 10 , P(X 4) C 5 3 10 P(X 5) § 10

2 ?设随机变量X 的密度函数为f(X ) 2 (1 %)0甘它1,求E(X) 0 其它 2 3?设随机变量X~N(,),求E(|X I) (1) Y 1 e 2X ( 2)Y 2 max{ X, 2} 解:(1) E(Y) 2x x 1 e e dx 0 3 (2) EM) 2 x 2e dx xe 0 2 x dx 2 2e 2 3e 2 2 2 e (3) E(Y 3) 2 e x dx 2e x 0 2 dx 1 c 2 c 2 」 2 3e 2e 1 e 概率论与数理统计练习题 ________ 系 _______ 专业 ______ 班 ___________________学号 _________ 第四章 随机变量的数字特征(二) 、选择题: 解:E(X) X 2(1 x)dx 解: |x (x )2 1 — dx 令y 2 y I y |e 2dy 4 .设随机变量 X 的密度函数为f (x) x 0 ,试求下列随机变量的数学期望。 x 0 (3) Y min{ X,2} 2 2~ 2 o ye dy

临床试验中的随机分组方法

临床试验中的随机分组方法 时间:2009-10-23 22:17:46 来源:admin 万霞1,刘建平2 (1.中国医学科学院基础医学研究所/中国协和医科大学基础医学院流行病学教研室,北京市东单三5号, 100005; 2.北京中医药大学循证医学中心) 【摘要】成功地实施随机分配依赖于两个相关的步骤:(1)产生随机分配序列用于试验组和对照组的分配; (2)随机分配方案在随机分组实施过程中的隐匿。随机分组方法有: 简单随机化、区组随机化分段(或分层)随机化、分层区组随机化及动态随机化等;随机分配方案隐匿的方法有按顺序编码、不透光、密封的信封, 中心随机系统, 编号或编码的瓶子或容器, 中心药房准备的药物等。科研工作者在临床研究中需要根据设计方法, 正确选择随机分组及随机分配方案隐匿的方法。 【关键词】随机分配; 随机分组; 随机方案; 隐匿 随机分配方法确保对比组之间基线均衡可比,被认为是减少两组患者选择偏倚的最佳方法[1]。因此,有学者认为正是由于随机分配方法,使得随机对照试验在提高医疗卫生服务中起着至关重要的作用[2]。在临床研究中,正确地实施真正的随机分配是临床试验的关键。成功地实施随机分配依赖于两个相关的步骤[3]:(1)产生随机分配序列并用于随机分配到试验组和 对照组; (2) 随机分配方案在随机分组中的隐匿(allocation concealment)。没有随机隐匿的随机临床试验也称为开放式的随机对照试验。 有试验研究表明[4],如果用不适当的分组和双盲方法, 即使是随机临床试验,其干预效果也 会被显着地高估(在一项研究中干预效果平均被夸大约50% )。遗憾的是90%以上的随机临床试验随机分组不恰当[5]。对卫生系统重大科研课题的终审标书进行的系统评价发现,部分治疗性研究存在假的随机分组[6]。有学者分层随机选择综合性国家级中医药学术期刊4种、省级和中医学院(大学)学报类中医药学术期刊各10种, 专业杂志(如针灸) 4种, 共计28种, 从1996 年12月开始回溯20年, 从中选取所有中医药疗效评价的文章逐一评阅。研究结果发现, 83%的文章未描述随机分组方法,操作是否恰当难以判断[7]。

四、随机变量的数字特征(答案)

概率论与数理统计练习题 系 专业 班 学号 第四章 随机变量的数字特征(一) 一、选择题: 1.设随机变量X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为910()9 00 x e x f x x -?≥?=??

