STM32编码器在光栅尺测速场合的实际应用

STM32编码器在光栅尺测速场合的实际应用
STM32编码器在光栅尺测速场合的实际应用

STM32编码器在光栅尺测速场合的实际应用

摘要:stm32103f系列微控制器的定时器有一种特有工作模式——编码器接口模式,此模式可以用来反馈马达的实时转子位置,测量马达的转速,也可以反馈光栅尺的实时位置,测量光栅头的移动速度,在工业控制场合,尤其是需要精确定位的压机、机床等使用场合,有着非常实用的价值。现以stm32103f微控制器与海德汉(heidenhain)光栅尺ls1378c为例,详细介绍定时器的编码器工作原理,以及双定时器配合测速度的编程算法。

关键词:stm32编码器;光栅尺;测速

stm32103f系列是st公司采用高性能的32位arm cortex-m3内核,主要面向工业控制领域推出的微控制器芯片。通用定时器有以下几种工作模式:计数器模式、输入捕获模式、输出比较模式、pwm 模式、单脉冲模式、编码器接口模式。其中,编码器接口模式是一种有别于其他通用arm控制器以及dsp控制器的特有模式,此模式可以用来反馈马达的实时转子位置,测量马达的转速,也可以反馈光栅尺的实时位置,测量光栅头的移动速度,在工业控制场合,尤其是需要精确定位的压机、机床等使用场合,有着非常实用的价值。光栅尺位移传感器(简称光栅尺),是利用光栅的光学原理工作的测量反馈装置。光栅尺位移传感器经常应用于机床与现在加工中心以及测量仪器等方面,可用作直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大,检测精度高,响应速度快的特点。例如,在数控机床中常用于对刀具和工件的坐标进行

编码器使用教程与测速原理

编码器使用教程与测速原理 我们将通过这篇教程与大家一起学习编码器的原理,并介绍一些实用的技术。 1.编码器概述 编码器是一种将角位移或者角速度转换成一连串电数字脉冲的旋转式传感器,我们可以通过编码器测量到底位移或者速度信息。编码器从输出数据类型上分,可以分为增量式编码器和绝对式编码器。 从编码器检测原理上来分,还可以分为光学式、磁式、感应式、电容式。常见的是光电编码器(光学式)和霍尔编码器(磁式)。 2.编码器原理 光电编码器是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。光电编码器是由光码盘和光电检测装置组成。光码盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,检测装置检测输出若干脉冲信号,为判断转向,一般输出两组存在一定相位差的方波信号。 霍尔编码器是一种通过磁电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。霍尔编码器是由霍尔码盘和霍尔元件组成。霍尔码盘是在一定直径的圆板上等分地布置有不同的磁极。霍尔码盘与电动机同轴,电动机旋转时,霍尔元件检测输出若干脉冲信号,为判断转向,一般输出两组存在一定相位差的方波信号。

可以看到两种原理的编码器目的都是获取AB相输出的方波信号,其使用方法也是一样,下面是一个简单的示意图。 3.编码器接线说明 具体到我们的编码器电机,我们可以看看电机编码器的实物。 这是一款增量式输出的霍尔编码器。编码器有AB相输出,所以不仅可以测速,还可以辨别转向。根据上图的接线说明可以看到,我们只需给编码器电源5V供电,在电机转动的时候即可通过AB相输出方波信号。编码器自带了上拉电阻,所以无需外部上拉,可以直接连接到单片机IO读取。

编码器测速

飞思卡尔智能车舵机和测速的控制设计与实现 时间:2010-04-1411:53:10来源:电子设计工程作者:雷贞勇谢光骥五邑大学 2.1舵机工作原理 舵机在6V电压下正常工作,而大赛组委会统一提供的标准电源输出电压为7.2V,则需一个外围电压转换电路将电源电压转换为舵机的工作电压6V。图2为舵机供电电路。 舵机由舵盘、位置反馈电位计、减速齿轮组、直流动电机和控制电路组成,内部位置反馈减速齿轮组由直流电动机驱动,其输出轴带动一个具有线性比例特性的位置反馈电位器作为位置检测。当电位器转角线性地转换为电压并反馈给控制电路时,控制电路将反馈信号与输入的控制脉冲信号相比较,产生纠正脉冲,控制并驱动直流电机正向或反向转动,使减速齿轮组输出的位置与期望值相符。从而达到舵机精确控制转向角度的目的。舵机工作原理框图如图3所示。 2.2舵机的安装与调节 舵机的控制脉宽与转角在-45°~+45°范围内线性变化。对于对速度有一定要求的智能车,舵机的响应速度和舵机的转向传动比直接影响车模能否以最佳速度顺利通过弯道。车模在赛道上高速行驶,特别是对于前瞻性不够远的红外光电检测智能车,舵机的响应速度及其转向传动比将直接影响车模行驶的稳定性,因此必须细心调试,逐一解决。由于舵机从执行转动指令到响应输出需占用一定的时间,因而产生舵机实时控制的滞后。虽然车模在进入弯道时能够检测到黑色路线的偏转方向,但由于舵机的滞后性,使得车模在转弯过程中时常偏离跑道,且速度越快,偏离越远,极大限制车模在连续弯道上行驶的最大时速,使得车模全程赛道速度很难进一步提高。为了减小舵机响应时间,在遵守比赛规则不允许改造舵机结构的前提下,利用杠杆原理,采用加长舵机力臂的方案来弥补这一缺陷,加长舵机力臂示意图如图4所示。

