基于51单片机设计智能避障小车

基于51单片机设计智能避障小车
基于51单片机设计智能避障小车

单片机设计智能避障小车

摘要

利用红外对管检测黑线与障碍物,并以STC89C51单片机为控制芯片控制电动小汽车的速度及转向,从而实现自动循迹避障的功能。其中小车驱动由L298N 驱动电路完成,速度由单片机输出的PWM波控制。本文首先介绍了智能车的发展前景,接着介绍了该课题设计构想,各模块电路的选择及其电路工作原理,最后对该课题的设计过程进行了总结与展望并附带各个模块的电路原理图,和本设计实物图,及完整的C语言程序。

关键词:智能小车;51单片机;L298N;红外避障;寻迹行驶

abstract

Using infrared detection black and obstacles to the line and STC89C51 microcontroller as the control chip to control the speed of the electric car and steering, so as to realize the function of automatic tracking and obstacle avoidance. Which the car driven by the L298N driver circuit is completed, the speed of the microcontroller output PWM wave control. This article first introduces the development of the intelligent car prospect, then introduces the design idea, the subject selection of each module circuit and working principle of the circuit, the design process of the subject is summarized and prospect with each module circuit principle diagram, and the real figure design, and complete C language program.

Key words: smart car; 51 MCU; L298N; infrared obstacle avoidance; track driving

一、绪论

1.1智能小车的意义和作用

自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。避障控制系统是基于自动导引小车(AVG—auto-guide vehicle)系统,基于它的智能小车实现自动识别路线,判断并自动避开障碍,选择正确的行进路线。使用传感器感知路线和障碍并做出判断和相应的执行动作。

该智能小车可以作为机器人的典型代表。它可以分为三大组成部分:传感器检测部分、执行部分、CPU。机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物。可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避。基于上述要求,传感检测部分考虑使用价廉物美的红外反射式传感器来充当。智能小车的执行部分,是由直流电机来充当的,主要控制小车的行进方向和速度。单片机驱动直流电机一般有两种方案:第一,勿需占用单片机资源,直接选择有PWM功能的单片机,这样可以实现精确调速;第二,可以由软件模拟PWM输出调制,需要占用单片机资源,难以精确调速,但单片机型号的选择余地较大。考虑到实际情况,本文选择第二种方案。CPU使用80C51单片机,配合软件编程实现。

二、方案设计与论证

现智能小车发展很快,从智能玩具到其它各行业都有实质成果。其基本可实现循迹、避障、检测贴片、寻光入库、避崖等基本功能,这几节的电子设计大赛智能小车又在向声控系统发展。比较出名的飞思卡尔智能小车更是走在前列。我此次的设计主要实现循迹避障这两个功能。

根据要求,确定如下方案:在现有玩具电动车的基础上,加装光电检测器,实现对电动车的速度、位置、运行状况的实时测量,并将测量数据传送至单片机进行处理,然后由单片机根据所检测的各种数据实现对电动车的智能控制。这种方案能实现对电动车的运动状态进行实时控制,控制灵活、可靠,精度高,可满足对系统的各项要求。

2.1 主控系统

根据设计要求,我认为此设计属于多输入量的复杂程序控制问题。据此,拟

定了以下两种方案并进行了综合的比较论证,具体如下:

方案一:选用一片CPLD(如EPM7128LC84-15)作为系统的核心部件,实现控制与处理的功能。CPLD具有速度快、编程容易、资源丰富、开发周期短等优点,可利用VHDL语言进行编写开发。但CPLD在控制上较单片机有较大的劣势。同时,CPLD的处理速度非常快,而小车的行进速度不可能太高,那么对系统处理信息的要求也就不会太高,在这一点上,MCU就已经可以胜任了。若采用该方案,必将在控制上遇到许许多多不必要增加的难题。为此,我们不采用该种方案,进而提出了第二种设想。

方案二:采用单片机作为整个系统的核心,用其控制行进中的小车,以实现其既定的性能指标。充分分析我们的系统,其关键在于实现小车的自动控制,而在这一点上,单片机就显现出来它的优势——控制简单、方便、快捷。这样一来,单片机就可以充分发挥其资源丰富、有较为强大的控制功能及可位寻址操作功能、价格低廉等优点。因此,这种方案是一种较为理想的方案。针对本设计特点——多开关量输入的复杂程序控制系统,需要擅长处理多开关量的标准单片机,而不能用精简I/O口和程序存储器的小体积单片机,D/A、A/D功能也不必选用。根据这些分析,我选定了P89C51RA单片机作为本设计的主控装置,51单片机具有功能强大的位操作指令,I/O口均可按位寻址,程序空间多达8K,对于本设计也绰绰有余,更可贵的是51单片机价格非常低廉。