C语言中产生随机数的方法

C语言中产生随机数的方法 引例:产生10个[100-200]区间内的随机整数。 #include #include //rand函数的头文件 #include //时间函数的头文件 int main() { int i; //循环变量 srand((unsigned) time(NULL)); //产生随机数的起始数据(以时间为种子) for (i=0; i<10; i++) //printf("%d\n", rand()); //产生[0,0x7fff)即[0,32767)以内的随机整数 //printf("%d\n", rand()%100); //产生0-99的随机整数 printf("%d\n", rand()%(200-100+1) + 100); //产生[100,200]内的随机整数return 0; } 在C语言中产生随机数需要以下几个函数的配合使用。 (1)rand函数——产生伪随机数 原型:int rand(void) 头文件:stdlib.h 功能:产生从0到RAND_MAX之间的随机数。RAND_MAX的值通常是0x7fff(十六进制数7FFF,也就是十进制数32767)。 例: #include #include int main() { int k; k = rand(); printf("%d\n", k); return 0; } 编译运行,发现每次运行程序产生的随机数都是一样的。 计算机中产生随机数,实际是采用一个固定的数作为“种子”,在一个给定的复杂算法中计算结果,所以叫“伪随机数”。 C语言中由于采用固定的序列作为种子,所以每次执行所取的是同一个数。 为上面的例子增加一个循环结构: #include #include int main() { int k,i;

随机变量的数字特征

第四章随机变量的数字特征 【基本要求】理解随机变量的数学期望与方差的概念,掌握它们的性质与计算方法;掌握计算随机变量函数的数学期望方法;掌握二项分布、泊松分布、正态分布和指数分布的数学期望和方差;了解协方差、相关系数、矩的概念、性质及计算方法。 【本章重点】数学期望与方差的概念、性质与计算方法;求随机变量函数的数学期望的方法;二项分布、泊松分布、正态分布和指数分布的数学期望和方差。 【本章难点】数学期望与方差的概念计算方法;随机变量函数的数学期望的计算方法;协方差、相关系数、矩的概念、性质及计算方法 【学时分配】7-9学时 分布函数:) x F≤ =——全面描述随机变量X取值的统计规律。但是,在实际问题中 P X ) ( (x 分布函数的确定并不是一件容易的事,而且有时我们也不需要知道分布函数,只需知道随机变量的某些数字特征就够了。例如: 评价粮食产量,只关注平均产量; 研究水稻品种优劣,只关注每株平均粒数; 评价某班成绩,只关注平均分数、偏离程度; 评价射击水平,只关注平均命中环数、偏离程度。 描述变量的平均值的量——数学期望, 描述变量的离散程度的量——方差。 §4.1 数学期望 教学目的:使学生理解掌握随机变量的数学期望的实际意义及概念,会计算具体分布的数学期望; 使学生理解掌握随机变量函数的数学期望的计算及数学期望的性质。 教学重点、难点:数学期望的概念及其计算;随机变量函数的数学期望的计算及数学期望的性质。

教学过程: (一) 数学期望的概念 先看一个例子:一射手进行打靶练习,规定射入 区域2e 得2分, 射入区域1e 得1分,脱靶即射入 区域0e 得0分.设射手一次射击的得分数X 是一个 e 0 随机变量,而且X 的分布律为P{X=k}=k p ,k=0,1,2 现射击N 次,其中得0分0a 次,得1分1a 次,得2分2a 次,0a +1a +2a =N.则他射击N 次得分的总和为0a 0+ 1a 1+ 2a 2,他平均一次射击的得分数为 ∑==?+?+?2 210210k k N a k N a a a ,因为当N 充分大时, 频率k p 概率稳定值 ??→?N a k 。 所以当N 充分大时, 平均数∑=??→?2 k k k p x x 稳定值 。 显然,数值∑=2 k k k p x 完全由随机变量X 的概率分布确定,而与试验无关,它反映了平均数的大小。 定义: 1.离散型随机变量的数学期望:设离散型随机变量X 的分布律为{}k k P X x p ==,1,2,3k =…若级数1 k k k x p ∞ =∑绝对收敛,则称级数1 k k k x p ∞ =∑为随机变量X 的数学期望,记为()E X ,即()E X =1 k k k x p ∞ =∑。 2.连续型随机变量的数学期望:设连续型随机变量X 的密度函数为()f x ,若积分()xf x dx ∞ -∞ ?绝对 收敛,则称积分()xf x dx ∞-∞ ?的值为随机变量X 的数学期望,记为()E X 。即()E X =()xf x dx ∞ -∞ ?。 数学期望简称期望,又称为均值。 (二) 数学期望的计算 关键是:求出随机变量的分布律或者密度函数。 1、离散型——若 则()E X =1k k k x p ∞ =∑ (绝对收敛)

