膜分离技术去除废水重金属离子

膜分离技术去除废水重金属离子
膜分离技术去除废水重金属离子

膜分离技术去除废水重金属离子

淡水是维持人类日常生活的重要资源。当前,世界人口不断增加,工业需求持续增长,使得可用水资源明显减少。此外,工业废水含有大量难降解污染物,随意排放会污染自然水体,导致淡水资源更加缺乏。目前,最好的方法是对废水进行循环利用。废水中的污染物可分为三大类:有机物、无机物及生物质。其中,含有重金属元素的无机物通常对人体健康有很大损害,不能直接排放到环境中。重金属离子通常指元素周期表第四周期的元素,主要是铬(Cr)、钴(Co)、镍(Ni)、铜(Cu)、锌(Zn)、砷(As)、铅(Pb)和汞(Hg)。自然环境中存在微量的重金属离子,但是由于工业排污的增多,水环境中的重金属含量日益增加并通过食物链进入人体,导致严重的健康疾病。例如,过多的锌可能会引起皮肤过敏、呕吐和胃痉挛,过多的镍会导致肺病和肾癌。所以,在进行污水处理时,必须有效控制重金属离子浓度。根据《生活饮用水卫生标准》(GB5749—2006),我国生活饮用水中的重金属离子排放限值和危害如表1所示。

长期以来,研究人员先后开发出多种离子脱除方法,如图1所示。20世纪70年代以来,膜分离技术发展非常迅速,与传统方法相比,其具有脱除率高、能耗少、占地面积小、污染低等优势,逐渐广泛应用于工业领域。在水处理膜中,由于多孔且成本低廉,聚合物膜被广泛用于工业废水处理。常用的聚合物膜材料是醋酸纤维素、聚偏二氟乙烯(PVDF)、聚丙烯腈(PAN)、聚丙烯(PP)、聚醚砜(PES)和聚砜(PSF)等。某些情况下,陶瓷材料优于聚合物材料,因为它们的孔径分布窄,机械、热和化学稳定性强。常用的陶瓷膜材料包括氧化铝、氧化锆、二氧化硅、二氧化钛、氧化物混合物和烧结金属等。

水处理膜有五大典型过程:微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)及电渗析(ED)。

这些过程基本相同,但是在孔结构(孔径、孔径分布和孔隙率)、膜渗透性和工作压力方面有一些差异,如表2所示。本文将从不同膜作用机理角度对膜分离技术在重金属离子脱除中的应用进行综述,由于微滤膜在离子脱除中应用不多,故本文不予讨论。

一、微滤(MF)和超滤(UF)

微滤和超滤具有很多的相似性。首先,两者均为较低跨膜压力驱动的孔径过滤方式;其次,微滤用于分离废水中的悬浮颗粒,而超滤可用于截留大分子物质、胶体物质等,但均无法单独截留水合或络合形态的重金属离子。若将重金属离子转变为粒径较大的离子,就可以与微滤或者超滤相结合来分离重金属离子。目前主要有沉淀-微滤、胶束强化超滤(MEUF)、聚合物强化超滤(PEUF)等工艺。

1.1沉淀-微滤工艺

利用沉淀-微滤工艺进行水体重金属脱除的基本原理是用碱中和,使溶液中的重金属离子反应,生成沉淀或胶体,达到微滤膜的孔径截留要求,再通过微滤膜过滤实现分离浓缩。

Broom等利用镉、汞和铬的沉淀物(经石灰或硫化物处理)形成的动态膜,采用微滤法去除混合电镀废液中的重金属。史红文等选择0.5μm孔径的无机膜,在0.18MPa下能保障出水Ni2+≤1.0mg/L。高永等选择0.22μm孔径的微滤膜,以石灰为沉淀剂处理含铅废水,可使铅含量降到0.012mg/L,同时发现铁盐对维持水体SO42-含量稳定、保证水质有重要影响。张志军等选择膜孔径为0.1μm的微滤膜,以FeSO4为絮凝剂,Cr6+、总Cr浓度降至0.10mg/L、0.26mg/L。

该方法在一定程度上解除了微滤膜孔径限制,但大部分沉淀操作需要在强碱或硫化物条件下进行,限制了膜材料的选择,同时膜污染较严重。

1.2胶束强化超滤(MEUF)与聚合物强化超滤(PEUF)工艺

20世纪80年代,有研究首先提出MEUF以从水中去除溶解的有机化合物和多价金属离子。通过向废水中添加表面活性剂,当表面活性剂的浓度超过临界胶束浓度(CMC)时,表面活性剂分子将聚集成胶束,这些胶束可以结合金属离子,形成大的金属-表面活性剂结构。包含金属离子的胶束可以被孔径小于胶束尺寸的UF膜截留。为了提高截留率,必须使用与待去除的离子电荷相反的表面活性剂。实际应用中,通常选择阴离子表面活性剂十二烷基硫酸钠(SDS)。MEUF金属脱除效率取决于金属和表面活性剂的特性和浓度、溶液的pH值、离子强度以及膜的操作参数等。

PEUF也是增强UF过滤性能的一种常用方法。其原理是使用水溶性聚合物络合金属离子并形成分子量比膜孔径大的大分子,大分子通过超滤膜时将被截留从而完成分离目的。渗余物可以通过化学处理来回收金属离子并重新使用聚合物。常用的络合剂有聚丙烯酸(PAA)、聚乙烯亚胺(PEI)、二乙氨基乙基纤维素等。影响PEUF的主要因素是金属和聚合物的类型、金属与聚合物的比例、pH值以及溶液中的其他金属离子。超滤工艺的具体参数如表3所示。

二、纳滤(NF)

纳滤是一种相对较新的技术,它的出现使很小的孔分离大分子成为可能。该技术有操作简单、可靠性高、低能耗、效率高等优点,并克服了常规技术的操作缺陷。膜的制造和改性是NF工艺的重要因素,因为它们会影响溶剂的渗透性。通过应用一些技术,如界面聚合(IP)、纳米颗粒掺入(NPs)和紫外线(UV)处理,人们可以制备出性能更优的纳滤膜。NF在脱除镍、硌、铜、砷等重金属的应用中有良好效果。NF工艺去除重金属分为三个基本步骤。首先是预处理。待处理水体需要在进入系统之前进行处理,以减少结垢。通常使用的方法是预过滤、凝结-过滤、凝结-沉淀、凝结-吸附、絮凝-过滤、离子交换和化学调节。然后是膜分离过程。NF膜的截留是空间位阻(中性溶质)、Donnan和介电效应(带电溶质)共同作用的结果。最后一步是后处理,即渗余侧水的进一步处理和渗透侧重金属的回收。