在综合考虑了传感器、两部电机的驱动等诸多因素后,我们决定采用一片单片机,充分利用STC89C51单片机的资源。

2.2 电机驱动模块

方案一:

采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整.此方案的优点是电路较为简单,缺点是继电器的响应时间慢,易损坏,寿命较短,可靠性不高。

方案二:

采用功率三极管作为功率放大器的输出控制直流电机。线性型驱动的电路结构和原理简单,加速能力强,采用由达林顿管组成的 H型桥式电路(如图2.1)。用单片机控制达林顿管使之工作在占空比可调的开关状态下,精确调整电动机转速。这种电路由于工作在管子的饱和截止模式下,效率非常高,H型桥式电路保证了简单的实现转速和方向的控制,电子管的开关速度很快,稳定性也极强,是一种广泛采用的 PWM调速技术。现市面上有很多此种芯片,我选用了L298N。

这种调速方式有调速特性优良、调整平滑、调速范围广、过载能力大,能承受频繁的负载冲击,还可以实现频繁的无级快速启动、制动和反转等优点。因此

决定采用使用功率三极管作为功率放大器的输出控制直流电机。

图2.1 H桥式电路

2.3 循迹模块

方案一:

采用简易光电传感器结合外围电路探测,但实际效果并不理想,对行驶过程中的稳定性要求很高,且误测几率较大、易受光线环境和路面介质影响。在使用过程极易出现问题,而且容易因为该部件造成整个系统的不稳定。故最终未采用该方案。

方案二:

采用两只红外对管(如图2.3),分别置于小车车身前轨道的两侧,根据两只光电开关接受到白线与黑线的情况来控制小车转向来调整车向,测试表明,只要合理安装好两只光电开关的位置就可以很好的实现循迹的功能。

方案三:

采用三只红外对管,一只置于轨道中间,两只置于轨道外侧,当小车脱离轨道时,即当置于中间的一只光电开关脱离轨道时,等待外面任一只检测到黑线后,做出相应的转向调整,直到中间的光电开关重新检测到黑线(即回到轨道)再恢复正向行驶。现场实测表明,小车在寻迹过程中有一定的左右摇摆不定,虽然可

以正确的循迹但其成本与稳定性都低于第二种方案。

通过比较,我选取第二种方案来实现循迹。

图2.3 红外对管

2.4 避障模块

方案一:

采用一只红外对管置于小车中央。其安装简易,也可以检测到障碍物的存在,但难以确定小车在水平方向上是否会与障碍物相撞,也不易让小车做出精确的转向反应。

方案二:

采用二只红外对管分别置于小车的前端两侧,方向与小车前进方向平行,对小车与障碍物相对距离和方位能作出较为准确的判别和及时反应。但此方案过于依赖硬件、成本较高、缺乏创造性,而且置于小车左方的红外对管用到的几率很小,所以最终未采用。

方案三:

采用一只红外对管置于小车右侧。通过测试此种方案就能很好的实现小车避开障碍物,且充分的利用资源而不浪费。(参考文献[3])

通过比较我采用方案三。

2.5 机械系统

本题目要求小车的机械系统稳定、灵活、简单,而三轮运动系统具备以上特点。

驱动部分:由于玩具汽车的直流电机功率较小,而小车上装有电池、电机、

电子器件等,使得电机负担较重。为使小车能够顺利启动,且运动平稳,在直流电机和轮车轴之间加装了三级减速齿轮。

电池的安装:将电池放置在车体的电机前后位置,降低车体重心,提高稳定性,同时可增加驱动轮的抓地力,减小轮子空转所引起的误差。简单,而三轮运动系统具备以上特点。

2.6电源模块

方案一:

采用实验室有线电源通过稳压芯片供电,其优点是可稳定的提供5V电压,但占用资源过大。

方案二:

采用8支1.5V电池双电源分别给单片机与电机供电。

所以,我选择了方案二来实现供电。

三、硬件设计

3.1总体设计

设计一个直流电机小车系统,用L298N驱动电机,可加减速调节;用红外发射和接收传感器控制小车在规定区域行走,用红外传感器实现壁障,用霍尔传感器实现薄铁片的检测,用光敏电阻实现探测光源。

主板设计框图如图3.1。

图3.1 主板设计框图

3.2驱动电路

电机驱动一般采用H桥式驱动电路,L298N内部集成了H桥式驱动电路,从而

可以采用L298N电路来驱动电机。通过单片机给予L298N电路PWM信号来控制小车的速度,起停。其引脚图如3.2,驱动原理图如图3.3。

图3.2 L298N引脚图

图3.3电机驱动电路

3.3信号检测模块

在该模块利用红外探测法。红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇

到黑线则红外光被吸收,则小车上的接收管接收不到信号,再通过LM324作比较器来采集高低电平,从而实现信号的检测。避障亦是此原理。电路图如图3.4。

市面上有很多红外传感器,在这里我选用TCRT5000型光电对管。

图3.4循迹原理图

3.4主控电路

本模块主要是对采集信号进行分析,同时给出PWM波控制电机速度,起停。以及再检测到障碍报警等作用。其电路图如图5。

图3.5 主控电路

四、软件设计

4.1主程序框图

图4.1 主程序框图

4.2电机驱动模块

voidgoahead()