随机数生成方法、随机数生成法比较以及检验生成的随机序列的随机性的方法讲义

摘要 摘要 本文着重讨论了随机数生成方法、随机数生成法比较以及检验生成的随机序列的随机性的方法。 在随机序列生成方面,本文讨论了平方取中法、斐波那契法、滞后斐波那契法、移位法、线性同余法、非线性同余法、取小数法等,并比较了各方法的优劣性。 在统计检验方面,介绍了统计检验的方法,并用其检验几种随机数生成器生成的随机数的随机性。 最后介绍了两种新的随机数生成法,并统计检验了生成随机序列的随机性。关键词:随机数,随机数生成法,统计检验 I

ABSTRACT ABSTRACT This article focuses on methods of random number generator, random number generation method comparison and test the randomness of the generated random sequence method. In random sequence generation, the article discusses the square method, Fibonacci method, lagged Fibonacci method, the shift method, linear congruential method, linear congruence method, taking minority law, and Comparison of advantages and disadvantages of each method. In statistical test, the introduction of the statistical test method, and used to test some random number generator random random numbers generated. Finally, two new random number generation method, and statistical tests of randomness to generate a random sequence. Key Words: random number,random number generator,statistical test II

第三章 随机变量的数字特征答案

第三章 随机变量的数字特征答案 一、1、35;2、 6175;;259,59,259, 563、σ σμ1 , =±=b a ; 4、()(),2 1212 1211 )(2 2 2 212111 2??? ? ??-- ---+-? = ? = = x x x x e e e x πππ ? ),(~所以2 1 1N ξ ,2 1 ,12 = ===σ ξμξD E 5、2 1-;6.a=2,b=0,或a=-2,b=2;32)(=ξE 或31 ; 7、()()125,01022===+=+=+=+a D a b a D b a b aE b a E ξξξξ 所以2,5 1 2,51=-=-== b a b a 或 8、()()6.2022,2=++=++=+ηξρηξηξηξηξξηD D D D Cov D D D ()()4.232,2=-+=-+=-ηξρηξηξηξηξξηD D D D Cov D D D 9、148,57; 10、()()()()n D a E D a E i i 2 2 ,,,σξ ξσξξ= ===所以 二、1、C 2、B 3、C 4、B 5、C 三、1、,2.03.023.004.02-=?+?+?-=ξE ()8.23.023.004.02222 2=?+?+?-=ξE ()() ()() ( )04.114,412,4.1353532 222=-==-=+=+ξξξξξξE E D D E E 2、ξ~[]10,0U ,()32512010,5210 02 =-==+=ξξD E , 3 35=ξD 3、4)(,1)2 (==ξξ D D ,则 1)(,4)1(==-ξξ E D 所以0)1(=-ξE 所以 ()()()() 2 2 2111404E D E ξξξ-=-+-=+= 4、()()()()()()32323223,2D D D D Cov ξηξηξηξη-=+-=+-+- ()( )941225.6D D ξηρ=+-=

第四章 随机变量的数字特征试题答案

第四章随机变量的数字特征试题答案 一、 选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A.E (X )=0.5,D (X )=0.5?B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4?D.E (X )=2,D (X )=2 2 Y X -=,则34) A C 5A 6、)1= (C ) A .3 4?B .3 7C . 323?D .3 26 7、设随机变量X 服从参数为3的泊松分布,)3 1 ,8(~B Y ,X 与Y 相互独立,则 )43(--Y X D =(C ) A .-13? B .15 C .19? D .23 8、已知1)(=X D ,25)(=Y D ,XY ρ=0.4,则)(Y X D -=(B )

A .6? B .22 C .30? D .46 9、设)3 1 ,10(~B X ,则)(X E =(C ) A .31? B .1 C .3 10?D .10 10、设)3,1(~2N X ,则下列选项中,不成立的是(B ) A.E (X )=1? B.D (X )=3? C.P (X=1)=0? D.P (X<1)=0.5 11 A .C .12、XY ρ= (D 13x =(B) A . 14、(C ) A.-15、为(A .C .21)(,41)(== X D X E ?D .4 1 )(,21)(==X D X E 16、设二维随机变量(X ,Y )的分布律为

则)(XY E =(B ) A .9 1-?B .0 C .9 1?D .3 1 17、已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为(D ) A 18,0.5),则A 19,则X A 20, 则21(B A C 22、设n X X X ,,,21 是来自总体),(2σμN 的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为(B ) A .{}2 2 εσεμn n X P ≥ <-?B .{} 22 1ε σεμn X P -≥<- C .{}2 2 1ε σεμn X P - ≤≥-?D .{}2 2 εσεμn n X P ≤ ≥-