当纳滤水溶液中含有大量的铅离子时,使用AFC80膜能够有效去除有毒重金属。AFC80膜可应用于有色金属工业,回收铅、镉等强污染重金属,有效处理废水。Figoli等研究了两种商用纳滤膜(NF90和N30F)去除合成水中的五价砷。结果发现,随着温度的降低、pH值的升高、As进料浓度的升高,两种膜对As的去除速率都会升高,这些影响因素中,As的进料浓度起着关键作用。近几年,Murthy等在利用纳滤膜去除重金属的研究方面做了大量工作。其采用一种复合聚酰胺纳滤薄膜,用于废水中镍离子的去除。在初始进料浓度为5mg/L 和250mg/L时,镍的最大截留率分别为98%和92%。

三、反渗透(RO)

反渗透是由压力驱动、以半透膜为主要元件的水处理工艺。20世纪20年代,该技术被首次研究,但在30年后才开始实现工业应用。废水的反渗透过滤过程一般分为三步:首先,溶液中的水被吸附到膜表面;然后,由于浓度梯度的存在,水分子沿梯度向下移动到膜的渗透侧;最后,水分子扩散到渗透侧形成纯净水,渗余侧为富重金属溶液。反渗透分离效率与溶质的性质有关,如分子量大小,电荷排阻以及溶质、溶剂和膜之间发生的物理化学作用。Mohsen-Nia等研究了Cu2+和Ni2+在RO中的脱除,发现在加入螯合剂Na2EDTA后,离子脱除率达到99.5%,这是由于形成了尺寸较大的螯合离子从而增大了截留率。

如今,集成膜生物反应器(MBR)和反渗透系统正越来越广泛地用于废水处理。Malamis 等利用MBR-RO系统,可将市政废水的重金属去除率从90.9%提高到99.8%。

利用NF和RO膜协同脱除重金属也是一种有效的办法。Pauer等使用NF和RO从工艺废料中回收铜。Liu等研究了不同的NF和RO膜在冶金工业废水处理中的应用效果,处理后的水均符合国家再利用标准,但NF更适合大规模工业应用。

反渗透几乎截留所有无机物质,特别适用于稀溶液的处理,但在处理高浓度废水时,受渗透压和膜本身耐压的限制,水资源回收率较低。另外,泵压和膜修复导致的高功耗也是RO的弊端。通过分析有关参考文献,笔者梳理出一些具体的NF和RO分离数据,如表4所示。

四、电渗析(ED)

电渗析(ED)是一种以直流电场为驱动力,使离子选择性透过膜的过程。大多数ED工艺都使用离子交换膜。该膜有两种基本类型:阳离子交换膜(CEM)和阴离子交换膜(AEM)。该工艺已广泛应用于海水淡化、工业废水处理及制盐等方面。事实证明,ED在重金属废水处理中是一种有效方法。Nataraj等利用ED中试设备去除六价铬离子,使废水达到排放标准0.1mg/L。Cifuentes等研究了ED在铜电解沉积操作中从溶液中分离铜和铁以及回收水的可行性,发现ED对分离溶液中的Cu和Fe非常有效。Lambert等研究了使用改性阳离子交换膜通过ED分离废水中的三价铬,阳离子和阴离子的总电流效率为96%~98%。在使用ED 从废水中分离Pb2+的条件下,Mohammadi等研究了操作参数对分离效果的影响。结果表明,提高电压和温度可改善分离性能,但分离效率随流速的增加而降低。在浓度超过500mg/L 时,离子脱除率对浓度的依赖性降低。

ED电极的极性会出现反转,该过程被称为电渗析频繁倒极工艺(EDR)。EDR降低了结垢和结垢,具有较高的回收率,但是EDR需要更复杂的电路控制。

五、结语

相比传统工艺,膜分离具有能耗低、分离效率高、可耦合性良好等优势,被广泛应用废水重金属离子脱除中。但是,水处理膜常常伴有膜污染和寿命短等问题。开发新的膜材料已成为研发人员的首要任务。值得注意的是,实验室材料的研制和工业化应用两者之间还有诸多因素制约,在保证分离效率的前提下,还应考虑制备成本和强度等问题。另外,多种膜过程和其他过程耦合也是提高分离效率的重要方法。(

金属矿山废水处理新技术

金属矿山废水废渣处理新技术院系:城建给排水工程学号:111824224 :熊聪 摘要:随着经济建设的快速发展,我国金属矿山废水产生的环境问题日益严重,金属矿山废水的污染已成为制约矿业经济可持续发展的主要因素之一。概述了矿山酸性废水的形成及危害,重点介绍了几种常见的处理矿山酸性废水的处理技术如中和法、硫化物沉淀法、吸附法、离子交换法和人工湿地法,同时介绍了它们的原理、特点和存在的问题,在此基础上,对矿山酸性废水处理技术的研究,并介绍了几种金属矿山废水处理的新技术以及实例。 关键词:金属矿山废水废渣处理新技术 Abstract:With the rapid development of economic construction, the metal mine waste water environment problem is increasingly serious, metal mine waste water pollution has become one of the main factors restricting the sustainable development of mining economy. Formation and harm of the acidic mining waste water are summarized, mainly introduces several common treatment of acidic mining waste water treatment technologies such as neutralization, sulfide precipitation, adsorption, ion exchange method and the method of artificial wetland, and introduces the principle, characteristics and existing problems, and on this basis, the study of acidic mining waste water treatment technology, and introduces several kinds of metal mine wastewater treatment technology and examples. Keywords:Metal mine Waste water Conduct The new technology 一、金属矿山废水的形成及危害 1.1金属矿山废水的形成 在大部分金属矿物开采过程中会产生大量矿坑涌水。当矿石或围岩中含有的硫化物矿物与空气、水接触时,矿坑涌水就会被氧化成酸性矿坑废水。酸性矿坑水极易溶解矿石中的重金属,造成矿坑水中重金属浓度严重超标。同时在雨水的冲刷作用下废石堆和尾矿也产生大量含有高浓度重金属的酸性淋滤水。 1.2金属矿山废水的危害 金属矿山矿山酸性废水中含有大量的有害物质,一般不能直接循环利用,矿

金属废水处理概况

概述 电镀是利用化学和电化学方法在金属或在其它材料表面镀上各种金属。电镀技术广泛应用于机 器制造、轻工、电子等行业。 电镀废水的成分非常复杂,除含氰(CN-)废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(Ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(Au)废水、含银(Ag)废水等。电镀废水的治理在国内外普遍受到重视,研制出多种治理技术,通过将有毒治理为无毒、有害转化为无害、回收贵重 金属、水循环使用等措施消除和减少重金属的排放量。随着电镀工业的快速发展和环保要求的日益提高, 目前,电镀废水治理已开始进入清洁生产工艺、总量控制和循环经济整合阶段,资源回收利用和闭路循环 是发展的主流方向。 1电镀重金属废水治理技术的现状 1 .1化学沉淀 化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉 法和硫化物沉淀法等。 1.1.1中和沉淀法 在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。 中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点[1]:(1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放;(2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀; (3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过 预处理;(4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。 1.1.2硫化物沉淀法 加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀除去的方法。与中和沉淀法相比,硫化物 沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,而且反应的pH值在7—9之间,处理后的废水一般不用中和。硫化物沉淀法的缺点是[2]:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染。为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高)。由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时防止有害气体硫化氢生成和硫化物离子残留问题。 1.2氧化还原处理 1.2.1化学还原法