{

s1=1;

s2=0;

s3=1;

s4=0;

}

voidgoback()

{

s1=0;

s2=1;

s3=0;

s4=1;

}

voidturnleft()

{

s3=1;

s4=0;

}

voidturnright()

{

s1=1;

s2=0;

}

void stop()

{

en1=0;

en2=0;

}

4.3循迹模块

图4.2 循迹框图程序:

voidxunji()

{

if((left_red==1)&(right_red==1))

{

en2=1;

goahead();

delay(150);

en1=0;

en2=0;

delay(50);

}

else if((left_red==0)&(right_red==1)) {

en1=0;

en2=1;

P0_0=!P0_0;

turnleft();

delay(150);

en1=1;

en2=0;

delay(50);

}

else if((left_red==1)&(right_red==0)) 4.4避障模块

voidbizhang()

{

en1=1;

en2=1;

goback();

mid_red=0;

baojing();

goback();

for(i=0;i<8;i++)

{

en1=1;

en2=1;

delay(150);

en2=0;

delay(50);

}

stop();

delay(10);

turnleft();

for(i=0;i<11;i++)

{

en1=0;

en2=1;

delay(130);

en2=0;

delay(50);

}

stop();

delay(10);

goahead();

for(i=0;i<22;i++)

{

en1=1;

en2=1;

delay(130);

en1=0;

en2=0;

delay(50);

}

stop();

delay(10);

turnright();

for(i=0;i<18;i++)

五、结论

整个系统的设计以单片机为核心,利用了多种传感器,将软件和硬件相结合。

本系统能实现如下功能:

1.自动沿预设轨道行驶小车在行驶过程中,能够自动检测预先设好的轨道,实现直道和弧形轨道的前进。若有偏离,能够自动纠正,返回到预设轨道上来。

2.当小车探测到前进前方的障碍物时,可以自动报警调整,躲避障碍物,从无障碍区通过。小车通过障碍区后,能够自动循迹

3.自动检测停车线并自动停车。从运行情况来看循迹的效果比较好,避障的效果不是很好,我认为是由于电源不能稳定而是的小车的速度不好控制,这也是我这次设计最大的误区,没有选取稳定的电源。我相信如果实验条件和时间的允许下我肯定能解决这一问题。

通过本次设计我掌握了很多以前不熟练的东西,认识了很多以前不熟悉得东西,使我在人生上又进了一步。也认识到很多的不足。

参考文献

[1] 郭惠,吴迅.单片机C语言程序设计完全自学手册[M].电子工业出版社,2008.10:1-200.

[2] 赵文博,刘文涛,单片机语言C51程序设计[M],人民邮电出版社,2006

[3]吴金戌等编,8051单片机实践与应用,清华大学出版社,2001

[4]王晓明.电动机的单片机控制[J]. 学术期刊,2002,13(15):1322-1755.

[5] 杨文龙,单片机原理及应用[M],西安电子科技大学出版社,2000

[6] 张伟编,电路设计制版Protel DXP高级应用,人民邮电大学出版社,2004

基于51单片机智能小车循迹程序

#include #define uchar unsigned char #define uint unsigned int ////电机驱动模块位定义//// sbit M11=P0^0; //左轮 sbit M12=P0^1; sbit M23=P0^2; //右轮 sbit M24=P0^3; sbit ENA=P0^4; //左轮使能PWM输入改变dj1数值控制转速sbit ENB=P0^5; //右轮使能PWM输入改变dj2数值控制转速////占空比变量定义//// unsigned char dj1=0; unsigned char dj2=0; uchar t=0; ////红外对管位定义//// sbit HW1=P1^0; //左前方 sbit HW2=P1^1; //右前方 sbit HW3=P1^2; //左后方 sbit HW4=P1^3; //右后方 ////小车前进//// void qianjin() { M11=1; //左轮 M12=0; // M23=1; //右轮 M24=0; // dj1=50; dj2=50; } ////向左微调//// void turnleft2() { M11=1; M12=0; M23=1; M24=0; dj1=7; //左轮 dj2=50; //右轮 } ////向右微调//// void turnright2() { M11=1; M12=0;