实验一平稳随机过程的数字特征

实验一 平稳随机过程的数字特征 一、实验目的 1、加深理解平稳随机过程数字特征的概念 2、掌握平稳随机序列期望、自相关序列的求解 3、分析平稳随机过程数字特征的特点 二、实验设备 计算机、Matlab 软件 三、实验内容和步骤 设随机电报信号X(n)(-∞m 时, m k k e k m I m n X n X P λλ-∞ =∑==+022 )!2()(})()({

m k k e k m I m n X n X P λλ-∞ =+∑+==+0122 )!12()(})()({ m e I m n X n X E m R λ22)]()([)(-=+= 五、实验要求 1、写出求期望和自相关序列的步骤; 2、分析自相关序列的特点; 3、打印相关序列和相关系数的图形; 4、附上程序和必要的注解。 六、实验过程 input('王斌欢迎您') I=input('输入I 的值'); a=0.5; %a 的值为P{X(n)=+I} b=0.5; %b 的值为P{X(n)=-I} EX=I*a+(-I)*b %EX 为期望的输出值 xuehao=21; %学号为21 k=1/xuehao; Ex=I*0.5+(-I)*0.5; m=-64:1:64; Rx=I*I*exp(-2*k*abs(m)); Cx=Rx-Ex*Ex; Cx0=I*I*exp(-2*k*abs(0))-Ex*Ex; rx=Cx/Cx0; figure(1); subplot(211);stem(EX);title('期望') %输出图像 subplot(212);stem(m,Rx);title('自相关序列'); figure(2); stem(m,rx);title('相关系数'); 七、实验结果及分析

一维正态分布随机数序列的产生方法

一维正态分布随机数序列的产生方法 一、文献综述 1.随机数的定义及产生方法 1).随机数的定义及性质 在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。由该分布抽取的简单子样称,随机数序列,其中每一个体称为随机数。 单位均匀分布也称为[0,1]上的均匀分布。 由于随机数在蒙特卡罗方法中占有极其重要的位置,我们用专门的符号ξ表示。由随机数序列的定义可知,ξ1,ξ2,…是相互独立且具有相同单位均匀分布的随机数序列。也就是说,独立性、均匀性是随机数必备的两个特点。 随机数具有非常重要的性质:对于任意自然数s,由s个随机数组成的 s维空间上的点(ξn+1,ξn+2,…ξn+s)在s维空间的单位立方体Gs上 均匀分布,即对任意的ai,如下等式成立: 其中P(·)表示事件·发生的概率。反之,如果随机变量序列ξ1, ξ2…对于任意自然数s,由s个元素所组成的s维空间上的点(ξn+1,…ξn+s)在Gs上均匀分布,则它们是随机数序列。 由于随机数在蒙特卡罗方法中所处的特殊地位,它们虽然也属于由具有已知分布的总体中产生简单子样的问题,但就产生方法而言,却有着本质上的差别。 2).随机数表 为了产生随机数,可以使用随机数表。随机数表是由0,1,…,9十个数字组成,每个数字以0.1的等概率出现,数字之间相互独立。这些数字序列叫作随机数字序列。如果要得到n位有效数字的随机数,只需将表中每n 个相邻的随机数字合并在一起,且在最高位的前边加上小数点即可。例如,某随机数表的第一行数字为7634258910…,要想得到三位有效数字的随机数依次为0.763,0.425,0.891。因为随机数表需在计算机中占有很大内存, 而且也难以满足蒙特卡罗方法对随机数需要量非常大的要求,因此,该方法不适于在计算机上使用。 3).物理方法