三种常见重金属的处理方法的比较

三种常见的处理方法的比较 一、石灰中和法 1.1基本原理 石灰中和反应法是在含重金属离子废水中投加消石灰C a( O H ) : , 使它和水中的重金属离子反应生成离子溶度积很小的重金属氢氧化物。通过投药量控制水中P H 值在一定范围内, 使水中重金属氢氧化物的离子浓度积大于其离子溶度积而析出重金属氢氧化物沉淀, 达到去除重金属离子, 净化废水的目的。 将废水收集到废水均化调节池,通过耐腐蚀自吸泵将混合后的废水送至一次中和槽,并且在管路上投加硫酸亚铁溶液作为砷的共沉剂(添加量为Fe/As=10),同时投加石灰乳进行充分搅拌反应,搅拌反应时间为30 min,石灰乳投加量由pH 计自动控制,使一次中和槽出口溶液pH值为7.0;为了使二价铁氧化成三价铁,产生絮凝作用,在一次中和槽后设置氧化槽,进行曝气氧化,经氧化后的废水自流至二次中和槽,再投加石灰乳,石灰乳投加量由pH计自动控制,使二次中和槽出口溶pH值为9~11;在二次中和槽废水出口处投加3号凝聚剂(投加浓度为10 mg/L),处理废水自流至浓密机,进行絮凝、沉淀;上清液自流至澄清池,传统的石灰中和处理重金属废水流程如下: 石灰一段中和及氢氧化钠二段中和时,各种重金属去除率随pH不同而沉淀效果不同,不同的金属的溶度积随PH不同而不同。同一PH所以对重金属的沉淀效果不一样,而废水中的重金属通常不只一种,根据重金属的含量在进水时把配合调到某金属在较低ph溶度积最高时对应的PH。加石灰乳进行中和反应,沉淀废水中的大部分金属。上清液进入下一个调节池,进入调节PH ,进入二次中和反应池,除去剩余的重金属离子。 1.2 石灰中和沉淀的优缺点 采用石灰石作为中和剂有很强的适应性,还具有废水处理工艺流程短、设备简单石灰就地可取,价格低廉,废水处理费用很低,渣含水量较低并易于脱水等优点,但是,石灰中和处理废水后,生成的重金属氢氧化物———矾花,比重小,在强搅拌或输送时又易碎成小颗粒,所以它的沉降速度慢。往往会在沉降分离过程中随水流外溢,又使处理后的废水浊度升高,含重金属离子仍然超标。要求废水不含络合剂如C N 一、N H 。等, 否则水中的重金属离子就会和络合剂发生络合反应, 生成以重金属离子为中心离子以络合剂为配位体的复杂而又稳定的络离子, 使废水处理变得复杂和困难。已沉降的矾花中和渣泥的含水率极高(达99%以上),其过滤脱水性能又很差,加上组成复杂、含重金属品位又低,这给综合回收利用与处置带来了困难,甚至造成二次污染。此外,渣量大,不利于有价金属的回收,也易造成二次污染II。用石灰水处理的重金属废水。由于不同重金属与OH的结合在同一PH下不同,同一金属在不同PH下的溶度积不同。所以,用传统的石灰法处理重金属含量较多的复杂的废水,显然不行,首先某些重金属不能达标排放,其次,处理废水中含钙比较多。在冶炼厂,很难循环使用。 二、硫化沉淀法

重金属离子吸附剂

重金属离子吸附剂的策划书随着我国IT 行业、化学和冶金工业的快速发展,来自电解液、电镀液中的铅、铜、铬、锌等重金属离子的废水对环境的污染越来越严重,采用重金属离子吸附剂技术处理后可以达标排放,也可回收。 重金属离子吸附剂的实际消费者是化工、冶金、电镀、IT生产企业,使用者和购买决策者是污水处理人员和厂长,实际购买者是采购部门。市场特征呈现为使用者、购买决策者与实际购买者分离的特殊性。随着我国节能减排政策的大力实施,这将会极大地推动企业的实际需求以及决策者的购买意愿。 重金属离子吸附剂市场是集团市场,购买过程属集团购买行为,人员推销及技术服务是最有效的销售方式。工厂首先根据污水类型和要求选择吸附剂种类、规格,同时会受使用习惯、品牌好坏、地域差异等因素的影响。 重金属离子吸附剂属于化工污水处理设备类,环保管理机构如国家环保管理局制定的宏观政策法规会对其发展产生重要影响。 对于化工污水处理设备的销售国家没有严格的要求,只要产品合格,能满足企业需求即可,所以其生产过程主要执行《企业标准》。 一. 生产工艺流程 (一).生产要求: 1.生产周期:从原料到吸附剂产品的生产周期为15天。 2.工人要求:相关专业大专以上学历、经过三个月的专业培训。 3.技术关键:重金属离子吸附剂制备的工艺。 (二).厂址选择: 原材料采用汽车运输,运输量不大,对道路要求不高;每月用水300吨左右,用电1000千瓦,一般投资环境均能满足;公司坐落于风景宜人的国家级(合肥)高新技术产业开发区,邻近中国科学院合肥分院与大蜀山自然风景区,交通便利。

公司占地3500多平方米,分为生产厂区、办公区、设有生产加工车间、销售部、售后服务中心、研发中心、质检部、企划部以及办公室等多个部门。 (三).生产工艺流程: 1.原材料: 废水处理设备以重金属离子吸附剂为核心材料;通过它的阴、阳离子交换基团来吸附、分离重金属离子。 2.生产设备 表1. 生产设备一览表 3.生产工艺流程

膜分离技术处理工业废水的应用现状及发展趋势

扬州工业职业技术学院 2013 —2014 学年 第一学期 文献检索论文 课题名称:膜分离技术在废水处理中的应用及其发展方向设计时间: 2013.10.10~2013.12.15 系部:化学工程学院 班级: 1301应用化工 姓名:郑鹏 指导教师:王富花 学号: 1301110137

目录 摘要 (1) Abstract (1) 第一章前言 (3) 1.1膜技术在水处理中应用的基本原理 (3) 1.1.1根据混合物物理性质的不同 (3) 1.1.2根据混合物的不同化学性质 (3) 1.2 膜分离技术的特 点 (4) 2.1 分离性 (4) 2.1.1 分离膜必须对被分离的混合物具有选择透过(即具有分离)的能力 (4) 2.1.2 分离能力要适度 (4) 2.2 透过性 (4) 2.3 物理、化学稳定性 (4) 2.4 经济性 (5) 3在工业废水处理中的具体应用 (5) 3.1 淀粉污水处理 (5) 3.2 含酚废水处理 (5) 3.3 含氰废水处理 (5) 3.4 重金属离子的处理 (6) 3.5 炼油废水处理 (6) 展望 (6) 参考文献 (8)