海德汉编码器和海德汉光栅尺使用的各种参数

海德汉 海德汉编码器和海德汉光栅尺使用的各种参数 10 编程:Q参数

10.1原理和概述 你可以在一个零部件加工程序中编写同类零部件的程序,你只须输入称作Q参数的变量取代固定的数字值即可。 Q参数可以代表诸如以下的信息: □坐标值 □进给率 □RPM(重复数/分) □循环数据 Q参数也可以帮助你编写通过数学功能定义的外形轮廓。同时,你也可以使用Q参数根据逻辑状况执行机械加工步骤。与FK编程连用,可以将无法NC-兼容的外形轮廓与Q参数结合。 Q参数由字母Q和0到299之间的一个数字命名。其分组情况分为三类: 含义范围 普遍适用参数,适用于所有TNC内存 记忆的程序 Q0到Q99 为特殊TNC功能设定的参数Q100到Q199 主要用于循环的参数,适用于所有存 储在TNC内存中的程序 Q200到Q399 编程说明 在一个程序中可以混用Q参数和固定数字值。 Q参数可以被指定给-99.999,9999和+99 999.9999之间的数字值。TNC可以计算十进制小数点前57位到小数点后7位的范围(32位数据的计算范围相当于十进制数值4 294 967 296)。 一些Q参数总是被TNC指定给同样的数 据。例如,Q108总是被指定给当前刀具半 径,可参见368页的“预先指定Q 参数”。 如果你在OEM循环中使用Q60至Q99之间 的参数,须通过MP7251定义这些参数是 否仅用于OEM循环,还是全部适用。 338

调用Q参数功能 在编写零部件加工程序时,按下“Q”键(位于数字值输入 键盘,-/+键的下方)。然后,TNC会显示以下软键盘: 功能组软键盘 基础算术(指定,加减乘除,平方根) BASIC ARITHM. 三角函数功能TRIGO- NOME TRY 计算循环功能CIRCLE CALCU- LATION 如果/则条件,转移JUMP 其它功能DIVERSE FUNCTION 直接输入公式FORMULA 339

测速编码器

测速编码器技术参数 电机的位置检测在电机控制中是十分重要的,特别是需要根据精确转子位置控制电机运动状态的应用场合,如位置伺服系统。电机控制系统中的位置检测通常有:微电机解算元件,光电元件,磁敏元件,电磁感应元件等。这些位置检测传感器或者与电机的非负载端同轴连接,或者直接安装在电机的特定的部位。其中光电元件的测量精度较高,能够准确的反应电机的转子的机械位置,从而间接的反映出与电机连接的机械负载的准确的机械位置,从而达到精确控制电机位置的目的。本文主要介绍高精度的光电编码器的内部结构、工作原理与位置检测的方法。 一.光电编码器的介绍: 光电编码器是通过读取光电编码盘上的图案或编码信息来表示与光电编码器相连的电机转子的位置信息的。根据光电编码器的工作原理可以将光电编码器分为绝对式光电编码器与增量式光电编码器,下面我就这两种光电编码器的结构与工作原理做介绍。 1、绝对式光电编码器 绝对式光电编码器如图所示,他是通过读取编码盘上的二进制的编码信息来表示绝对位置信息的。编码盘是按照一定的编码形式制成的圆盘。图1是二进制的编码盘,图中空白部分是透光的,用“0”来表示;涂黑的部分是不透光的,用“1”来表示。通常将组成编码的圈称为码道,每个码道表示二进制数的一位,其中最外侧的是最低位,最里侧的是最高位。如果编码盘有4个码道,则由里向外的码道分别表示为二进制的23、22、21和20,4位二进制可形成16个二进制数,因此就将圆盘划分16个扇区,每个扇区对应一个4位二进制数,如0000、0001、…、1111。 按照码盘上形成的码道配置相应的光电传感器,包括光源、透镜、码盘、光敏二极管和驱动电子线路。当码盘转到一定的角度时,扇区中透光的码道对应的光敏二极管导通,输出低电平“0”,遮光的码道对应的光敏二极管不导通,输出高电