随机变量的数字特征试题答案

第四章 随机变量的数字特征试题答案 一、选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A. E (X )=,D (X )=? B. E (X )=,D (X )= C. E (X )=2,D (X )=4? D. E (X )=2,D (X )=2 2、设随机变量X 与Y 相互独立,且X~N (1,4),Y~N (0,1),令Y X Z -=,则D (Z )=? (??C?) A. 1 ? B. 3 C. 5? D. 6? 3、已知D (X )=4,D (Y )=25,cov (X ,Y )=4,则XY ρ =(C ) A. 0.004? B. ? C. ? D. 4 4、设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是(?D ) A . D (X+Y )=D (X )+D (Y ) ?B . D (X+C )=D (X )+C C . D (X-Y )=D (X )-D (Y ) ?D . D (X-C )=D (X ) 5、设随机变量X 的分布函数为???? ???≥<≤-<=4, 14 2,12 2, 0)(x x x x x F ,则E(X)=(D ) A . 31 ?B . 21 C .2 3 ?D . 3 6、设随机变量X 与Y 相互独立,且)61,36(~B X ,)3 1 ,12(~B Y ,则)1(+-Y X D =(C ) A . 34 ? B . 37 C . 323 ? D . 3 26 7、设随机变量X 服从参数为3的泊松分布,)3 1 ,8(~B Y , X 与Y 相互独立,则)43(--Y X D =(C ) A . -13 ? B . 15 C . 19 ? D . 23 8、已知1)(=X D ,25)(=Y D ,XY ρ=,则)(Y X D -=(B ) A . 6 ?B . 22 C . 30 ?D . 46 9、设)3 1,10(~B X ,则)(X E =(C ) A . 31 ?B . 1 C . 3 10 ?D . 10 10、设)3,1(~2 N X ,则下列选项中,不成立的是(B ) A. E (X )=1? B. D (X )=3? C. P (X=1)=0? D. P (X<1)= 11、设)(X E ,)(Y E ,)(X D ,)(Y D 及),cov(Y X 均存在,则)(Y X D -=(C ) A . )(X D +)(Y D ?B . )(X D -)(Y D

EXCEL随机数据生成方法

求教:我的电子表格中rand()函数的取值范围是-1到1,如何改回1到0 回答:有两种修改办法: 是[1-rand()]/2, 或[1+rand()]/2。 效果是一样的,都可生成0到1之间的随机数 电子表格中RAND()函数的取值范围是0到1,公式如下: =RAND() 如果取值范围是1到2,公式如下: =RAND()*(2-1)+1 RAND( ) 注解: 若要生成a 与b 之间的随机实数: =RAND()*(b-a)+a 如果要使用函数RAND 生成一随机数,并且使之不随单元格计算而改变,可以在编辑栏中输入“=RAND()”,保持编辑状态,然后按F9,将公式永久性地改为随机数。 示例 RAND() 介于0 到1 之间的一个随机数(变量) =RAND()*100 大于等于0 但小于100 的一个随机数(变量) excel产生60-70随机数公式 =RAND()*10+60 要取整可以用=int(RAND()*10+60) 我想用excel在B1单元个里创建一个50-80的随机数且这个随机数要大于A1单元个里的数值,请教大家如何编写公式! 整数:=ROUND(RAND()*(80-MAX(50,A1+1))+MAX(50,A1+1),0) 无需取整数:=RAND()*(80-MAX(50,A1))+MAX(50,A1)

要求: 1,小数保留0.1 2,1000-1100范围 3,不要出现重复 =LEFT(RAND()*100+1000,6) 至于不许重复 你可以设置数据有效性 在数据-有效性设 =countif(a:a,a1)=1 选中a列设有效性就好了 其他列耶可以 急求excel随机生成数字的公式,取值要在38.90-44.03之间,不允许重复出现,保留两位小数,不允许变藏 =round(RAND()*5+38.9,2) 公式下拉 Excel随机数 Excel具有强大的函数功能,使用Excel函数,可以轻松在Excel表格产生一系列随机数。 1、产生一个小于100的两位数的整数,输入公式=ROUNDUP(RAND()*100,0)。 RAND()这是一个随机函数,它的返回值是一个大于0且小于1的随机小数。ROUNDUP 函数是向上舍入数字,公式的意义就是将小数向上舍入到最接近的整数,再扩大100倍。 2、产生一个四位数N到M的随机数,输入公式=INT(RAND()*(M-N+1))+N。 这个公式中,INT函数是将数值向下取整为最接近的整数;因为四位数的随机数就是指从1000到9999之间的任一随机数,所以M为9999,N为1000。RAND()的值是一个大于0且小于1的随机小数,M-N+1是9000,乘以这个数就是将RAND()的值对其放大,用INT 函数取整后,再加上1000就可以得到这个范围内的随机数。[公式=INT(RAND()*(9999-1000+1))+1000] 3、Excel函数RANDBETWEEN是返回位于两个指定数之间的一个随机数。使用这一个函数来完成上面的问题就更为简单了。要使用这个函数,可能出现函数不可用,并返回错误值#NAME?。 选择"工具"菜单,单击"加载宏",在"可用加载宏"列表中,勾选"分析工具库",再单击"确定"。接下来系统将会安装并加载,可能会弹出提示需要安装源,也就是office安装盘。放入光盘,点击"确定",完成安装。 现在可以在单元格输入公式=RANDBETWEEN(1000,9999)。 最后,你可以将公式复制到所有需要产生随机数的单元格,每一次打开工作表,数据都会自动随机更新。在打开的工作表,也可以执行功能键F9,每按下一次,数据就会自动随机更新了。