膜分离技术在废水处理中的应用及其发展方向 摘要:本文阐述了膜分离技术基本原理及其特点、分离膜需要具备的条件,介绍了膜分离技术在工业废水处理中的应用情况,提出了膜分离技术发展趋势。 关键词:膜分离技术;废水处理;发展趋势 膜分离技术是在20世纪初出现、20世纪60年代迅速崛起的一门分离新技术,膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、吸附、萃取、深冷分离等)相比较,过程不发生相变,可以在常温下操作,具有能耗低、效率高、工艺简单等特点,受到世界各技术先进国家的高度重视,投入大量资金和人力,促进膜技术迅速发展,使用范围日益扩大,广泛应用于工业废水等处理过程,给人类带来了巨大的环境效应。膜分离技术应用到工业废水的处理中,不仅使渗透液达到排放标准或循环生产,而且能回收有价资源。 1. 膜分离技术的基本原理和特点 1.1 膜技术在水处理中应用的基本原理是:利用水溶液(原水)中的水分子具有透过分离膜的能力,而溶质或其他杂质不能透过分离膜,在外力作用下对水溶液(原水)进行分离,获得纯净的水,从而达到提高水质的目的。总的说来,分离膜之所以能使混在一起的物质分开,不外乎两种手段。 1.1.1 根据混合物物理性质的不同——主要是质量、体积大小和几何形态差异,用过筛的办法将其分离。微滤膜分离过程就是根据这一原理将水溶液中孔径大于50 nm的固体杂质去掉的。 1.1.2 根据混合物的不同化学性质。物质通过分离膜的速度取决于以下两个步骤的速度,首先是从膜表面接触的混合物中进入膜内的速度(称溶解速度),其次是进入膜内后从膜的表面扩散到膜的另一表面的速度。二者之和为总速度。总速度愈大,透过膜所需的时间愈短;总速度愈小,透过时间愈久。 1.2 膜分离技术的特点 膜分离技术是以高分子分离膜为代表的一种新型流体分离单元操作技术。在膜分离出现前,已有很多分离技术在生产中得到广泛应用。例如:蒸馏、吸附、吸收、苹取、深冷分离等。与这些传统的分离技术相比,膜分离具有以下特点: (1) 膜分离通常是一个高效的分离过程。例如:在按物质颗粒大小分离的领域,以重力为基础的分离技术最小极限是微米,而膜分离却可以做到将相对分子质量为几千甚至几百的物质进行分离(相应的颗粒大小为纳米)。 (2) 膜分离过程的能耗(功耗)通常比较低。大多数膜分离过程都不发生“相”

几种吸附材料处理重金属废水的效果

摘要:用室内分析的方法研究了几种吸附材料对含铬、铜、锌、铅的废水的吸附处理效果。结果表明,在几种吸附材料中,以活性炭的吸附量和去除率比较高,且吸附量随废水中重金属含量的降低而减小,除铬外,其他离子的去除率则以低浓度时比较高。所有吸附材料均对铅的吸附量比较大,改性硅藻土和改性高岭土对重金属的吸附量也比较大,宜于在重金属处理中作为吸附剂推广使用。 关键词:吸附材料重金属废水吸附率吸附量 近年来,含有重金属的废水对人类的生活环境造成了巨大的危害,重金属离子随废水排出,即使浓度很小,也能造成公害,严重污染环境,影响人们的健康。所以,研究如何降低废水中重金属的含量,减轻重金属对环境的污染具有重大意义。目前,去除废水中重金属的方法主要有三种:一是通过发生化学反应除去废水中重金属离子的方法 [1];二是在不改变废水中的重金属的化学形态的条件下对其进行吸附、浓缩、分离的方法;三是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法[2]。其中吸附法是比较常用的方法之一。本试验采用物理吸附的方法研究几种吸附材料处理含重金属废水的效果,以便找出比较高效和便宜的吸附材料,为降低处理含重金属的废水成本和增加经济效益服务。 1 材料与方法 1.1 试验材料 1.1.1 吸附材料实验所用吸附剂除黄褐土外均来自于安徽科技学院资源与环境实验室,部分吸附材料在查阅文献的基础上进行了化学改性[3,4]。所用的吸附材料包括改性硅藻土、酸改性高岭土、改性高岭土、活性炭和黄褐土。改性硅藻土的处理过程为:将40 g硅藻土加入到0.1 mol/L的Na2CO3溶液中,边搅拌边慢慢地加入饱和的CaCl2溶液。反应结束后,过滤,置于烘箱内 105 ℃条件下干燥。酸改性高岭土的处理过程为:将高岭土过100目筛,在850 ℃煅烧5 h后,取一定量的高岭土加盐酸浸没,在90 ℃恒温下处理7 h,4000转下离心分离30 min,洗涤,120 ℃下烘干过夜。改性高岭土的处理过程为:取5 g高岭土加入2 g SiO2,1 g Na2CO3,1 g KClO3放入研钵中研细,混匀,置于高温炉中,控制温度在800 ℃,恒温3 h。活性炭直接取自于资环实验室。黄褐土采自于安徽科技学院种植科技园,土壤样品采集后,风干,过100目筛备用[4]。

