水电解制氢系统技术要求

水电解制氢系统技术要求
水电解制氢系统技术要求

水电解制氢系统技术要求 GB/T 19774-2005

(非移动式系统)检查内容

5.1.1通用要求

5.1.1.1水电解制氢系统包括下列单体设备或装置:水电解槽及其辅助设备一一分离器、冷却器、,压力调节阀、碱液过滤器、碱液循环泵;原料水制备装置;碱液制备及贮存装置;氢气纯化装置;氢气储罐;氢气压缩机;气体检测装置;直流电源、自控装置等。

5.1.1.2水电解制氢系统可采用固定式或移动式

5.1.1.3水电解制氢系统的副产品氧气,可根据需要回收利用或直接排入大气。当回收利用时

5.1.3工作条件

5.1.3.1水电解制氢系统的工作压力(か)分为:常压、低压和中压三类,它们的压力范围规定为:

常压水电解制氢系统,p<0.1MPa

低压水电解制氢系统,0.1MPa≤p<1.6MPa;

中压水电解制氨系统,1.6MPa≤p<10MPa

5.1.3.2环境温度根据用户要求确定水电解制氢系统的工作环境温度。在没有确定的数据时,宜按工作环境温度小于45℃为依据。)

5.1.3.3水电解制氢系统所处场所有爆炸危险的区域及等级的划分,应符合GB50177的规定

5.1.3.4水电解制氢系统的外供电系统的输入电压值由用户确定,电压等级宜为10kV、380V水电解制氢系统每台水电解槽成独立配置直流电源。)5.1.3.5水电解用原料水的水质应符合表2规定。

5.1.3.6水电解制氢系统采用苛性破性水溶液时,所使用的氢氧化钾或氢氧化钠应符合GB/T2306、GB/T629的规定。

在苛性碱性水溶液电解制氢系统运行中,苛性碱性水溶液(电解液)的质量要求应符合表3的规定

5.1.3.7水电解制氢系统应设置吹扫置换接口。吹扫置换气采用含氧量小于0.5%的氮气。

5.1.3.8冷却水的水压宜为0.15MPa~0.35MPa,循环冷却水的水质应符合表4的要求。

5.1.3.9仪表或气动用压缩空气的气源压力应按仪表或气动要求确定,其质量宜符合GB/T4830的规定或相关产品的要求

5.2单体设备

5.2.1通用要求

5.2.1.1水电解制氢系统的单体设备,应根据水电解制氢系统的规模、用氢特性、氢气品质的不同要求,合理配置不同的单体设备。

5.2.1.2单体设备的技术性能、工作参数应满足或高于水电解制氢系统的总体要求。

5.2.1.3单体设备的材质

单体设备内或连接部位与电化学反应过程或氢气/氧气直接接触或间接接触的内表面、零部件或密封件所选用的材料应具有下列特性:

5.2.1.3.1在所有的工作条件下,具有必要的化学稳定性。

5.2.1.3.2在运行中不会发生各种形式的催化反应、电化学反应或其他形式的化学反应引起的寄生性副反应,以避免这些反应形成对氢气/氧气的污染。5.2.1.3.3应符合各项机械性能要求,并在工作条件下保持稳定的力学性能。5.2.1.3.4所选用材料的化学组成、结构形态,不应发生或避免发生氢脆或氢腐蚀。

5.2.1.3.5所选用的材料的化学组成、结构形态,在运行中不发生应力腐蚀、裂纹或氧腐蚀。

5.2.1.4对移动式水电解制氢系统的防护罩或外売的设置,应符合下列规定5.2.1.4.1当直接接触或间接接触潮湿气体后,可能影响单体设备或零部件技术性能或使用功能时,应采取防护措施或选用防潮材质。

5.2.1.4.2防护罩或外壳应采用不燃材料;最小厚度宜为0.6mm,一般可采用镀锌钢板等。对面积较大的防护罩,按强度或刚性要求,采取加强揹施或双层结构。

5.2.1.4.3防护罩或外壳需设保温层时,应按GB/T8175设计,其保温材料,应采用不燃材料,并设置避免材料飞扬、散落的措施。

5.2.1.4.4防护罩或外壳的内表面必须平整、无氢气积聚空间,并在顶部最高处设排气口,若有二处或二处以上顶部有最高处时,则应在每个最高处均设排气口。

5.2.1.4.5防护罩或外壳内应设有氢气浓度报警装置,并与排风机或吹扫置换气体关断阀连锁。

5.2.1.4.6防护單或外壳内应在方便检查、维修的位置设检査口、维修口,其数量和尺寸应按检查、维修对象或功能确定。检查口、维修口应设有视窗或盖板。

5.2.2水电解

5.2.2.1水电解槽是水电解制氢系统的主体设备,它的性能参数将决定水电解制氢的技术性能水电解槽的性能参数、结构应以降低单位氢气电能消耗、减少制造成本、延长使用寿命为基本要求应合理选择水电解槽的结构型式、电解小室及其电极、隔膜的构造、涂层和材质。

5.2.2.2水电解槽的氢气生产能力、纯度和杂质含量应按制造厂家的企业标准和用户的要求协商确定。

5.2.2.3电解小室的电极材质、涂层等应根据槽体设计、水电解制氢系统的总体要求确定。

5.2.2.4隔膜材质,隔膜石棉布应符合TC211的规定。应按槽体设计的技术要求和供货条件确定。

5.2.2.5密封垫片的选择应确保水电解槽在工作状态不渗漏,并能承受槽体开、停车时的工作状态变化,其质量应符合GB/T3985或具体水电解槽槽体设计所选材质的相关标准。

5.2.2.6螺形弹簧的制造要求应符合GB/T1972的规定。

5.2.2.7铸件内外表面应光滑,不得有气泡、裂纹及厚度显著不均的缺陷,诗钢件应符合GB/T11352的规定。

5.2.2.8主要焊接结构的焊缝不得有气孔、夹渣和裂纹等缺陷。

5.2.2.9.1镀件的镀层表面不得鼓泡、起皮、局部无镀层和划伤等严重缺陷。镀层表画质量应进行100%检验。

5.2.2.9.2镀件的镀层厚度、结合强度及孔隙率的质量和检查应分别符合JB2111、JB2112和JB2115的规定。

5.2.2.9.3镀件的钡层厚度,结合强度及孔隙率的检验抽样和抽样方法按GB /T2829的规定。镀件可以采用相同工艺同时电镀的试件进行试验。

5.2.3压力容器

5.2.3.1水电解制氢系统的压力容器主要用于气液分离、冷却和储存。压力容器的设计、制造、检验和验收应符合《压力容器安全技术监察规程》、GB150、GB151的规定。

5.2.3.2容器的工作压力是指在水电解制氢系统正常工作状态下,容器顶部可能达到的最高压力。

5.2.3.3容器的材质应满足氢气/氧气和电解液在系统工作状态的要求。当采用不锈钢板时应符合

GB/T4237的规定:采用碳素钢板时应符合GB6654的规定。

5.2.3.4容器的规格、尺寸、壁厚应按计算确定,并留有必要的裕量。5.2.3.5容器的布置应根据水电解制氢系统的总体设计,并尽力做到顺应制氨流程、连接管路短、方便操作和维修