随机变量的数字特征(答案)

概率论与数理统计练习题 系 专业 班 姓名 学号 第四章 随机变量的数字特征(一) 一、选择题: 1.设随机变量X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为910()9 00 x e x f x x -?≥?=??

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程 粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程 1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数 综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。 a):一般在实用中,只要产生随机过程的主要物理条件,在时间 进程中不变化。则此过程就可以认为是平稳的。 例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。 12121212 12 1 21212 2 2 2 (,)(,;)() (,)()()(,;)()()(0)(0)[()] X X X X X X X X X X X X X X R t t x x f x x dx dx R C t t x m x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2 t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。 因此,工程中平稳过程的定义如下: 二、宽平稳过程1、定义 若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数 R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关 则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。 可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。 c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

实验一随机序列的产生及数字特征估计

实验一随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。(0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: y0=1,y n=ky n?1mod N(1.1) x n=y n N 序列x n为产生的(0,1)均匀分布随机数。 下面给出了(1.1)式的3 组常用参数: ①N = 1010,k = 7,周期≈5*10^7; ②(IBM随机数发生器)N = 2^31,k = 2^16 + 3,周期≈5*10^8;

③(ran0)N = 2^31 - 1,k = 7^5,周期≈2*10^9; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理1.1 若随机变量X具有连续分布函数F X(X),而R为(0,1)均匀分布随机变量,则有 X=F X?1(R)(1.2) 由这一定理可知,分布函数为F X(X)的随机数可以由(0,1)均匀分布随机数按(1.2)式进行变换得到。 2、MATLAB 中产生随机序列的函数 (1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n) 功能:产生m×n的均匀分布随机数矩阵。 (2)正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m×n的标准正态分布随机数矩阵。 如果要产生服从N(μ,σ2)分布的随机序列,则可以由标准正态随机序列产生。(3)其他分布的随机序列 MATLAB 上还提供了其他多种分布的随机数的产生函数,表1.1 列出了部分函数。

随机变量的数字特征归纳

第四章 随机变量的数字特征 ㈠ 数学期望 表征随机变量取值的平均水平、“中心”位置或“集中”位置. 1、数学期望的定义 (1) 定义 离散型和连续型随机变量X 的数学期望定义为 {}?????==?∑∞ ∞ - d )( )()( , , 连续型离散型x x xf x X x X k k k P E 其中Σ表示对X 的一切可能值求和.对于离散型变量,若可能值个数无限,则要求级数绝对收敛;对于连续型变量,要求定义中的积分绝对收敛;否则认为数学期望不存在. ①常见的离散型随机变量的数学期望 1、离散型随机变量的数学期望 设离散型随机变量的概率分布为 ,若,则称级数为随 机变量 的数学期望(或称为均值),记为 , 即 2、两点分布的数学期望 设 服从0—1分布,则有 ,根据定义, 的数学期望为 . 3、二项分布的数学期望 设 服从以 为参数的二项分布, ,则 。 4、泊松分布的数学期望 设随机变量 服从参数为的泊松分布,即,从而有 。 ①常见的连续型随机变量的数学期望 1)均匀分布

设随机变量ξ服从均匀分布,ξ~U [a,b] (a0,- <μ<+ ) 则令得 ∴ E(ξ)=μ . 3)指数分布 设随机变量服从参数为的指数分布,的密度函数为 ,则. (2) 随机变量的函数的数学期望设)(x g y=为连续函数或分段连续函数,而X是任一随机变量,则随机变量) (X g Y=的数学期望可以通过随机变量X的概率分布直接来求,而不必先求出Y的概率分布再求其数学期望;对于二元函数) , (Y X g Z=,有类似的公式: (){} ? ? ? ? ?= = = ? ∑ ∞ ∞ . ; (连续型) 离散型 - d) ( ) ( ) ( ) ( x x f x g x X x g X g Y k k k P E E

相关文档
最新文档