重金属废水处理方法

1.3 重金属废水处理方法 现代水处理技术,按原理可分为化学处理法,物理处理法和生物化学处理法3大类[6]。生物法处理无机重金属离子废水的技术正在积极的研究和试用中。 化学法是利用化学反应的作用,分离回收污水中处于各种形态的污染物质(包括悬浮的、溶解的、胶体的等)。主要方法有中和、混凝、电解、氧化还原等。 ⑴中和沉淀法:投加碱中和剂,使废水中重金属离子形成溶解度较小的氢氧化物或碳酸盐沉淀而去除的方法。碱石灰(CaO)等石灰类中和剂,价格低廉,可去除汞以外的重金属离子,工艺简单,处理成本低[7]。但沉渣量大,含水率高,易二次污染,有些重金属废水处理后难以达到排放标准。 ⑵硫化物沉淀法:硫化物沉淀法的沉淀机理是:废水中的重金属离子与S2-结合生成溶解度很小的盐。操作中应该注意以下几个方面:①硫化物沉淀一般比较细小,易形成胶体,为便于分离应加入高分子絮凝剂协助沉淀沉降;②硫化物沉淀中沉淀剂会在水中部分残留,残留沉淀剂也是一种污染物,会产生恶臭等,而且遇到酸性环境产生有害气体,将会形成二次污染[8]。 ⑶铁氧体沉淀法:FeSO4可使各种重金属离子形成铁氧体晶体而沉淀析出。经典铁氧体法能一次脱除多种重金属离子,设备简单,操作方便[9]。但不能单独回收重金属。铁氧体法工艺流程技术关键在于:①Fe3+:Fe2+ =2:1,因此,Fe2+的加入量,应是废水中除铁以外各种重金属离子当量数的2倍或2倍以上;②NaOH或其碱的投入量应等于废水中所含酸根的0.9~1.2倍浓度;③碱化后应立即通蒸汽加热,加热至60~70℃或更高温度;④在一定温度下,通入空气氧化并进行搅拌,待氧化完成后再分离出铁氧体。 铁氧体法处理含重金属离子的废水,能一次脱除废水中的多种金属离子,对脱除Cu, Zn,Cd,Hg,Cr等离子均有很好的效果。 物理法是利用物理作用分离污水中呈悬浮固体状态的污染物质。主要方法有离子交换法,沉淀法,上浮法,气浮法,过滤法和反渗透法等。 ⑴离子交换法:离子交换法是重金属离子与离子交换树脂发生离子交换的过程。螯合树脂具有螯合基团,对特定重金属离子具有选择性。腐植酸树脂是由腐植酸和交联剂交联而成的高分子材料,具有阳离子交换和络合能力。这两类树脂实质上开拓了阴阳离子树脂的应用范围。

吸附重金属离子

几种吸附材料处理重金属废水的效果 来源:考试吧(https://www.360docs.net/doc/ff9742077.html,)2006-3-5 13:27:00【考试吧:中国教育培训第一门户】论文大全 摘要用室内分析的方法研究了几种吸附材料对含铬、铜、锌、铅的废水的吸附处理效果。结果表明,在几种吸附材料中,以活性炭的吸附量和去除率比较高,且吸附量随废水中重金属含量的降低而减小,除铬外,其他离子的去除率则以低浓度时比较高。所有吸附材料均对铅的吸附量比较大,改性硅藻土和改性高岭土对重金属的吸附量也比较大,宜于在重金属处理中作为吸附剂推广使用。 关键词吸附材料重金属废水吸附率吸附量 近年来,含有重金属的废水对人类的生活环境造成了巨大的危害,重金属离子随废水排出,即使浓度很小,也能造成公害,严重污染环境,影响人们的健康。所以,研究如何降低废水中重金属的含量,减轻重金属对环境的污染具有重大意义。目前,去除废水中重金属的方法主要有三种:一是通过发生化学反应除去废水中重金属离子的方法[1];二是在不改变废水中的重金属的化学形态的条件下对其进行吸附、浓缩、分离的方法;三是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法。其中吸附法是比较常用的方法之一。本试验采用物理吸附的方法研究几种吸附材料处理含重金属废水的效果,以便找出比较高效和便宜的吸附材料,为降低处理含重金属的废水成本和增加经济效益服务。 1 材料与方法 1.1 试验材料 1.1.1 吸附材料实验所用吸附剂除黄褐土外均来自于安徽科技学院资源与环境实验室,部分吸附材料在查阅文献的基础上进行了化学改性[3,4]。所用的吸附材料包括改性硅藻土、酸改性高岭土、改性高岭土、活性炭和黄褐土。改性硅藻土的处理过程为:将40 g硅藻土加入到0.1 mol/L的Na2CO3溶液中,边搅拌边慢慢地加入饱和的CaCl2溶液。反应结束后,过滤,置于烘箱内 105 ℃条件下干燥。酸改性高岭土的处理过程为:将高岭土过100目筛,在850 ℃煅烧5 h后,取一定量的高岭土加盐酸浸没,在90 ℃恒温下处

无机吸附材料在处理含重金属离子废水中的应用进展

2007,Vol.24No.6 化学与生物工程 Chemistry &Bioengineering 8  基金项目:国家自然科学基金资助项目(20571039),鲁东大学教学改革基金项目(Y0527,Y0715)和大学生科技创新基金项目收稿日期:2007-03-14 作者简介:吕晓凤(1982-),女,山东招远人,主要从事无机多孔材料的研究与应用;通讯联系人:殷平(1971-),女,江苏东台人,博 士,副教授,主要从事无机多孔材料的研究和开发。E 2mail :yinping426@https://www.360docs.net/doc/ff9742077.html, 。 无机吸附材料在处理含重金属离子废水中的应用进展 吕晓凤,殷 平,胡玉才,徐晓慧 (鲁东大学化学与材料科学学院,山东烟台264025) 摘 要:综述了近年来无机吸附材料在处理含重金属离子废水中的应用,简要介绍了几种主要无机吸附材料对各种重金属离子的吸附能力等方面的研究成果,并对此类材料的发展前景进行了探讨。 关键词:无机吸附材料;重金属离子;工业废水 中图分类号:TQ 42412 X 703 文献标识码:A 文章编号:1672-5425(2007)06-0008-03 现在每年冶炼、电解、电镀、医药、染料等工矿企业排放大量含有重金属离子的工业废水,造成水体的严重污染,对生态安全以及人类自身的生存和健康都会产生极大危害。因此,工业废水的处理和再生利用问题已成为倍受国内外科研工作者关注的一个热点。吸附法[1]是重金属离子废水处理应用中一种重要的物理化学方法,现今的研究重点主要集中在廉价、高效、易处理吸附剂的开发应用上。传统的吸附剂活性炭[2]是孔性炭素材料,具有大孔隙结构和表面积,故而其优点是吸附能力强和去除效率高,但高昂的价格在一定程度上限制了其应用。作者在此介绍了近年来几类主要的无机吸附材料在处理重金属废水方面的研究进展和今后的发展趋势。 1 价格低廉的工业废料及天然矿物材料 粉煤灰是燃煤电厂等企业常年排放的大量工业废渣,是从烧煤粉的锅炉烟气中收集的粉状灰粒,因细度小且比表面积高而具有一定的重金属吸附能力[3,4]。使用粉煤灰等工业废渣作为废水处理的吸附剂,既有原料价廉易得、工业操作简单等优点,又可解决废水废渣的环境污染以及回收再利用的问题,达到以废治废的目的,具有明显的经济效益和社会意义。席永慧等[5]利用X 2射线荧光研究了粉煤灰等去除溶液中有毒金属离子Zn 2+的吸附过程,结果表明吸附过程快速,在0~2h 内Zn 2+浓度可降低40%~50%,24h 后基本达到吸附平衡状态。由其Langmuir 吸附等温线求得Zn 2+在粉煤灰中的最大吸附量可达到57180mg ?g -1,约为粘土、粉质粘土的4~5倍。彭荣华等[6]对粉煤灰进行适当改性,加入一定量的硫铁矿烧渣和适量的固体NaCl ,在90℃用硫酸废液搅拌浸取后在300℃进行焙制。经原子吸收分光光度法测定,改性粉煤灰处理电镀废水,对Cr 6+、Pb 2+、Cu 2+、Cd 2+的去除率高于9715%,达到国家排放标准。进行对比实验后发现改性粉煤灰对金属离子的去除率比未改性粉煤灰高,分析其中原因在于粉煤灰中含有较多类似于活性炭的残碳,用酸在较高温度下浸提可使其表面和微孔内粗糙,显著增加其比表面积,相当于对粉煤灰进行了活化处理;再者,粉煤灰中的金属氧化物与硫酸反应后生成的硫酸盐使其改性后又具有混凝性能。 焦化厂出炉的热焦炭在熄焦塔用水熄焦过程中从焦炭表面脱落的焦粉被称为熄焦粉,由于在产生的过程中受到水和汽的作用被活化而具有吸附性能。张劲勇等[7]用混有少量硫酸的硝酸对熄焦粉进行氧化改性,可显著增加其表面酸性基团含量,提高熄焦粉的表面亲水性。改性熄焦粉可大幅提高其对原始水的处理效果,对Fe 3+优先吸附,具有较强的选择性吸附能力。 在作为吸附材料的天然矿产中,膨润土是研究得较多的一种,它是以蒙脱石为主要矿物成分的粘土矿。蒙脱石是一种层状铝硅酸盐类矿物,其单位晶胞系由硅氧四面体和铝氧八面体按2∶1组成的晶层,在晶层内存在广泛的同晶置换,使晶层中产生永久性负电荷,这样层间可通过吸附阳离子来达到电荷平衡,同时层