5.2.4氢气储罐

5.2.4.1水电解制氢系统根据氢气使用特点或用户要求,设置相应的氢气储罐。

5.2.4.2氢气储罐的储存能力应按氢气使用特点、氢气生产能力和电力供应状况确定压力型氢气罐的氢气储存容量应根据最大进气压力和允许出气压力确定

5.2.4.3氢气储罐有常压型和压力型两类。

常压型氢气宣采用湿式贮气柜,工作压力为4.0kPa

压力型氢气罐有筒形或球形压力容器,也可用氢气钢瓶组或长管氢气钢瓶等。工作压力应按水电解制氢系统工艺流程、氢气使用特点确定氢气球形罐的制造、检验应符合GB12337的规定,氢气钢瓶应符合GB5099和《气瓶安全监察规程》的规定

5.2.4.4压力型氢气罐上或其进气/出气管第1个切断阀前必须设泄压用安全园,安全阀应符合GB/T12241的规定。常压型氢气罐,应设自动放空管。

5.2.5气压缩机

5.2.5.1用于氢气增压的氢气压缩机,应根据水电解制氢系统流程和用户要求设置,其形式有从常压增压至低压或中压或高压,从低压增压至中压或高压;从中压增压至高压甚至超高压等多种型式。

5.2.5.2根据氢气压缩机进气/排气压力、氢气纯度的要求,选用活塞式、膜式等类型压缩机。

5.2.5.3氢气压缩机的性能、结构和材质均应满足氢气特性的要求,设置可幕的防爆、防滲漏措施氢气压缩机应配置防爆型电动机,其防爆等级为dICT1,应符合GB50058的规定。

5.2.5.4氢气压缩机应分级设置安全泄压装置一一安全网。安全应装防护罩,排出的氢气应接至室外。氢气压缩机的进气管应设有低压超限报装置、停机连锁

5.2.5.5氢气压编机前应设置有氢气缓冲鍵。对于氢气输送用氢气压缩机,应在进气管与排气管之间设置旁通循环管。

5.2.5.6移动式水电解制氢系统中的氢气压缩机的电气柜/控制柜,应采用邻近布置,此类电气柜/控制柜应采用柜内填充带压空气或气或按GB50058规定采用DIICTI等级的防爆电器。

移动式水电解制氮系统中的氢气压缩机,应固定在底座上,并应设置隔振措施;压缩机的安装、验收应符合GB50275的规定。

5.2.6気气纯化器

5.2.6.1氢气纯化器用于去除氢气中的氧杂质、水分等。采用催化法去除氧杂质,采用降温法和吸附法去除氢气中的水分。

5.2.6.2氢气纯化器中的各类容器的设计、制造、检验、验收均应符合《压力容器安全技术监察规程)和GB150、GB151的规定。

5.2.6.3氢气纯化过程的温度控制等,宜采用自动控制装置控制。5.2.6.4氢气纯化后的氧、水分的痕量杂质浓度的检测可采用GB/T5831、GB /T6285、GB/T5832.1、GB/T5832.2、GB/T8984.1、GB/T8984.2的方法。根据用户要求,宜设置连续检测仪器。

5.2.7压力调节器/阀

5.2.7.1压力调节器/阀用于水电解柚出口氢气侧、氧气側的压力平衡或水电解制氢系统外供氢气/氧气的压力调节。

5.2.7.2压力调节器/应符合气动调节、自力式调节阀的相关标准或企业标准。

5.2.8氢气关闭阀/切断

5.2.8.1根据水电解制氢系统的生产过程的气流切断、分析、测试、吹除置换的要求应在相关位置设置关闭阀/切断阀。

5.2.8.2关闭阅/切断阅的工作压力、温度参数,应按其在系统中的所在位置确定,此类门的选择应充分考虑氢气的特性,而纯氢系统的门的选择还应考虑纯氢不会被污染。

当氢气系统采用电动阀时,应按GB50058的规定选用相应防爆等级的阀门。5.2.8.3水电解制氢系统的阀门,在安装前应逐个进行气密性泄漏量检测,应符合GB5017、GB50235的规定。

5.2.9阻火器

5.2.9.1水电解制氢系统的氢气排空口前,应装设阻火器?防止雷击等外部火源返回引起氢气着火。

5.2.9.2阻火器的阻火层结构有砾石型、金属丝网型和波纹型。氢气阻火器可采用GB13347规定的要求与方法。

5.2.9.3氢气阻火器宜安装在靠近氢气排空口处。阻火器后的氢气管道应采用不锈钢管材。

5.3管路及附件

5.3.1材质选择

水电解制氢系统的管路、附件的材质选择,应符合GB50177GB50316、GB50235

的规定。

5.3.2管路、附件的布置

5.3.2.1符合水电解制氢系统带控制点的工艺流程图的要求

5.3.2.2应方便运行操作、安装和维修。

5.3.2.3对于有热胀冷缩的管段,布置时应结合柔性计算和热补偿要求,妥善安排。

5.3.2.4管道及附件的布置应整齐有序,减少不必要的交叉,适当注意美观。5.3.3氢气流速

氢气管道内氢气流速和管径、附件形式的选择,应符合GB50177、GB50316的规定。

5.3.4管道支架

管道支架的设置、计算,应符合GB50316的规定。支架应避免焊接在单体设备上5.3.5冷却水管路

应根据其工作温度确定是否采取保温措施。当需要进行保温时,其保温材料应为不燃材料。

对不得中断冷却水供应的冷却水管路,应设有断水保护装置,并设置报警和停机连锁

5.4电气设备及配线

5.4.1直流电源的配

5.4.1.1每台水电解槽的直流电源一般单独地采用晶闸管整流器或硅整流器。整流器应设有调压功能,并具备自动稳流功能。

5.4.1.2水电解槽用整流器的选择,应符合下列要求

额定直流电压应大于水电解槽工作电压,调压范固宜为0.6~1.05倍水电解槽额定电压额定直流电流不应小于水电解槽工作电流,并宜为水电解槽额定电流的1.1倍。

5.4.1.3氢气生产环境的电气设施的设防,按GB50177的规定,应为1区或2区。在有爆炸危险环境中的电气设备及配线应按GB50058JB3836的规定进行选用、配置。