M法与T法在编码器测速方面的区别和频率问题

编码器的测速原理:M/T法 大家都比较清楚在闭环伺服系统中,编码器的反馈脉冲个数和系统所走位置的多少成正比,但对于怎样通过编码器所反馈的脉冲个数来求得电机的旋转速度了解的人就不是很多了。 根据脉冲计数来测量转速的方法有以下三种:(1)在规定时间内测量所产生的脉冲个数来获得被测速度,称为M法测速;(2)测量相邻两个脉冲的时间来测量速度,称为T法测速;(3)同时测量检测时间和在此时间内脉冲发生器发出的脉冲个数来测量速度,称为M/T 法测速。以上三中测速方法中,M法适合于测量较高的速度,能获得较高分辨率;T法适合于测量较低的速度,这时能获得较高的分辨率;而M/T法则无论高速低速都适合测量。以下只对T法测速进行详细介绍。 T法测速的原理是用一已知频率fc(此频率一般都比较高)的时钟脉冲向一计数器发送脉冲,计数器的起停由码盘反馈的相邻两个脉冲来控制,原理图见图1。若计数器读数为m1,则电机每分钟转速为nM=60fc/Pm1(r/min) 图1 T法测速原理 其中P为码盘一圈发出的脉冲个数即码盘线数,m1为 相邻两个脉冲间高频脉冲个数。测速分辨率:当对应转速由n1变为n2时则分辨率Q的定义为Q=n2-n1,Q值越小说明测量装置对转速变化越敏感即分辨率越高。因此可以得到T法测速的分辨率为 Q=60fc/Pm1-60fc/P(m1+1)= n2M P/(60fc+ nMP) 由上式可见随着转速nM的降低,Q值越小,即T法测速在低速时有较高的分辨率。 MT法测速之定量分析 速度测量是工控系统中最基本的需求之一,最常用的是用数字脉冲测量某根轴的转速,再根据机械比、直径换算成线速度。脉冲测速最典型的方法有测频率(M法)和测周期(T法)。定性分析: M法是测量单位时间内的脉数换算成频率,因存在测量时间内首尾的半个脉冲问题,可能会有2个脉的误差。速度较低时,因测量时间内的脉冲数变少,误差所占的比例会变大,所以M法宜测量高速。如要降低测量的速度下限,可以提高编码器线数或加大测量的单位时间,使用一次采集的脉冲数尽可能多。 T法是测量两个脉冲之间的时间换算成周期,从而得到频率。因存在半个时间单位的问题,可能会有1个时间单位的误差。速度较高时,测得的周期较小,误差所占的比例变大,所以T法宜测量低速。如要增加速度测量的上限,可以减小编码器的脉冲数,或使用更小更精确的计时单位,使一次测量的时间值尽可能大。 M法、T法各且优劣和适应范围,编码器线数不能无限增加、测量时间也不能太长(得考虑实时性)、计时单位也不能无限小,所以往往候M法、T法都无法胜任全速度范围内的测量。因此产生了M法、T法结合的M/T 测速法:低速时测周期、高速时测频率。 定量分析:

飞思卡尔光电编码器测速程序

#include /* common defines and macros */ #include /* derivative information */ #pragma LINK_INFO DERIV ATIVE "mc9s12xs128" volatile uint speed_back=0,temp=0; void delay_ms(uint ms) { volatile uint x=0; while(ms--) { for(x=2800;x>0;x--) { _asm(nop); _asm(nop); _asm(nop); _asm(nop); _asm(nop); _asm(nop); } } } //注意外接16M晶体。 //飞思卡尔推荐配置,主频道50MHZ,速度更快! void Init_PLL(void) { CLKSEL = 0X00; //disengage PLL to system PLLCTL_PLLON = 1; //turn on PLL SYNR = (0xc0|0x18); //SYDIV=0X18=24 REFDV = (0x40|0x07); //REFDIV=0X07=7 POSTDIV = 0x00; //pllclock=2*osc*(1+SYDIV)/(1+REFDIV)=100MHz; _asm(nop); //BUS CLOCK=50M _asm(nop); _asm(nop); _asm(nop); _asm(nop); _asm(nop); _asm(nop); _asm(nop); _asm(nop);