工业废水中金属离子的去除方法

1化学沉淀 化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。 中和沉淀法 在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点: (1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放; (2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀; (3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理; (4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。 硫化物沉淀法 加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀后从废水中去除的方法。 与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,反应时最佳pH值在7—9之间,处理后的废水不用中和。硫化物沉淀法的缺点是:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染。为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高)。由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时能够有效地避免硫化氢的生成和硫化物离子残留的问题。 2氧化还原处理 化学还原法 电镀废水中的Cr主要以Cr6+离子形态存在,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,投加石灰或NaOH产生Cr(OH)3沉淀分离去除。化学还原法治理电镀废水是最早应用的治理技术之一,在我国有着广泛的应用,其治理原理简单、操作易于掌握、能承受大水量和高浓度废水冲击。根据投加还原剂的不同,可分为FeSO4法、NaHSO3法、铁屑法、SO2法等。 应用化学还原法处理含Cr废水,碱化时一般用石灰,但废渣多;用NaOH 或Na2CO3,则污泥少,但药剂费用高,处理成本大,这是化学还原法的缺点。 铁氧体法 铁氧体技术是根据生产铁氧体的原理发展起来的。在含Cr废水中加入过量的FeSO4,使Cr6+还原成Cr3+,Fe2+氧化成Fe3+,调节pH值至8左右,

重金属工业废水处理技术探析 王振超

重金属工业废水处理技术探析王振超 发表时间:2018-12-24T16:17:39.990Z 来源:《防护工程》2018年第27期作者:王振超[导读] 随着重金属工业的不断发展,其产生的工业废水量也在日渐上升,主要有以下一些废水来源。深圳市铁汉生态环境股份有限公司深圳市 518000 摘要:重金属工业废水属于较强复杂性的混合体系,因为涉及到多种重金属离子,所以在重金属工业废水处理技术比较多的情况下,要了解各种技术的优缺点,再从废水实际特点出发,结合经济与技术条件的实际情况,探索出理想的重金属工业废水处理技术,缓解重金属工业废水问题。 关键词:工业发展;重金属;废水处理 1 重金属工业废水的基本现状 随着重金属工业的不断发展,其产生的工业废水量也在日渐上升,主要有以下一些废水来源:(1)矿山和选矿厂尾矿的排水;(2)有色金属加工厂和钢铁厂的酸洗水;(3)电镀厂镀件洗涤水;(4)废石场淋浸水。这是因为重金属在人体内,可以与蛋白质和各种酶产生非常强烈的作用,致使蛋白质及酶失去活性,若重金属在人体的某个器官中富集,一旦超过了该器官所可以耐受的限度,就会引起慢性、急性或者亚急性等程度的中毒现象。近年来我国重金属工业废水引起的污染事故逐渐增加。 2 重金属工业废水处理技术的探索分析 要对重金属工业废水进行有效处理,降低其对自然环境与人类造成的危害性,可对以下一些处理技术进行深入的认识和分析。 2.1 化学处理技术 使用化学方法对重金属工业废水进行处理,可分为化学沉淀法、电解法以及氧化还原法。首先,在化学沉淀法方面,在实际处理工作中,可在废水中加入可溶性化学药剂,使其与废水中处于离子状态的无机污染物相接触,进而发生化学反应,形成不溶于水或者难以溶于水的其他化合物。化合物可以在水中沉淀,最终可以让工业废水得到很好的净化。这一方法适用于汞、锌、铅和铬等重金属离子的净化处理。其次,在电解法方面,主要是通过电解槽中所发生的电化学反应,对重金属工业废水中的污染物进行处理。废水中含有的可溶解性污染物能够在电解中的氧化还原反应作用下,析出沉淀物或者溢出气体,进而达到净化废水的目的。这一方法主要适用于氰和铬等重金属离子废水的净化处理。 2.2 物理化学处理技术 在废水处理中的物理化学处理技术同样涵括三种基本方法,具体如下:第一种是物理/化学吸附法。吸附材料通常为蓬松结构,其比表面积比较高,又或者某些吸附材料具有比较特殊的功能基团,可以对废水中的重金属离子产生物理吸附作用或者化学吸附作用。在这方面的吸附剂常见的有活性炭、累托石、沸石以及硅藻土等。而活性炭是最早被运用和最常见的一种吸附剂,能够对多种重金属离子都产生吸附作用,具有较大的吸附容量,只是其造价比较贵,使用寿命短,操作费用也比较高。第二种为离子交换法,主要是通过离子交换剂中的离子与重金属工业废水中的离子产生交换反应,从而去除废水里的有害离子。这种方法可以实现贵重金属离子的回收,一般适用于有机废水与放射性废水等方面的处理工作。第三种则为膜分离法,主要是采用特殊的半透膜,借助外界推动力使得溶液中渗透出一种溶质与溶剂,从而分离水中的重金属离子。而膜截留组分粒径大小以及膜性能都存在差异性,所以膜分离法也可以分为微滤、纳滤、超滤、电渗析以及反渗透等分离法。这种方法作为新型的重金属离子分离技术,其优点显著,比如分离效率高、操作比较简单便利、没有二次污染、能耗比较低,同时其分离产物容易被回收、自动化程度也比较高,只是膜污染物和膜恶劣等方面的问题导致这一技术很难进一步发展,需针对这一领域展开深入的研究。 2.3 生物处理技术 在废水处理中的生物处理技术,也被称为生物吸附法,即是充分利用生物体自身的化学结构和成分特性,使其吸附废水中的重金属离子,然后采用固液相互分离的方法除去废水中的重金属离子。重金属工业废水中采用生物吸附法是近些年得到推广应用的新兴水处理方法,不但具有丰富的原料来源,还具有成本低廉和无二次污染等方面的优点,使其发展前景一片光明。 3 重金属工业废水处理后的再回收利用 3.1 废水再回收利用的意义 对重金属工业废水进行科学处理后,其污染物浓度控制指标在达到排放要求后可以排出,只是其中蕴含的大量重金属污染物依旧被排放至受纳水体,无法使废水危害问题得到根本性的解决,这也就使得工业废水的资源化问题被提上议程并且得到了越来越高的重视。因此,国内的重金属工业废水处理模式以零污染排放为目标日益受到关注。而在当前,要做到重金属工业废水再回收利用,最大限度地实现废水资源化,则可以建立废水净化回用系统,也就是将处理合格的工业废水再予以适当处理,后将其充分利用,既可以缓解水资源日渐紧张的现状,也可以解决工业废水资源化问题。而要构建废水净化回用系统,需要先确定工业废水回用目标,再按照各用水点的相关水质要求来对回用水水质进行确定。 3.2 废水净化回用系统的处理工艺 在重金属工业废水回用处理的工艺流程主要如下:第一,对工厂的排污水管道进行集中截流,使用提水泵将其打进储水池,再通过污水泵将废水打进涡流反应器。第二,通过石灰浆泵把石灰浆池中的灰浆打进涡流反应器,同时采用加药泵把高分子凝聚剂溶液打入到漩涡反应器中,使其在反应器中发生化学反应。第三,化学反应后的液体溢流,流至澄清池、单阀滤池以及清水池。第四,液体在清水池沉淀后,可溢流至循环水塔的进水沟中,将其作为循环水的补充水,最后实现重金属工业废水的再回收利用。 4 结语 综上所述,各种废水处理技术和废水净化回用系统的开发与应用均对重金属工业企业来说具有重要的价值。对重金属工业废水进行妥善处理,能够使其符合排放标准降低危险性,而废水净化回用系统则站在废水资源化再次利用的角度发挥着非常重要的作用。参考文献: [1]白雁斌,王天娇,赵晓玉.重金属废水处理技术研究进展[J].污染防治技术,2013(3):36-40.