5.4.3电气接地

5.4.3.1水电解槽应按结构特点进行接地电阻检查。对两端分别接入直流电源正负极的水电解槽,其对地电阻不小于1.0M2。

5.4.3.2氢气设备、管道的法兰、阀门连接处应采用金属(铜质)连接线跨接。

5.4.3.3防爆电器、配线接地电阻检查。

5.4.3.4氢气压缩机应采取导除静电的接地施,接地电阻不大于30欧

5.5自动控制和监测

5.5.1通用要求

水电解制氢系统的自动控制、监测装置的硬件、软件应能承受可能事故的发生,并能承担当故障发生时,即时报、停机,并进行必要的妥兽处理

5.5.2自控及监测装置

5.5.2.1压力传感器

设置压力传感器的有:水电解槽出ロ氢侧/氧側压力和压力差,氢气压缩机入口压力,氢气罐压力

5.2.5.6中正压空气的压力等

5.5.2.2温度传感器

设置温度传感器的有:水电解槽出口气体或电解液温度、氢气压缩机等的冷却水

出口温度等。

5.5.2.3液位传感器

设置液位传感器的有:分离器的液位等

5.5.2.4气体浓度检测探测器

5.5.2.4.1水电解槽出口氢气中含氧量和氧气中含氢量;氢纯化设备出口氢气中含氧量、露点;回收利用氧气时,氧中氢浓度,必须设置气体浓度连续测定,并带报警装置。

5.5.2.4.2氢浓度探测、报警装置,应符合GB16808、GB12358的要求。5.5.2.4.3气体浓度检测分析仪的最小分度值应不大于0.01%(体积比)。5.5.3自动停车

5.5.3.1当水电解制氢系统的自控、监测装置报警后,应即时分析,并对系统进行必要调整,系统恢复正常工作状态。若报警后,经调整,仍不能纠正,并恢复正常工作时,则应按程序要求停机

5.5.3.2当出现下列情况之一时,应停机检查:

氢气或氧气的纯度下降至允许值下限时;

当回收利用氧气时,氧气中氢浓度超过规定值时;

水电解槽的电解小室电压,经多次测定均不正常时;

水电解槽出口氢侧/氧侧气体压力不平衡,其压力差超过允许值时;

氢气压缩机进气侧的氢气压力低于允许值时;

电力供应故障;

监测的空气中氢浓度超过1.0%时。

5.6安装、组装

5.6.1通用要求

5.6.1.1水电解制氢系统的安装、组装应按设备制造厂的设计图纸、技术要求或工程设计图纸进行。

5.6.1.2水电解制氢系统的安装、组装及试验,应符合GB50177的要求。5.6.2水电解的安装

5.6.2.1水电解槽的安装方式有:整体安装和分散安装

5.6.2.1.1压力型水电解槽,一殷采用整体安装方式,即在制造工厂进行槽体组装后,运至使用现场整体安装。根据水电解槽的规格、尺寸和重量制定吊装、就位方案,在进行充分准备后就位安装。然后按设计图纸和技术要求进行气密检查。

5.6.2.1.2常压型水电解槽,一般采用分散式安装,即将电解的极框、主副极板、隔膜和气道、液道等零部件运至使用现场,在现场按制造厂的设计图纸、技术要求进行组装。组装工作由制造厂家和用户共同进行或在制造厂的技术人员的指导下进行,并按合同各自完成自己的职责

5.6.2.1.3移动式水电解制氢系统的水电解槽,宜在制造厂进行组装,在用户现场仅需按制造厂图纸和说明书进行就位和各类管线的连接。

5.6.2.2安装后的检查

5.6.2.2.1整体安装的水电解槽,安装后进行各种相关尺寸、连接管线准确性的检查;电气接地电阻的检查,水电解相正负极连接的检査等。5.6.2.2.2分散安装的水电解,组装完成后,首先检査各种相关尺寸、连接管线的准确性;接通蒸汽进行蒸煮、夹紧和槽体的气密性试验:检查电气接地的

正确性和接地电阻;水电解槽正负极连接的检查等。新水电解槽的组装、检查工作,制造厂家应派技术人员驻现场,并负责解决有关设备质量及其相关问题。5.6.2.2.3移动式电解制氢系统的水电解槽在用户现场安装后,应进行相关尺寸、连接管线准确性的检查:电气接地电阻检査等。

5.6.3氢气压缩机的安装

5.6.3.1氢气压缩机安装前应检査制造厂提供的出厂合格证,熟悉技术说明书和相关图纸资料。

5.6.3.2氢气压缩机的安装和验收应符合GB50275的规定,并按压缩机的有关标准和制造厂的技术说明书中的要求进行。

5.6.3.3氢气压缩机在接入水电解制氢系统试运行前,应进行下列工作。5.6.3.3.1检查电气接线和接地的准确性

5.6.3.3.2进行单机空负荷试车,并对各类零部件的运转、活动情况和各部分气密性及安全装置进行检查;

5.6.3.3.3采用含氧量小于0.5%的氮气进行吹扫置换

5.6.4氢气罐的安装

5.6.4.1氢气罐的安装前,应按《压力容器安全技术监察规程》和设计图纸要求,核对、检查出厂合格证、压力容器检验文件和各种技术资料的完整性。5.6.4.2根据氢气的规格尺寸、重量和现场情况,制定安装就位方案和相关安全措施。按设计图纸、技术说明文件进行罐内外和各相关尺寸检査。在认真进行各项准备工作后,方可进行安装就位。

5.6.4.3安装就位后,按设计图纸和技术说明文件核对安装位置和各相关尺寸,合格后进行各种管线、附件的安装。

5.6.4.4安装完成后,应进行各种相关尺寸、连接管线连接准确性的检查;接地电阻的检查等。

5.6.5氢气/氧气管道、阀门及附件的安装

5.6.5.1氢气/氧气管道、门附件的安装应符合GB50316、GB50235的要求。5.6.5.2氢气/氧气管道的管材、岡门附件?应符合GB/T8163和GB/T14975的规定,GB/T8163和GB/T14975无规定的管材、园门附件应符合阀门、附件制造厂家企业标准的规定

5.6.5.3各类阀门应有可靠的支承,确保阀门的正确动作,并不得引起管路的振动或影响单体设备连接处的强度等

5.6.5.4氢气/氧气管道安装后,应进行强度试验、气密性试验和泄漏量试验,此类试验应抟GB50177、GB50030、GB50235的规定进行。氧气管道及其阀门、附件的脱脂应符合GB50030、HGJ202的规定

7标志

7.1通用要求

7.1.1水电解制氢系统及其单体设备的标志制作、安装位置,应符合GB/T13306的规定

7.1.2标志的内容应简洁、明确,显示主要性能参数、指标和要求。标志应固定在易于观察的明显位置。

7.1.3每套水电解制氢系统应设标志牌;主要单体设备,根据需要分别设标志牌。

7.2标志牌内容

7.2.1移动式水电解制氢系统标志牌应包括下列内容7.2.1.1制造厂家名称、地址。

7.2.1.2产品型号和商标。

7.2.1.3制造日期、编号。

7.2.1.4主要技术参数:

a)氢气产量(m2/h或

kg/h)

氧气产量(m2/h或kg/h)

b)氢气纯度(%)或杂质含量(10-)

氧气纯度(%)或杂质含量(10-)

c)氢气压力(MPa);