M23=1; M24=0; dj1=50; dj2=7; } ////向左大调//// void left() { M11=0; M12=1; M23=1; M24=0; dj1=7; dj2=80; } ////向右大调//// void right() { M11=1; M12=0; M23=0; M24=1; dj1=80; dj2=7; } ////循迹动作子函数//// void xj() { if(HW1==0&&HW2==0&&HW3==0&&HW4==0) //前进逻辑 { qianjin(); } if(HW1==1&&HW2==0&&HW3==0&&HW4==0) //左右微调 { turnleft2(); } if(HW1==0&&HW2==1&&HW3==0&&HW4==0) { turnright2(); } if(HW1==1&&HW2==0&&HW3==1&&HW4==0) //左右大调 { left(); }

基于AT89S51单片机的智能超声波避障小车

基于 AT89S51 单片机的智能 超声波避障小车
姓名: 班级: 学号:
钟洋 08 电子二班 200810330219 张儒
指导老师:

目录
摘要...........................................3 一、总体方案概述.......................................3 二、总体电路原理图....................................3 三、各模块功能介绍.................................4 (一) 、超声波测距模块................................4 (二) 、数码管显示模块................................4 (三) 、步进电机控制模块..............................6 (四) 、语音提示模块..................................7 (五) 、速度自控模块..................................8 (六) 、信号提示模块..................................8 (七) 、单片机控制模块...............................8 四、系统软件设计..................................9 五、元件清单.....................................10 六、应用前景.....................................10 六、参考文献.....................................11
2

循迹小车原理

寻迹小车 在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目。笔者通过论证、比较、实验之后,制作出了简易小车的寻迹电路系统。整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。 总体方案 整个电路系统分为检测、控制、驱动三个模块。首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。系统方案方框图如图1所示。 图1 智能小车寻迹系统框图 传感检测单元 小车循迹原理 该智能小车在画有黑线的白纸“路面”上行驶,由于黑线与白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。 红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。 传感器的选择 市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射与接收器件,其内部结构与外接电路均较为简单,如图2所示: 图2 ST168检测电路 ST168采用高发射功率红外光、电二极管与高灵敏光电晶体管组成,采用非接触式检测方式。ST168的检测距离很小,一般为8~15毫米,因为8毫米以下就是它的检测盲区,而大于15毫米则很容易受干扰。笔者经过多次测试、比较,发现把传感器安装在距离检测物表面10毫米时,检测效果最好。 R1限制发射二极管的电流,发射管的电流与发射功率成正比,但受其极限输入正向电流50mA的影响,用R1=150的电阻作为限流电阻,Vcc=5V作为电源电压,测试发现发射功率完全能满足检测需要;可变电阻

基于单片机89c51循迹小车原理与程序

自循迹小车 第一章引言 1.1 设计目的 通过设计进一步掌握51单片机的应用,特别是在嵌入式系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。 1.2 设计方案介绍 该智能车采用红外对管方案进行道路检测,单片机根据采集到的红外对管的不同状态判断小车当前状态,通过pid控制发出控制命令,控电机的工作状态以实现对小车姿态的控制。 1.3 技术报告内容安排 本技术报告主要分为三个部分。第一部分是对整个系统实现方法的一个概要说明,主要内容是对整个技术方案的概述;第二部分是对硬件电路设计的说明,主要介绍系统传感器的设计及其他硬件电路的设计原理等;第三部分是对系统软件设计部分的说明,主要内容是智能模型车设计中主要用到的控制理论、算法说明及代码设计介绍等。

第二章技术方案概要说明 本模型车的电路系统包括电源管理模块、单片机模块、传感器模块、电机驱动模块. 在整个系统中,由电源管理模块实现对其他各模块的电源管理。其中,对单片机、光电管提供5V电压,对电机提供6V电压 路径识别电路由3对光电发送与接收管组成。由于路面存在黑色引导线,落在黑线区域内的光电接收管接收到反射的光线的强度与白色的路面不同,进而在光电接收管两端产生不同的电压值,由此判断路线的走向。传感器模块将当前采集到的一组电压值传递给单片机,进而根据一定得算法对舵机进行控制,使小车自动寻线行走。 单片机模块是智能车的核心部分,主要完成对外围各个模块的管理,实现对外围模块的信号发送,以及对传感器模块的信号采集,并根据软件算法对所采集的信号进行处理,发送信号给执行模块进行任务执行,还对各种突发事件进行监控和处理,保证整个系统的正常运作。 电机驱动采用L293驱动芯片,该芯片支持2路电机驱动同时支持PWM 调速

51单片机控制智能小车解析

单片机项目 报 告 班级:自动化21091 姓名:邸维汉刘会丽石钱坤学号:1020103304 2010103215 2010103122 智能小车控制

目录 一、前言 二、方案设计与论证 1)控制器模块选取 2)电机模块选取 3)电机驱动器模块选取 4)电源模块选取 三、硬件设计 1)主控系统 2)电机模块 3)电机驱动模块 4)电源模块 5)按键模块 四、软件设计 1)直行设计 2)转弯设计 3)调速设计 五、调试中存在的问题 六、参考文献