膜分离技术在处理重金属废水中的应用

膜分离技术在处理重金属废水中的应用 [摘要] 膜技术作为一种新型分离技术,在水处理领域得到了广泛的应用。文章综述了电渗析、液膜、反渗透、纳滤、微滤、超滤等各种膜分离技术的分离原理、特点,在重金属废水处理中的应用以及目前存在的问题。最后展望了膜技术在重金属废水处理领域的应用前景。 [关键词] 膜分离;重金属废水;应用 Abstract: Membrane separation technology was applied widely in the field of wastewater treatment as a new kind of separation technology. The separation mechanism and characteristics of different kinds of membrane technologies were introduced, including electrodialysis, liquid membrane, reverse osmosis, nano-filtration, microfiltration, ultrafiltration. Further more, the application and current problems of different membrane technologies in heavy metal wastewater treatment were extensively summarized. Finally, application prospect of membrane separation technology was presented in the field of heavy metal wastewater treatment. Keywords: membrane separation;heavy metal wastewater;application 重金属废水是指矿冶、机械制造、化工、电子、仪表等工业生产过程中排出的含重金属的废水[1-2]。重金属(如含镉、镍、汞、锌等)废水是对一环境污染最严重和对人类危害最大的工业废水之一,其水质水量与生产工艺有关。如震惊世界的水俣病及骨疼病就是由于含汞和含镉废水污染所致。废水中的重金属一般不能分解破坏,只能转移其存在位置和转变其物化形态。近年来,人们对重金属污染日益重视,对重金属废水的治理和排放标准日趋严格。环保工作者不断寻求更加安全和经济的方法来处理重金属废水,以减少或消除重金属在环境中的积累,满足日益严格的环保要求。 重金属废水处理的传统工艺大多存在着处理效果不好、处理成本高、工艺流程复杂和设备占地面积大等缺点。膜技术作为一种新兴的分离技术,由于具有分离效率高、能耗低、无相变、操作简便、无二次污染、分离产物易于回收、自动化程度高等优点,在水处理领域具有相当的技术优势[3-4]。膜分离的基本原理是在某种推动力作用下,利用膜的选择透过性进行分离和浓缩。根据膜截留组分粒径大小的不同及膜性能的差异,目前常见的膜分离过程可分为以下几种,微滤

常见工业废水处理技术介绍

常见工业废水处理技术介绍 在电子、塑胶、电镀、五金、印刷、食品、印染等行业,从废水的排放量和对环境污染的危害程度来看,电镀、线路板、表面处理等以无机类污染物为主的废水和食品、印染、印刷及生活污水等以有机类污染物为主的废水是处理的重点。本文主要介绍几种比较典型的工业废水的处理技术。 一、表面处理废水 1.磨光、抛光废水 在对零件进行磨光与抛光过程中,由于磨料及抛光剂等存在,废水中主要污染物为COD、BOD、SS。 一般可参考以下处理工艺流程进行处理: 废水→调节池→混凝反应池→沉淀池→水解酸化池→好氧池→二沉池→过滤→排放 2.除油脱脂废水 常见的脱脂工艺有:有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外,其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂,废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。 一般可以参考以下处理工艺进行处理: 废水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放

该类废水一般含有乳化油,在进行气浮前应投加CaCl2破乳剂,将乳化油破除,有利于用气浮设备去除。当废水中COD浓度高时,可先采用厌氧生化处理,如不高,则可只采用好氧生化处理。 3.酸洗磷化废水 酸洗废水主要在对钢铁零件的酸洗除锈过程中产生,废水pH一般为2-3,还有高浓度的Fe2+,SS浓度也高。 可参考以下处理工艺进行处理: 废水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过滤池→pH回调池→排放 磷化废水又叫皮膜废水,指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理,表面生成一层难溶于水的磷酸盐保护膜,作为喷涂底层,防止铁件生锈。该类废水中的主要污染物为:pH、SS、PO43-、COD、Zn2+等。 可参考以下处理工艺进行处理: 废水→调节池→一级混凝反应池→沉淀池→二级混凝反应池→二沉池→过滤池→排放 4.铝的阳极氧化废水所含污染物主要为pH、COD、PO43-、SS等,因此可采用磷化废水处理工艺对阳极氧化废水进行处理。 二、电镀废水 电镀生产工艺有很多种,由于电镀工艺不同,所产生的废水也各不相同,一般电镀企业所排出的废水包括有酸、碱等前处理废水,氰