氧气压力(MPa);

d)电气输入:电压(V),电流(A),频率(Hz/相);e)环境工作温度(℃);

f)工作场所,室内或室外;

g)易燃易爆警示或要求(移动式)

h)设备外形尺す(mm)、质量(kg)等

电解水制氢到底有啥优势

电解水制氢到底有啥优势 尊敬的各位领导,各位专家,各位朋友,大家上午好。非常荣幸能够被邀请来参加2019年氢能发展与技术大会。我下面给大家粗略的介绍一下关于氢能发展,把主要的方面放在电解水方面,氢能可能是我们人类终极的能源,这个观点也被普遍的认可。我今天的报告是“氢能发展及电解水制氢”,主要是集中在目前的现状,我们的挑战以及前景。 第一部分氢能发展的必要性 我们首先讲氢能的发展的必要性。我们知道尤其我们现在的运输、汽车、船舶,我们烧的就是汽油和柴油,烧汽油和柴油,那就排放出了二氧化碳、一氧化碳、氧化氮、氧化硫等等污染物到我们的大气中,造成了污染,对我们人类的可持续发展造成了威胁。我们看看针对这种情况,目前世界各个国家都在发展新能源,我们知道人类未来的能源就是太阳能、风能、水电能、生物能、地热能等等。刚才任秘书长说,我们目前的石油,就是我们说的化石能源,我专门有一个报告关于化石能源的现状,就是说这个化石能源按照目前的燃烧速度的话,包括天然气、石油、碳以及核电,最多能够烧200-300年。所以发展新能源,利用太阳能、风能、电解能、生物能等等产生电能,将是我们未来的终极能源,以氢气或者是液态的氢气、气态的氢气为主要能源的载体是氢能经济的可持续发展的必然。 我们知道这个里边氢气作为一个载体,就要牵扯到电化学能源的存储和储存的技术,它在氢能利用中发挥中心的作用,核心的作用。从太阳能、风能以及水电能,发电以后产生的电能,通过电化学的方法制氢,产生氢气把它储存起来,因为太阳能、风能,这些能都是我们的气候影响的。比如说太阳能,今天没有太阳,产生的电能就少,它这个能源是一种随着气候的波动而变化的能源,所以说这种能源在以前就把它叫做垃圾能源,但是现在由于我们有储能技术,随着技术的发展要充分的利用起来。最重要的一个方法就是把它储起来,储起来我们可以通过电化学的方法,把它产生的电能变成氢气,然后用氢气通过燃料电池产生电,再驱动我们的汽车运输,这种电我们叫是一种可携带的电,而不是可携带的电。比如墙上插头用的电,这叫做有有线电,我们用的叫做没有线的电能,这是非常重要的。 当然我们也可以通过电池和超级电容器把它储存起来,转变成我们的家用。比如说我们手机里边的锂电池等等这些,也可以。但是作为一个能源的最大的未来的储存,还是要制氢。我们看看为什么氢能利用是未来发展的必然趋势? 首先目前世界各个国家都在力图发展氢能来解决能源的安全问题,掌握国际能源领域的制高点,我们可以看到,目前世界各个发达国家,包括发展中国家都在做这个事情。国际能

制氢技术比较及分析报告

制氢技术综述&制氢技术路线选择 一、工业制氢技术综述 1.工业制氢方案 工业制氢方案很多,主要有以下几类: (1)化石燃料制氢:天然气制氢、煤炭制氢等。 (2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。 (3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。 (4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电 解、生物光解、热化学水解。 (5)生物质制氢。 (6)生物制氢。 2.工业制氢方案对比选择 (1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。 (2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含量高、纯度较低,不能达到GT等技术提供商的氢气纯度要求。 (3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比: (A)天然气制氢 (B)甲醇制氢 (C)水电解制氢 3. 天然气制氢

(1)天然气部分氧化制氢因需要大量纯氧增加了昂贵的空分装置投资和制氧成本。 (2)天然气自热重整制氢由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低的特点。 (3)天然气绝热转化制氢大部分原料反应本质为部分氧化反应。 (4)天然气高温裂解制氢其关键问题是,所产生的碳能够具有特定的重要

用途和广阔的市场前景。否则,若大量氢所副产的碳不能得到很好应用,必将限制其规模的扩大。 (5)天然气水蒸汽重整制氢,该工艺连续运行, 设备紧凑, 单系列能力较大, 原料费用较低。 因此选用天然气水蒸汽重整制氢进行方案对比。 4.甲醇制氢 (1)甲醇分解制氢,该反应是合成气制甲醇的逆反应,在低温时会产生少量的二甲醚。 (2)甲醇水蒸汽重整制氢,是甲醇制氢法中氢含量最高的反应。这种装置已经广泛使用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等

水电解制氢的最新进展与应用

水电解制氢的最新进展与应用 一、绿色能源氢能及其电解水制氢技术进展 摘要:随着环境污染日益严重,越来越多的研究关注于绿色无污染能源,其中氢能清洁无污染、高效、可再生,是未来最有潜力的能源载体。利用电解水技术制氢是目前最有潜力的技术,也是一种经济有效的技术。绍了氢能的研究现状和水电制氢技术,着重介绍了碱性电解槽、子交换膜电解技术以及固体氧化物水电解技术,对现有技术进行了总结。 1.氢能的研究现状 美国: 1990年,美国能源部(DOE)启动了一系列氢能研究项目。 2001年以来,美国政府制订了《自有车协作计划》、《美国氢能路线图》。 2004年2月,美国能源部出台的“氢态势计划”,并提出2040年美国将实现向氢经济的过渡。 美国能源部、国防部、交通部、国家科学基金、美国宇航局和商务部以及8个国家实验室、2所大学和19 个公司签署了研发合同。 欧盟: 2001 年11 月启动的“清洁能源伙伴计划”,欧盟拨款1850万欧元支持汉堡、伦敦等10个城市的燃料汽车示范项目。 2008年11 月初欧盟、欧洲工业委员会和欧洲研究社团联合制订了2020年氢能与燃料电池发展计划。 日本: 1993年就制订了“新阳光计划”,预计到2020年投资30亿美元用于氢能关键技术的研发。并计划在2020年实现燃料电池汽车500 万辆,建成燃料电池发电系统10000MW。 我国: 2003年11月我国加入了“氢能经济国际合作伙伴(IPHE)”,成为IPH首批成员国之一。《国家中长期科学和技术发展规划纲要(2006-2020年)》和《国家“十一五”科学技术发展规划》中都列入了发展氢能和燃料电池的相关内容。 相对而言,我国在氢能和燃料电池汽车领域的技术研发工作开始得较晚,这方面的标准体系尚未形成,然而通过国内研究单位的协作努力,在材料、基础设施、燃料电池堆、整车集成等方面都已取得阶段性进展,目前已有多家企业与联合国发展计划署和全球环境基金合作,开展燃料电池客车的公交线路试运行。 2 水电解氢能的制备技术进展 发展到现在,已有三种不同种类的电解槽,分别为碱性电解槽#聚合物薄膜电解槽和固体氧化物电解槽。 ①碱性电解槽 碱性电解槽是发展时间最长、技术最为成熟的电解槽,具有操作简单、#成本低的优点,其缺点是效率最低,槽体示意图如图1 所示。国外知名的碱性电解水制 氢公司有挪威留坎公司、格洛菲奥德公司和冰岛雷克雅维克公司等。电解槽一般采 用压滤式复极结构或箱式单极结构,每对电解槽压在1.8~2.0V,循环方式一般采用 混合碱液循环方式。