一、前言: 随着汽车工业的迅速发展,关于汽车的研究也就越来越受人关注。全国电子大赛和省内电子大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究。可见其研究意义很大。本设计就是在这样的背景下提出的,指导教师已经有充分的准备。本题目是结合科研项目而确定的设计类课题。我们设计的智能电动小车该具有圆形运行、三角形运行、矩形运行和三者一起运行的功能。都是运行一循环自动停车。 根据题目的要求,确定如下方案:在现有玩具电动车的基础上,加了四个按键,实现对电动车的运行轨迹的启动,并将按键的状态传送至单片机进行处理,然后由单片机根据所检测的各种按键状态实现对电动车的智能控制。 这种方案能实现对电动车的运动状态进行实时控制,控制灵活、可靠,精度高,可满足对系统的各项要求。本设计采用STC89C52单片机。以STC89C52为控制核心,利用按键的动作,控制电动小汽车的轨迹。实现四种运行轨迹。STC89C52是一款八位单片机,它的易用性和多功能性受到了广大使用者的好评。 二、方案设计与论证 1)控制器模块选取 我们采用STC公司的STC89S52单片机作为主控制器,STC公司的单片机内部资源比起ATMEL公司的单片机来要丰富的多,它在5V供电情况下,最多支持80M晶振、且内部有512B的RAM数据存储器、片内含8k空间的可反复擦些1000次的Flash只读存储器、1K的EEPROM、8个中断源、4个优先级、3个定时器、32个IO口、片机自带看门狗、双数据指针等。但是不兼容Atmel。 从方便使用的角度考虑,我们选择了此方案 2)电机模块选取 采用普通直流电机。直流电机运转平稳,精度有一定的保证。直流电机控制的精确度虽然没有步进电机那样高,但完全可以满足本题目的要求。通过单片机的PWM输出同样可以控制直流电机的旋转速度,实现电动车的速度控制。并且直流电机相对于步进电机价格经济。 3)电机驱动器模块选取

基于 单片机设计智能避障小车

单片机设计智能避障小车 摘要 利用红外对管检测黑线与障碍物,并以STC89C51单片机为控制芯片控制电动小汽车的速度及转向,从而实现自动循迹避障的功能。其中小车驱动由L298N 驱动电路完成,速度由单片机输出的PWM波控制。本文首先介绍了智能车的发展前景,接着介绍了该课题设计构想,各模块电路的选择及其电路工作原理,最后对该课题的设计过程进行了总结与展望并附带各个模块的电路原理图,和本设计实物图,及完整的C语言程序。 关键词:智能小车;51单片机;L298N;红外避障;寻迹行驶 abstract Using infrared detection black and obstacles to the line and STC89C51 microcontroller as the control chip to control the speed of the electric car and steering, so as to realize the function of automatic tracking and obstacle avoidance. Which the car driven by the L298N driver circuit is completed, the speed of the microcontroller output PWM wave control. This article first introduces the development of the intelligent car prospect, then introduces the design idea, the subject selection of each module circuit and working principle of the circuit, the design process of the subject is summarized and prospect with each module circuit principle diagram, and the real figure design, and complete C language program. Key words: smart car; 51 MCU; L298N; infrared obstacle avoidance; track driving

基于某51单片机的智能小车控制系统

工业职业技术学院 毕业设计 课题名称基于51与单片机的智能小车控制系统 系(院)名称电气工程系 专业及班级 学生 学号 指导教师

完成日期年11 月19 日

摘要 随着我国科学技术的进步,智能化作为现代社会的新产物开始越来越普及,各种高科技也广泛应用于智能小车和机器人玩具制造领域,使智能机器人越来越多样化。智能小车是一个多种高薪技术的集成体,它融合了机械、电子、传感器、计算机硬件、软件、人工智能等许多学科的知识,可以涉及到当今许多前沿领域的技术。 整个小车平台主要以51单片机为控制核心,通过无线遥控实现前进后退和转向行驶,通过红外线传感器,实现小车的自适应巡航、避障等功能。设计采用对比选择,模块独立,综合处理的研究方法。通过翻阅大量的相关文献资料,分析整理出有关信息,在此基础上列出不同的解决方案,结合实际情况对比方案优劣选出最优方案进行设计。从电机车体,最小系统到无线遥控,红外线对管的自动寻迹再到红外线自动避障和语音控制,完成各模块设计。通过调试检测各模块,得到正确的信号输出,实现其应有的功能。最后将各个调试成功的模块结合到小车的车体上,结合程序,通过单片机的控制,将各模块有效整合在一起,达到所预期的目标,完成最终设计与制作,能使小车在一定的环境中智能化运转。 关键字:智能小车,单片机,红外传感器。