重金属工业废水处理技术探析 顾宇中

重金属工业废水处理技术探析顾宇中 发表时间:2018-12-18T10:54:29.927Z 来源:《建筑学研究前沿》2018年第26期作者:顾宇中 [导读] 重金属工业废水属于较强复杂性的混合体系,因为涉及到多种重金属离子。 爱环吴世(苏州)环保股份有限公司江苏苏州 215011 摘要:现阶段,随着社会的发展,现代化建设水平也有了很大的提高。在重金属工业不断发展的背后,工业废水问题日益严重,对生态环境及人类身体健康造成了很大的负面影响。因此,应该积极探索更佳的重金属工业废水处理技术方法,探讨工业废水处理后的资源化路径,以期妥善处理工业废水,促进重金属工业的更好发展。使得工业废水可以进行资源化利用,同时也兼顾生态环境与人类身体健康的保护。 关键词:重金属;工业废水;处理技术;探析 引言 重金属工业废水属于较强复杂性的混合体系,因为涉及到多种重金属离子,所以在重金属工业废水处理技术比较多的情况下,要了解各种技术的优缺点,再从废水实际特点出发,结合经济与技术条件的实际情况,探索出理想的重金属工业废水处理技术,缓解重金属工业废水问题。 1重金属工业废水的基本现状 随着重金属工业的不断发展,其产生的工业废水量也在日渐上升,主要有以下一些废水来源:(1)矿山和选矿厂尾矿的排水;(2)有色金属加工厂和钢铁厂的酸洗水;(3)电镀厂镀件洗涤水;(4)废石场淋浸水;(5)其他工业废水,比如农药业、医药业、油漆业、颜料业以及电解行业带来的工业废水等。重金属是一种极具潜在危害的重大污染物,无法被微生物分解,当重金属在人的体内富集或者与其他物质反应形成更强毒性的化合物,就会对人的身体造成极大的健康威胁。这是因为重金属在人体内,可以与蛋白质和各种酶产生非常强烈的作用,致使蛋白质及酶失去活性,若重金属在人体的某个器官中富集,一旦超过了该器官所可以耐受的限度,就会引起慢性、急性或者亚急性等程度的中毒现象。近年来我国重金属工业废水引起的污染事故逐渐增加,比如江苏省某工厂电镀酸洗废水每年超过4.7万t,导致附近水库和河湖的鱼产量降低了约13万斤;韶关某冶炼厂的含镉工业废水排放超标,使得北江韶关段遭遇比较严重的镉污染问题等。由此可见,重金属工业废水排放问题没有妥善解决,而致使污染事件不断发生,使得重金属工业废水处理成为当前社会各界都重视并希冀解决的重大问题。 2重金属工业废水处理技术的探索分析 要对重金属工业废水进行有效处理,降低其对自然环境与人类造成的危害性,可对以下一些处理技术进行深入的认识和分析。 2.1化学处理技术 使用化学方法对重金属工业废水进行处理,可分为化学沉淀法、电解法以及氧化还原法。首先,在化学沉淀法方面,在实际处理工作中,可在废水中加入可溶性化学药剂,使其与废水中处于离子状态的无机污染物相接触,进而发生化学反应,形成不溶于水或者难以溶于水的其他化合物。化合物可以在水中沉淀,最终可以让工业废水得到很好的净化。这一方法适用于汞、锌、铅和铬等重金属离子的净化处理。其次,在电解法方面,主要是通过电解槽中所发生的电化学反应,对重金属工业废水中的污染物进行处理。废水中含有的可溶解性污染物能够在电解中的氧化还原反应作用下,析出沉淀物或者溢出气体,进而达到净化废水的目的。这一方法主要适用于氰和铬等重金属离子废水的净化处理。最后,在化学还原法方面,若废水中的重金属离子处于高价态,具有较大的毒性,则可以运用这一方法对其进行还原至低价态,将其分离后除去。 2.2物理化学处理技术 在废水处理中的物理化学处理技术同样涵括三种基本方法,具体如下:第一种是物理/化学吸附法。吸附材料通常为蓬松结构,其比表面积比较高,又或者某些吸附材料具有比较特殊的功能基团,可以对废水中的重金属离子产生物理吸附作用或者化学吸附作用。在这方面的吸附剂常见的有活性炭、累托石、沸石以及硅藻土等。而活性炭是最早被运用和最常见的一种吸附剂,能够对多种重金属离子都产生吸附作用,具有较大的吸附容量,只是其造价比较贵,使用寿命短,操作费用也比较高。第二种为离子交换法,主要是通过离子交换剂中的离子与重金属工业废水中的离子产生交换反应,从而去除废水里的有害离子。这种方法可以实现贵重金属离子的回收,一般适用于有机废水与放射性废水等方面的处理工作。第三种则为膜分离法,主要是采用特殊的半透膜,借助外界推动力使得溶液中渗透出一种溶质与溶剂,从而分离水中的重金属离子。而膜截留组分粒径大小以及膜性能都存在差异性,所以膜分离法也可以分为微滤、纳滤、超滤、电渗析以及反渗透等分离法。这种方法作为新型的重金属离子分离技术,其优点显著,比如分离效率高、操作比较简单便利、没有二次污染、能耗比较低,同时其分离产物容易被回收、自动化程度也比较高,只是膜污染物和膜恶劣等方面的问题导致这一技术很难进一步发展,需针对这一领域展开深入的研究。 2.3生物处理技术 在废水处理中的生物处理技术,也被称为生物吸附法,即是充分利用生物体自身的化学结构和成分特性,使其吸附废水中的重金属离子,然后采用固液相互分离的方法除去废水中的重金属离子。重金属工业废水中采用生物吸附法是近些年得到推广应用的新兴水处理方法,不但具有丰富的原料来源,还具有成本低廉和无二次污染等方面的优点,使其发展前景一片光明。 3重金属工业废水处理后的再回收利用 3.1废水再回收利用的意义 对重金属工业废水进行科学处理后,其污染物浓度控制指标在达到排放要求后可以排出,只是其中蕴含的大量重金属污染物依旧被排放至受纳水体,无法使废水危害问题得到根本性的解决,这也就使得工业废水的资源化问题被提上议程并且得到了越来越高的重视。因此,国内的重金属工业废水处理模式以零污染排放为目标日益受到关注。而在当前,要做到重金属工业废水再回收利用,最大限度地实现废水资源化,则可以建立废水净化回用系统,也就是将处理合格的工业废水再予以适当处理,后将其充分利用,既可以缓解水资源日渐紧张的现状,也可以解决工业废水资源化问题。而要构建废水净化回用系统,需要先确定工业废水回用目标,再按照各用水点的相关水质要

相关文档
最新文档