电解水制氢的原理

电解水制氢的原理

————————————————————————————————作者:————————————————————————————————日期:

电解水制氢的原理 字体大小:大- 中- 小SBEPL发表于09-06-03 06:37 阅读(1274) 评论(0) 日志 复制网址隐藏签名档大字体 第二节电解水制氢的原理一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶 液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程:

水电解制氢设备系列说明书

水电解制氢设备 操 作 使 用 手 册 \ 苏州竞立制氢设备有限公司

1、简述 1.1、氢气的性质和用途: 氢是自然界分布最广的元素之一,它在地球上主要以化合状态存在于化合物中。在大气层中的含量却很低,仅有约1ppm(体积比)。氢是最轻的气体,它的粘度最小,导热系数很高,化学活性、渗透性和扩散性强(扩散系数为0.63cm2/s,约为甲烷的三倍),它是一种强的还原剂,可同许多物质进行不同程度的化学反应,生成各种类型的氢化物。 氢的着火、燃烧、爆炸性能是它的特性。氢含量范围在4-75%(空气环境)、4.65-93.9%(氧气环境)时形成可爆燃气体,遇到明火或温度在585℃以上时可引起燃爆。 压力水电解制出的氢气具有压力高(1.6或3.2MPa)便于输送,纯度高(99.8%以上)可直接用于一般场合,还可以通过纯化(纯度提高到99.999%)和干燥(露点提高到-40~-90℃)的后续加工,可以作为燃料、载气、还原或保护气、冷却介质,广泛应用于国民经济的各行各业。 1.2、水电解制氢原理: 利用电能使某电解质溶液分解为其他物质的单元装置称为电解池。 任何物质在电解过程中,在数量上的变化服从法拉第定律。法拉第定律指出:电解时,在电极上析出物质的数量,与通过溶液的电流强度和通电时间成正比;用相同的电量通过不同的电解质溶液时,各种溶液在两极上析出物质量与它的电化当量成正比,而析出1克当量的任何物质都需要1法拉第单位96500库仑(26.8安培小时)的电量。水电解制氢符合法拉第电解定律,即在标准状态下,阴极析出1克分子的氢气,所需电量为53.6A/h。经过换算,生产1m3氢气(副产品0.5m3氧气)所需电量约2393Ah,原料水消耗0.9kg。 将水电解为氢气和氧气的过程,其电极反应为: 阴极: 2H 2O + 2e →H 2 ↑+ 2OH- 阳极: 2OH-- 2e →H 2O + 1/2O 2 ↑ 总反应: 2H 2O →2H 2 ↑+ O 2 ↑ 由浸没在电解液中的一对电极,中间隔以防止气体渗透的隔膜而构成水电解池,通以一定电压(达到水的分解电压1.23V和热平衡电压1.47V以上)的直流电,水就发生电解。根据用户产量需求,使用多组水电解池组合,减小体积和增加产量,就形成水电解槽的压滤型组合结构。 本公司生产的压力型水电解槽采用左右槽并联型结构,中间极板接直流电源正极,两端极板接直流电源负极,并采用双极性极板和隔膜垫片组成多个电解池,并在槽内下部形成共用的进液口和排污口,上部形成各自的氢碱和氧碱的气液体通道。由电解槽纵向看,A、B系列的氧气出口设计在中心线靠直流铜排一侧(氧铜侧),C、D、E、F系列的氢气出口设计在中心线靠直流铜排一侧(氢铜侧)。 我公司生产的压力型水电解槽,目前标准产品操作压力为1.6MPa和3.2MPa两种。具有结构紧凑,运行安全,使用寿命长的特点,电解液采用强制循环,电解消耗的原料水由柱塞泵自动补充,相关参数实现自动监测和控制。。正常生产时采用30%KOH水溶液作为电解液,槽温控制在85-90℃左右,兼顾隔膜垫片的使用寿命和降低能耗的要求。 水电解制氢的电解需要低电压、大电流的可调直流电源。工业上采用带平衡电抗器的

电解水制氢

水电解制氢 水电解制氢是一种较为方便的制取氢气的方法。在充满电解液的电解槽中通入直流电, 水分子在电极上发生电化学反应,分解成氢气和氧气。 中文名水电解制氢 运用试剂碱性电解液或纯水 法拉第定律 其化学反应式如下: ①、碱性条件: 阴极:4H2O+4e-=2H2f +40H 阳极:4OH--4e =2H2O+O 2f 总反应式:2H 2O=2H 2? + O t ②、酸性条件: 阳极:2H2O-4e-=O2t +4h t 阴极:4H++4e-=2H2t 反应遵循法拉第定律,气体产量与电流和通电时间成正比。 固体聚合物电解质,SPE电解水,最初用于向宇宙飞船或潜水艇供氧,或在实验室作 为氢气发生器(可用于气体色谱)。核电大规模发展以后,人们利用SPE技术在用电低谷电 解水产生氢,在供电高峰以SPE氢-氧燃料电池向外供电,使之成为能量贮存转换装置通过直接电解纯水产生高纯氢气(不加碱),电解池只电解纯水即可产氢。通电后, 电解池阴极产氢气,阳极产氧气,氢气进入氢/水分离器。氧气排入大气。氢/水分离器将氢 气和水分离。氢气进入干燥器除湿后,经稳压阀、调节阀调整到额定压力(0.02?0.45Mpa 可调)由出口输出。电解池的产氢压力由传感器控制在0.45Mpa左右,当压力达到设定值 时,电解池电源供应切断;压力下降,低于设定值时电源恢复供电。 3 在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或 纯氢。像化工二厂用的氢气就是电解盐水的副产 电解水 水(H2O)被直流电电解生成氢气和氧气的过程被称为电解水。电流通过水(H2O)时,在 阴极通过还原水形成氢气(H2),在阳极则通过氧化水形成氧气(O2)。氢气生成量大约是氧气的两倍。电解水是取代蒸汽重整制氢的下一代制备氢燃料方法。 中文名

电解水制氢的原理

第二节电解水制氢得原理一、氢气得工业制法 在工业上通常采用如下几种方法制取氢气:一就是将水蒸气通过灼热得焦炭(称为碳还原法),得到纯度为75%左右得氢气;二就是将水蒸气通过灼热得铁,得到纯度在97%以下得氢气;三就是由水煤气中提取氢气,得到得氢气纯度也较低;第四种方法就就是电解水法,制得得氢气纯度可高达99%以上,这就是工业上制备氢气得一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。?对用于冷却发电机得氢气得纯度要求较高,因此,都就是采用电解 水得方法制得。?二、电解水制氢原理 所谓电解就就是借助直流电得作用,将溶解在水中得电解质分解成新物质得过程。?1、电解水原理?在一些电解质水溶液中通入直流电时,分解出得物质与原来得电解质完全没有关系,被分解得就是作为溶剂得水,原来得电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。?在电解水时,由于纯水得电离度很小,导电能力低,属于典型得弱电解质,所以需要加入前述电解质,以增加溶液得导电能力, 使水能够顺利地电解成为氢气与氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾就是强电解质,溶于水后即发生如下电离过程:? 于就是,水溶液中就产生了大量得K+与OH—。?(2)金属离子在水溶液中得活泼性不同,可按活泼性大小 顺序排列如下: K〉Na〉Mg>Al>Mn>Zn>Fe>Ni〉Sn>Pb〉H〉Cu〉Hg>Ag>Au?在上面得排列中,前面得金属