目录 第一章绪论.............................................................................................................................- 1 - 1.1.1智能循迹小车概述........................................................................................................- 1 - 1.1.2课题研究的目的和意义 ...............................................................................................- 2 - 1.1.3智能循迹小车智能循迹分类.......................................................................................- 3 - 1.1.4智能循迹小车的应用....................................................................................................- 3 - 第二章方案设计 ..........................................................................................................................- 5 - 2.1 主控系统.........................................................................................................................- 5 - 2.2单片机最小系统 ...............................................................................................................- 6 - 2.2.1 STC89C52简介...................................................................................................- 6 - 2.2.2 时钟电路...............................................................................................................- 8 - 2.2.3复位及复位电路....................................................................................................- 8 - 2.3 电机驱动模块................................................................................................................ - 10 - 2.4 循迹及避障模块............................................................................................................ - 11 - 2.5 机械系统......................................................................................................................... - 11 - 2.6电源模块......................................................................................................................... - 11 - 第三章硬件设计 ..................................................................................................................... - 12 - 3.1总体设计......................................................................................................................... - 12 - 3.1.1主板设计框图..................................................................................................... - 12 - 主板设计框图如图3-1,所需原件清单如表3-1 .................................................. - 12 -

51单片机循迹小车开题报告

一、研究课题的目的和意义 1)研究目的: 随着汽车工业的迅速发展,其与电子信息产业的融合速度也显著提高,汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。关于汽车的研究也就越来越受人关注。全国电子大赛和省内电子大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究。可见其研究意义很大。本设计就是在这样的背景下提出的,为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。设计的智能电动小车应该能够具有自动寻迹、小灯显示等功能。 此项设计以AT89S52单片机为控制核心,逐步实现小车的循线行走功能。2)研究意义: 1、加深课堂上的学习 由于单片机教学例子有限,因此,单片机智能车能综合学生课堂上的知识来实践,使学习者更好的了解单片机的发展。通过此次的单片机寻轨车制作,使学 生从理论到实践,初步体会单片机项目的设计、制作、调试和成功完成项目的过 程及困难,以此学会用理论联系实际。通过对实践中出现的不足与学习来补充教 学上的盲点。 2、从理论转为实际运用 智能汽车是一种高新技术密集的新型汽车,是在网络环境下利用信息技术、智能控制技术、自动控制、模式识别、传感器技术、汽车电子、电气、计算机 和机械等多个学科的最新科技成果,使汽车具有自动识别行驶道路、自动驾驶等 先进功能.随着控制技术、计算机技术和信息技术的发展,智能车在工业生产和日 常生活中已经扮演了非常重要的角色.近年来,智能车在野外、道路、现代物流 及柔性制造系统中都有广泛运用,已成为人工智能领域研究和发展的热点。 二、研究内容 1)系统设计: 智能寻迹小车采用后轮驱动,左右后轮各用一个直流减速电机驱动,通过调制后面两个轮子的转速从而达到控制转向的目的在车体前部分别装有左中右三或者两个红外反射式传感

51单片机-循迹小车项目报告材料(完整)

职业技术学院 《单片机系统设计》 项目设计报告 项目设计题目:智能寻迹小车 系部:电子信息与控制工程系班级:电子 XXXX 班 组号:第四组 小组成员:XXX 指导教师:XXX 2017年10月10日

目录 一、引言 (3) 二、方案论证 (4) 三、小车车体设计 (7) 四、硬件系统设计 (8) 1、单片机最小系统 (8) 2、循迹电路 (9) 3、电机驱动电路 (9) 五、软件系统设计 (12) 六、系统的制作、仿真与调试 (14) 七、总结 (15)

一、引言 当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。无容置疑,机电一体化人才的培养不论是在国外还是国,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为电子专业学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。此项设计是在以小为基础,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

51单片机循迹小车程序

/*功能:寻迹小车 使用芯片:AT89S52或者STC89C52 或A T89S51 STC89C51 晶振:12MHZ 编译环境:Keil 作者:MH~?*/ #include <reg51、h>// 引用标准库得头文件 #include #define ucharunsignedchar #defineuintunsigned int //=================电机驱动===================== sbit dianji_r = P3^0;//右边电机控制口,低电平转? sbitdianji_l= P3^7;//左边电机控制口,低电平转 //=============循迹感应接口====================== sbit xjmk_r=P3^2;// 右边寻迹模块检测口INT0 sbit xjmk_l= P3^3;// 左边寻迹模块检测口INT1 void check_righet();//右边时候检测到黑线测试程序 voidcheck_left();//左边时候检测到黑线测试程序 void delay_50us(uint t); void delayms(uintMs); ucharr_count;//右边传感器检测到得次数计数单元 uchar l_count; uint time; //***********************主程序****************************** main() { time=50; dianji_r=0;//上电时右侧电机运行 dianji_l=0;//上电时左侧电机运行 EA=1; EX1=1; EX0=1; IT1=0; IT0=0; xjmk_r=1;//置IO为1,准备读取数据 xjmk_l=1; _nop_(); r_count=0; l_count=0; while(1) { _nop_(); //check_righet();//调用右边寻迹检测传感器 //check_left();//