比后面得活泼。 (3)在金属活泼性顺序中,越活泼得金属越容易失去电子,否则反之。从电化学理论上瞧,容易得到电子得金属离子得电极电位高,而排在活泼性大小顺序前得金属离子,由于其电极电位低而难以得到电子变成原子。H+得电极电位=—1、71V,而K+得电极电位=—2、66V,所以,在水溶液中同时存在H+与K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。?(4)水就是一种弱电解质,难以电离.而当水中溶有KOH时,在电离得K+周围则围绕着极性得水分子而成为水合钾离子,而且因K+得作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向得水分子一同迁向阴极,这时H+就会首先得到电子而成 为氢气。?2、水得电解方程 在直流电作用于氢氧化钾水溶液时,在阴极与阳极上分别发生下列放电反应,见图8—3. ?图8—3 碱性水溶液得电解(1)阴极反应。电解液中得H+(水电离后产生得)受阴极得吸引而移向阴极,接受电子而析出氢气,其放电 反应为: ?(2)阳极反应。电解液中得OH-受阳极得吸引而移向阳极,最后放出电子而成为水与氧气, 其放电反应为: ?阴阳极合起来得总反应式为:?电解? 所以,在以KOH为电解质得电解过程中,实际上就是水被电解,产生氢气与氧气,而KOH只起运载电荷得作用。?三、电解电压?在电解水时,加在电解池上得直流电压必须大于水得理论分解电压,以便能克服电解池中得各种电阻电压降与电极极化电动势.电极极化电动势就是阴极氢析出时得超电位与阳极氧极出时

电解水制氢的原理

日志 复制网址隐藏签名档大字体 第二节电解水制氢的原理一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶 液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程:

于是,水溶液中就产生了大量的K+和OH-。 (2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下: K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。 (3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成原子。H+的电极电位=-1.71V,而K+的电极电位=-2.66V,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。 (4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就会首先得到电子而成为氢气。 2、水的电解方程 在直流电作用于氢氧化钾水溶液时,在阴极和阳极上分别发生下列放电反应,见图8-3。 图8-3 碱性水溶液的电解 (1)阴极反应。电解液中的H+(水电离后产生的)受阴极的吸引而移向阴极,接受电子而析出氢气,其 放电反应为:

水电解制氢装置工作原理结构及工艺流程

水电解制氢装置 工作原理结构及工艺流程 1.水电解制氢装置工作原理 水电解制氢的原理是由浸没在电解液中的一对电极中 间隔以防止气体渗透的隔膜而构成的水电解池 ,当通以一定 的直流电时,水就发生分解,在阴极析出氢气 ,阳极析出氧气。 其反应式如下: 阴 极: 2H 2O +2e →H 2↑+2OH - 阳 极: 2OH - -2e →H 2O +1/2O 2↑ 直流额定电压(V ) 28 56 总反应: 2H 2O →2H 2↑+O 2↑ 产生的氢气进入干燥部分,由干燥剂吸附氢气携带的水 分,达到用户对氢气湿度的要求。 本装置干燥部分采用原料氢气再生,在一干燥塔再生的 同时,另一干燥塔继续进行工作。 2.水电解制氢装置的用途与技术参数

纯水耗量(kg/h) 5 10 主电源动力电源容量40 75 (KVA) 原料水水质要电导率≤5μs/cm 氯离子含量<2mg/l 悬浮求物<1mg/l 3 冷却水用量(m/h) 3 整流柜冷却水出口背压<0.1Mpa 电解槽直流电耗≤4.8KWh/m3H2 碱液浓度26~30%KOH 自控气源压力0.5~0.7Mpa 气源耗量 3.5m3/h 主电源动力电电压N380V50HzC相~220V50Hz 整流柜电源0.5KV380 三相四线50Hz 控制柜电源AC220V50Hz 冷却水温度≤32℃ 冷却水压力0.4~0.6MPa

冷却水水质≤6德国度 氢气出口温度≤40℃ 干燥温控温度250℃~350℃ 干燥加热终止温度180℃ 干燥器再生周期24h 环境温度0~45℃ 表1 制氢装置主要技术参数表 2.1设备的用途 CNDQ系列水电解制氢干燥装置是中国船舶重工集团 公司第七一八研究所新研制 成功并独家生产的全自动操作的制氢干燥设备,其主要技术指标达到或超过九十年代末世界先进水平,适用于化工、冶金、电子、航天等对氢气质量要求高的部门,是目前国内最先进的并可替代进口的制氢设备。 2.2主要技术参数 CNDQ5~10/3.2型水电解制氢干燥装置的主要技术参数 如表1

电解水制氢的原理

电解水制氢的原理 一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程: 于是,水溶液中就产生了大量的K+和OH-。 (2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下: K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。 (3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前

水电解制氢作业指导书

水电解制氢作业指导书ZDQ-120/1.5 编制:生产技术部 审批: 编号:DMZG/JL-52 河北东明中硅科技有限公司 2011年2月30日

第一章概述 1 设备的用途 ZQD系列水电解制氢装置是中国船舶重工集团公司第七一八研究所研制成功的自动化操作的制氢设备,其主要技术指标达到或超过世界先进水平,适用于化工、冶金、电子、航天等各种用氢量大、对氢气质量要求高的部门。 2 工作原理 水电解制氢的工作原理是由浸没在电解液中的一对电极,中间隔以防止气体渗透的隔膜而构成的电解池,当通以一定的直流电时,水发生分解,在阴极折出氢气,阳极析出氧气。其反应式如下: 阴极:2H2O+2e→H2↑+2OHˉ 阳极:2OHˉ-2e→H2O+1/2O2↑ 总体反应:2H2O→2H2↑+O2↑ 3 装置构成 水电解制氢装置由电解槽(1001)、气液处理器(1000)、水碱箱系统(1300)、整流系统、控制系统及其它辅助系统等组成。 注:供货范围根据用户具体的合同要求而定。 3.1电解槽(1001) 电解槽为压滤式双极性结构,是制氢装置中的主体设备。电解槽由若干个电解小室组成,每个电解小室由阴极、阳极、隔膜、绝缘垫片及电解液构成。端极板上部设有氢、氧气液出口管,用于导出氢、氧气体,下部设有碱液进口,用于补充电解液;中间正极框为正极,两端极板为负极。整流系统向电解槽提供直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。KOH(或NaOH)在水中的作用在于增加水的电导,本身不参加反应,理论上是不消耗的。 3.2气液处理器(1000) 气液处理器由氢气分离器1002、氧气分离器1003、氢气洗涤器1001、氧气洗涤器1005、氢侧换热器1006、氧侧换热器1007、碱液过滤器1009、碱液循环泵1M11及各类阀门、一次仪表、管路等组成,主要用来分离来自电解槽的氢气与碱液的混合物及氧气与碱液的混合物,经过冷却、分离、洗涤、除雾获取纯净的氢气和氧气。装置除在控制室设有集中显示的仪表外,还装有压力、液位、温度等现场仪表,用来显示设备运行的各主要参数,保证设备安全运行。 3.3水碱箱系统(1300) 水碱箱系统由水箱1301、碱箱1311、加水泵1M21及阀门等组成。水箱用来存储原料水,碱箱用来配制储存碱液。装置运行中,通过加水泵向系统中注入原料水,有时也通过加水泵向系统中适当补充碱液。 3.4 整流系统 整流系统由整流变压器1024和整流柜1022组成。整流变压器用来将高压电转变为适合于可控硅工作的电压,初级绕组接高压电、次级绕组接整流柜。整流柜用来将交流电转变为直流电,通过铜排为电解槽提供直流电。 3.5 控制系统 控制系统包括控制柜1020和上位机。 控制柜由PLC、二次仪表、安全栅、声光报警器及操作按钮、开关等构成。可实现对装置各种参数的自动检测、调节、故障报警与联锁、自动开机与停机等功能。

水电解制氢装置培训讲义(氢气纯化装置)

水电解制氢装置培训讲义 (纯化工艺部分) ?制氢工程部 2015-6-161 培训内容 概述 纯化流程 常见故障及排除方法 2015-6-162

概述 2015-6-163 1、催化脱氧 氢气中含有的氧杂质通常可采用催化转化的方法来去除。 脱氧催化剂大多是由具有高脱氧活性的金属(如钯脱氧的工作原理 脱氧催化剂大多是由具有高脱氧活性的金属(如钯、装置中使用的催化剂为钯金属--2015-6-164 装置中使用的催化剂为钯金属半导体体系,具有脱氧活性高、脱氧深度深、气体处理量大、强度高等特性,常温下即可催化反应发生,而且无需预处理(活化)和再生。脱氧深度可达生。脱氧深度可达1ppm 1ppm及以下。及以下。

2、脱氧器的结构 ?内筒:电加热元件 电缆接入口 a 口(气体入口) ?保温层 进入经电加热元 2015-6-165原料氢气从原料氢气从a a 口进入,经电加热元件加热后进入催化剂床层,氢气和氧气 在催化剂的作用下发生化合反应生成水, 水以气态的形式随氢气从水以气态的形式随氢气从b b 口流出脱氧 器。 3、温度控制 在催化剂床层的上部和下部各装有一个铂电阻。分别用来检测催化剂床层上部和下部的温度。 下部铂电阻检测温度达到设定温度时,会暂停电加热元2015-6-166 如果电加热元件已开启而没有通气,那么电加热元件产生的热量就无法散发出去,并且没有气流的传导,测温元件也不能及时将电加热元件的真实温度传至控制系统停止加热,造成电加热元件自身过热,直至烧断。

干燥器的工作原理 1、变温吸附干燥 变温吸附干燥技术在气体制取工业应用广泛。它是利解吸出来(即吸附剂的再生)。从而达到循环工作的目的。2015-6-167 解来即附剂从到循作 2、分子筛的吸附原理 分子筛是一类具有均匀微孔的硅铝酸盐化合物,其孔般 径相当于一般分子大小,由于微孔表面的分子或原子存在子的氢则不易被吸附而顺利通过微孔从而达到消除水分2015-6-168 子的氢则不易被吸附而顺利通过微孔,从而达到消除水分的目的。 分子筛的吸附作用属物理吸附,过程可逆。

水电解制氢设备术语和定义

一般概念 水电解制氢设备(hydrogen production plant by water electrolysis)指采用水电解的方法制取氢气(同时制取氧气)的设备。 常压水电解制氢设备(normal pressure hydrogen production plant by water electrolysis)指工作压力小于0.1Mpa的水电解制氢设备。 低压水电解制氢设备(low pressure hydrogen production plant by water electrolysis)指工作压力大于或等于0.1Mpa到小于1.6Mpa的水电解制氢设备。 中压水电解制氢设备(medium pressure hydrogen production plant by water electrolysis)指工作压力大于或等于1.6Mpa到小于10Mpa的水电解制氢设备。 氢气系统(hydrogen processing system)指发生、处理氢气的设备及管路系统。 氧气系统(oxygen processing system)指发生、处理氧气的设备及管路系统。 电解用水(feed water required by electrolysis)指纯度指标符合电解制氢用水要求的原料水。 电解用水系统(feed water supplying system)指制备、储存、输送电解用水的设备及管路系统。 碱液系统[lye(alkline solution) circulation system]指配制、储存、输送碱液的设备及管路系统。 冷却水系统(cooling water system)指储存、输送、处理冷却用水的设备及管理系统。 小室电压(cell voltage)水电解时,水电解小室阴、阳两极间的直流电压。 槽电压(operating voltage)指水电解时,在水电解槽阴、阳两端子间测得的直流电压。 单位制氢直流电耗(direct current power consumption per cubic meter hydrogen)指在标准状态下每产生一立方米氢气,水电解槽所消耗的电能。 标准状态(normal condition)气体在温度为0℃,压力为101.3Kpa条件下的气体状态。 爆炸下限(lower explosive limit)易燃易爆气体、蒸汽或薄雾在空气/氧气中形成爆炸气体混合物的最低浓度。 爆炸上限(upper explosive limit)易燃易爆气体、蒸汽或薄雾在空气/氧气中形成爆炸气体混合物的最高浓度。

电解水制氢的原理

第二节电解水制氢的原理一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶 液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程: 于是,水溶液中就产生了大量的K+和OH-。

(2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下: K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。 (3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成原子。H+的电极电位=,而K+的电极电位=,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先 得到电子而变成氢气,而K+则仍将留在溶液中。 (4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就会首先得到电子而成为氢气。 2、水的电解方程 在直流电作用于氢氧化钾水溶液时,在阴极和阳极上分别发生下列放电反应,见图8-3。 图8-3 碱性水溶液的电解 (1)阴极反应。电解液中的H+(水电离后产生的)受阴极的吸引而移向阴极,接受电子而析出氢气,其 放电反应为: (2)阳极反应。电解液中的OH-受阳极的吸引而移向阳极,最后放出电子而成为水和氧气,其放电反应为: 阴阳极合起来的总反应式为: 电解 所以,在以KOH为电解质的电解过程中,实际上是水被电解,产生氢气和氧气,而KOH只起运载电荷的 作用。

电解水制氢的原理

-SBEP发表 09-06-03 06:37 阅(1274) 评(0字体大小 - 日 复制网址隐藏签名档大字 第二节电解水制氢的原理一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程: 。OH-和K+于是,水溶液中就产生了大量的. (2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下: K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。 (3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成原子。H+的电极电位=,而K+的电极电位=,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。 (4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就会首先得到电子而成为氢气。 2、水的电解方程 在直流电作用于氢氧化钾水溶液时,在阴极和阳极上分别发生下列放电反应,见图8-3。 图8-3 碱性水溶液的电解 (1)阴极反应。电解液中的H+(水电离后产生的)受阴极的吸引而移向阴极,接受电子而析出氢气,其放电反应为:(2)阳极反应。电解液中的OH-受阳极的吸引而移向阳极,最后放出电子而成为水和氧气,其放电反应为: 阴阳极合起来的总反应式为: 电解