51单片机循迹小车程序

/*功能:寻迹小车 使用芯片:AT89S52 或者STC89C52 或AT89S51 STC89C51 晶振:12MHZ 编译环境:Keil 作者:MH~ */ #include // 引用标准库的头文件 #include #define uchar unsigned char #define uint unsigned int //=================电机驱动===================== sbit dianji_r = P3^0; //右边电机控制口,低电平转? sbit dianji_l = P3^7; //左边电机控制口,低电平转 //=============循迹感应接口====================== sbit xjmk_r = P3^2;// 右边寻迹模块检测口INT0 sbit xjmk_l = P3^3;// 左边寻迹模块检测口INT1 void check_righet();//右边时候检测到黑线测试程序 void check_left();//左边时候检测到黑线测试程序 void delay_50us(uint t); void delayms(uint Ms); uchar r_count;//右边传感器检测到的次数计数单元 uchar l_count; uint time; //***********************主程序****************************** main() { time=50; dianji_r=0;//上电时右侧电机运行 dianji_l=0;//上电时左侧电机运行 EA=1; EX1=1; EX0=1; IT1=0; IT0=0;

51单片机循迹小车项目方案报告(完整)

宜宾职业技术学院 《单片机系统设计》 项目设计报告 项目设计题目:智能寻迹小车 系部:电子信息与控制工程系班级:电子XXXX 班组号:第四组 小组成员:XXX 指导教师:XXX 2017年10月10日

目录 一、引言 (3) 二、方案论证 (4) 三、小车车体设计 (7) 四、硬件系统设计 (8) 1、单片机最小系统 (8) 2、循迹电路 (9) 3、电机驱动电路 (9) 五、软件系统设计 (12) 六、系统的制作、仿真与调试 (14) 七、总结 (15)

一、引言 当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为电子专业学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。此项设计是在以小为基础,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

基于AT89C52单片机的智能小车c语言程序

#include #define uchar unsigned char #define uint unsigned int uchar pro_left=35,pro_right=35,i,j; //左右占空比标志 sbit left1=P2^1;//定义端口 sbit left2=P2^0; sbit right1=P2^3; sbit right2=P2^2; sbit pleft=P2^7; sbit pright=P2^6; sbit en1=P1^0; sbit en2=P1^1; //循迹口三个红外传感器 sbit left_red=P1^2; //白线位置 sbit right_red=P1^4; //白线位置 void delay(uint z) { uchar i; while(z--) {for(i=0;i<121;i++);} } void init() {

left_red=0; //白线位置 right_red=0; TMOD=0X01; TH0=(65536-100)/256; TL0=(65536-100)%256; EA=1; ET0=1; TR0=1; en1=1; en2=1; } void time0(void)interrupt 1//定时中断{ i++; j++; if(i<=pro_right) {en1=1;} else en1=0; if(i==40) {en1=~en1;i=0;} if(j<=pro_left) {en2=1;} else en2=0; if(j==40) {en2=~en2;j=0;} TH0=(65536-100)/256; TL0=(65536-100)%256; } void straight() //走直线函数

基于单片机的智能循迹小车的控制过程毕业设计

基于单片机的智能循迹小车的控制过程 毕业设计

摘要 本文论述了基于单片机的智能循迹小车的控制过程。智能循迹是基于自动引导机器人系统,用以实现小车自动识别路线,以及选择正确的路线。智能循迹小车是一个运用传感器、单片机、电机驱动及自动控制等技术来实现按照预先设定的模式下,不受人为管理时能够自动实现循迹导航的高新科技。该技术已经应用于无人驾驶机动车,无人工厂,仓库,服务机器人等多种领域。 本设计采用STC89C52单片机作为小车的控制核心;采用TCRT5000红外反射式开关传感器作为小车的循迹模块来识别白色路面中央的黑色引导线,采集信号并将信号转换为能被单片机识别的数字信号;采用驱动芯片L298N构成双H桥控制直流电机,其中软件系统采用C程序,本设计的电路结构简单,容易实现,可靠性高。 关键词:单片机;自动循迹;驱动电路

Abstract This paper discusses the intelligent tracing electric trolley control process. Automatic tracing is used to make the car indentify route automatically , and choosing the right route, based on the automatic guide robot system. Intelligent tracing electric trolley is an advanced technology to realize automatic tracing navigation. It is out of human management but under the designed mode that use of the use of a transducer, single chip, motor drive and automatic control .This technology has been applied in unmanned vehicle, unmanned factory, warehouse, service robot and many other fields. During the design of Intelligent tracing electric trolley, STC89C52 single clip is used as the control core; at the same time with TCRT5000 reflective infrared transducer switch to identify the black guide line at the central of the white road, which used as the car tracing module, it can gather the signal and transfer it into digital signal that can be recognized by single chip. And the driving chip L298N constitute the double H bridge constitute of driving chip L298N can control direct current motor. Among which the software system is using C program. In a nutshell, the design of the circuit has the advantages of simple structure, easy implementation, and high reliability. Key words:single chip microcomputer; automatic tracing; driving circuit

基于51单片机智能小车设计

北华航天工业学院 课程设计报告(论文) 设计课题:基于51单片机智能循迹小车设计专业班级:B12242 学生姓名:李云鑫 指导教师:王晓 设计时间:2014年6月15日

北华航天工业学院电子工程系 基于51单片机智能循迹小车课程设计任务书 指导教师:王晓教研室主任:王晓 2014年06 月15 日 注:本表下发学生一份,指导教师一份,栏目不够时请另附页。 课程设计任务书装订于设计计算说明书(或论文)封面之后,目录页之前。

内容摘要 本设计主要有单片机模块、地面寻线模块、发光二极管模块,电机驱动模块以及电源模块组成,小车具有自主寻迹的功能。本次设计采用ATMEL公司的 AT89C2051单片机作为控制芯片,传感器模块采用红外接收管和比较器实现,能够轻松识别黑白两色路面,同时具有抗环境干扰能力,电机模由LM393芯片和两个直流电机构成,组成了智能车的动力系统,电源采用5V的直流电池,经过系统组装,从而实现了小车的自动循迹的功能。 索引关键词:智能小车AT89C2051 单片机LM393 红 外接收管

目录 一概述 (1) 二方案设计与论证 (8) 三单元电路设计及各模块具体电路 (3) 3.1. 电路中51单片机芯片介绍 (13) 3.2 最小系统部分电路 (19) 3.3控制模块电路电路 (20) 3.4电机驱动及二极管模块电路 (20) 3.5寻线检测模块部分电路 (21) 3.6软件设计 (22) 四总原理图及元器件清单 4.1总原理图 (23) 4.2元器件清单 (23) 五安装与调试 5.1.电子元器件的装配 (24) 5.2.机械装配 (25) 5.3.总装 (25) 六性能测试与分析 6.1测试方法及注意事项 (26) 6.2源程序 (26) 七结论 (27) 八心得体会 (28) 九参考文献 (29)

基于51单片机的循迹小车系统设计

基于51单片机的循迹小车系统设计 摘要 80C51单片机是一款八位单片机,他的易用性和多功能性受到了广大使用者的好评。在生活中但凡涉及到自动控制的地方都会出现单片机的身影,单片机的应用有利于产品的小型化、智能化,并且能够提高生产效率。这里介绍的是如何用AT89C52单片机来实现小车的循迹功能,该设计是结合科研项目而确定的设计类课题。本系统以设计题目的要求为目的,采用AT89C52单片机为控制核心,利用红外传感器检测道路上的黑线,控制电动小汽车的自动循迹,快慢速行驶,以及自动停车,并可以自动记录时间、里程和速度,和寻光功能。整个系统的电路结构非常简单,可靠性能很高。实验测试结果满足要求,本文着重介绍了该系统的硬件设计方法及测试结果分析。 关键词:80C51单片机;电动小车;pwm调速;光电检测;自动调速系统

Car tracking system based on microcontroller Abstract 80C51 is a 8 bit single chip computer. Its easily using and multi-function suffer large users.In life, whenever it comes to automatic control of the local microcontroller will appear figure, microcontroller applications in favor of product miniaturization, intelligent, and can improve productivity. Here is how to use AT89C52 microcontroller to achieve the car tracking feature, which is designed to determine the combination of scientific research and design class topic.This system design requirements of the subject for the purpose of using AT89C52 microcontroller core, the use of infrared sensors to detect the black line on the road, the automatic tracking control of electric cars, fast low traffic speeds, as well as automatic parking, and can automatically record time , mileage and speed, and look for the light function.The circuit structure of the entire system is very simple, very high reliability. The test results meet the requirements, the paper focuses on the hardware design and test results of the system analysis. Keywords:80C51 microcontroller; Electric car Pwm speed; A photodetector; Automatic Speed Control System.

相关文档
最新文档