电解水制氢

电解水制氢 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 一、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程: 于是,水溶液中就产生了大量的K+和OH-。 (2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下:K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。 (3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化

学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成原子。H+的电极电位 =-1.71V,而K+的电极电位=-2.66V,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。 (4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性 方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就 会首先得到电子而成为氢气。 2、水的电解方程 在直流电作用于氢氧化钾水溶液时,在阴极和阳极上分别发生下列放电反应,见图1。 图1 碱性水溶液的电解 (1)阴极反应。电解液中的H+(水电离后产生的)受阴极的吸引而移向阴极,接受电子而析出氢气,其放电反应为: (2)阳极反应。电解液中的OH-受阳极的吸引而移向阳极,最后放出电子而成为水和氧气,其放电反应为: 阴阳极合起来的总反应式为: 电解

电解水制氢实用工艺描述

电解水制氢工艺描述电解水生产氢气氧气是一个比较成熟的工艺。其主要组成部分有:电解槽、气水分离罐、加碱罐、洗涤罐、脱水罐、缓冲罐、冷却水箱等,电气、仪表及配套的设备元器件主要有:直流电解电源(简称电解电源)、电源冷却循环泵(简称电源冷却泵或电源泵)、电解液循环泵(简称循环泵)、电解系统冷却循环泵(简称电解冷却泵或冷却泵)、补水泵、电磁阀、压力变送器、温度变送器、差压变送器、流量计、压力表、减压阀、回火防止器、纯净水生产装置等。 电解水制氢工艺流程示意图见图1。 图1 电解水制氢工艺流程示意图

压力的单位为Mpa,小数点后面保留3位。差压的单位为kPa,小数点后面保留2位,流量单位为m3/h,小数点后面保留2位。温度的单位为°C,小数点后面保留1位,累计流量的单位为m3,小数点后面保留1位,累计工作时间的单位为h,小数点后面保留1位。 所有的电磁阀均为电开阀,通电开启,断电关闭。 一、电解电源DDY、电源冷却泵DLB、循环泵XHB及冷却泵LQB控制 表1 电解系统与冷却系统对应输入输出关系表 1、氢气压力P H 由压力变送器PT101变送为4~20mA直流信号,根据氢气压力P H 控制电 解电源DDY(电解电源DDY由一个开关量信号控制运行与停止)、电源冷却泵DLB和循环泵 XHB(电源冷却泵DLB和循环泵XHB与电解电源DDY同步受氢气压力P H 控制)的通断,氢气压力可以在触摸屏上设置: ○1氢气压力上限设定值(简称压力设定上限)P HH 的设置范围0~3.00Mpa(参考值0.40Mpa); ○2氢气压力下限设定值(简称压力设定下限)P HL 的设置范围0~3.00MPa(参考值0.35Mpa)。 参考值就是第一次开机设置时(或者长时间断电数据丢失时)推荐使用的数值。 ○3当氢气压力P H 高于压力设定上限P HH ,P H >P HH ,DO1输出为OFF,电解电源DDY、电源泵 DLB和循环泵XHB停止运行; ○4氢气压力P H 低于压力设定下限P HL ,P H <P HL , DO1输出为ON,电解电源DDY、电源泵DLB 和循环泵XHB通电运行。 2、当电解系统温度(实际为电解系统电解液的温度,简称电解温度)T E 由温度变送器TT101 变送为4~20mA直流信号,根据电解温度T E 控制电解电源DDY的通断,电解温控温度可在触摸屏上设置: ○1电解系统温度上限设定值(简称电解温控上限)T EH 设置范围55~95°C(参考值90°C); ○2电解系统温度下限设定值(简称电解温控下限)T EL 设置范围50~90°C(参考值85°C)。 ○3当电解系统温度T E 超过电解温控上限T EH ,T E >T EH ,发出报警信号,DO9输出为ON,同 时DO1输出为OFF,电解电源DDY、电源泵DLB和循环泵XHB停止运行,但这时其他系统继续正常工作。

水电解制氢装置工艺流程DOC

第三节水电解制氢装置工艺流程 1. 水电解制氢装置的组成 本装置由电解槽、气液处理器、整流装置、控制柜(计算机管理系统)、加水泵、碱箱、水箱等几大部分组成。 2. 工艺流程简介 2.1 气体系统 当电解槽接通直流电源,电解电流上升到一定数值时,电解槽内的水被电解成氢气和氧气。来自电解槽内各电解小室阴极侧的氢气和碱液,借助循环泵的扬程和气体升力,进入氢分离洗涤器的分离段(制氢量≥80m3/h 的先进入碱液换热器,然后进入分离器),在重力的作用下氢气和碱液分离。分离后的气体进入洗涤段,对气体进行冷却、洗涤(制氢量≥175m3/h的无洗涤)和除雾,然后进入贮罐待用(对CNDQ型制氢装置,气体再经过干燥处理才进入贮罐)。

氧气分离过程基本相同。氧气放空或进入贮罐待用。 2.2 电解液循环系统 电解液循环的目的在于向电极区域补充电解消耗的纯水,带走电解过程中产生的氢气、氧气和热量,增加电极区域电解液的搅拌,减少浓差极化电压,降低碱液中的含气度,降低小室电压,减少能耗等,以使电解槽在稳定条件下工作。 碱液循环量的大小影响槽内小室电压和气体纯度。对于一个特定的电解槽,应有一个合适的循环量。一般槽内电解液更换次数每小时2~4次。在常压电解系统中,通常用自然循环,而在压力电解系统中,因电解装置体积小,管道细,气液流通阻力大,加上电流密度较大,要求电解液更换的次数比较多,采用自然循环难于达到,一般采用强制循环。 碱液在氢分离器和氧分离器中,靠重力作用与氢、氧气体分离后,通过氢氧分离器的连通管汇总,再经碱液过滤器除去机械杂质,然后由碱液循环泵把碱液送入电解槽,形成完整的电解液循环系统。 2.3 气体排空(氮气置换)系统 水电解制氢装置设有充氮口,用于系统的气密检查与开机前的氮气置换。 制氢系统开车后,氢气纯度达到要求后才能被送到贮罐(或净化设备),在未达到要求纯度以前的氢气可通过调节阀后的气体放空阀放空。 2.4 原料水补充系统 电解过程中,装置内的原料水一直不停地在消耗,因此,为保证水电解的连续进行,需定期向制氢装置内补充原料水。 水箱中的水通过加水泵分别打入氢、氧洗涤器,然后通过溢流管,注入分离器下部的液相部分和循环碱液一并进入电解小室进行连续电解,同时使电解液中碱的浓度保持在最佳浓度范围。

相关文档
最新文档