光栅尺和编码器介绍

光栅与编码器介绍 位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。 光栅,现代光栅测量技术 简要介绍: 将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。这些信号的空间位置周期为W。下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。输出方波的光栅尺有A相、B 相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。Z信号可以作为较准信号以消除累积误差。 一、栅式测量系统简述 从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。它们有各自的优势,相互补充,在竞争中都得到了发展。由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。测量长度从1m、3m 达到30m和100m。 二、光栅测量技术发展的回顾 计量光栅技术的基础是莫尔条纹(Moire fringes),1874年由英国物理学家L.Rayleigh首先提出这种图案的工程价值,直到20世纪50年代人们才开始利用光栅的莫尔条纹进行精密测量。1950年德国Heidenhain首创DIADUR复制工艺,也就是在玻璃基板上蒸发镀铬的光刻复制工艺,这才能制造高精度、价廉的光栅刻度尺,光栅计量仪器才能为用户所接受,进入商品市场。1953年英国Ferranti公司提出了一个4相信号系统,可以在一个莫尔条纹周期实现4倍频细分,并能鉴别移动方向,这就是4倍频鉴相技术,是光栅测量系统的基础,并一直广泛应用至今。 德国Heidenhain公司1961年开始开发光栅尺和圆栅编码器,并制造出栅距为4μm(250线/mm)的光栅尺和10000线/转的圆光栅测量系统,能实现1微米和1角秒的测量分辨力。1966年制造出了栅距为20μm(50线/mm)的封闭式直线光栅编码器。在80年代又推出AURODUR工艺,是在钢基材料上制作高反射率的金属线纹反射光栅。并在光栅一个参考标

测速编码器说明书

BEN测速编码器在智能车舵机控制中的应用2.1 舵机工作原理 舵机在6 V电压下正常工作,而大赛组委会统一提供的标准电源输出电压为7.2 V,则需一个外围电压转换电路将电源电压转换为舵机的工作电压6 V。图2为舵机供电电路。 舵机由舵盘、位置反馈电位计、减速齿轮组、直流动电机和控制电路组成,内部位置反馈减速齿轮组由直流电动机驱动,其输出轴带动一个具有线性比例特性的位置反馈电位器作为位置检测。当电位器转角线性地转换为电压并反馈给控制电路时,控制电路将反馈信号与输入的控制脉冲信号相比较,产生纠正脉冲,控制并驱动直流电机正向或反向转动,使减速齿轮组输出的位置与期望值相符。从而达到舵机精确控制转向角度的目的。舵机工作原理框图如图3所示。 2.2 舵机的安装与调节 舵机的控制脉宽与转角在-45°~+45°范围内线性变化。对于对速度有一定要求的智能车,舵机的响应速度和舵机的转向传动比直接影响车模能否以最佳速度顺利通过弯道。车模在赛道上高速行驶,特别是对于前瞻性不够远的红外光电检测智能车,舵机的响应速度及其转向传动比将直接影响车模行驶的稳定性,因此必须细心调试,逐一解决。由于舵机从执行转动指令到响应输出需占用一定的时间,因而产生舵机实时控制的滞后。虽然车模在进入弯道时能够检测到黑色路线的偏转方向,但由于舵机的滞后性,使得车模在转弯过程中时常偏离跑道,且速度越快,偏离越远,极大限制车模在连续弯道上行驶的最大时速,使得车模全程赛道速度很难进一步提高。为了减小舵机响应时间,在遵守比赛规则不允许改造舵机结构的前提下,利用杠杆原理,采用加长舵机力臂的方案来弥补这一缺陷,加长舵机力臂示意图如图4所示。

51单片机PID调增量式光电编码器测速.

编码器输出的A向脉冲接到单片机的外部中断INT0,B向脉冲接到I/O端口P1.0。当系统工作时,首先要把INT0设置成下降沿触发,并开相应中断。当有有效脉冲触发中断时,进行中断处理程序,判别B脉冲是高电平还是低电平,若是高电平则编码器正转,加1计数;若是低电平则编码器反转,减1计数。 基于51单片机的直流电机PID闭环调速系统原理详解与程序 (2013-08-04 01:18:15) 转载▼ 标签: 分类:单片机 51单片 机 直流电 机 pid pcf8591 基于51单片机的直流电机PID闭环调速系统 1.电机转速反馈: 原理:利用光电编码器作为转速的反馈元件,设电机转一周光电编码器发送N个PWM波形,利用测周法测量电机转速。 具体实现:将定时器0设置在计数模式,用来统计一定的时间T内接受到的脉冲个数M个,而定时器0置在计时模式,用来计时T时间。则如果T时间接受到M个PWM波形,而电机转一圈发出N个PWM波形,则根据测周法原理,电机的实际的转速为:real_speed=M/(N*T),单位转/秒。若将定时器1置在计数模式,则PWM波形应该由P3^3脚输入。 代码实现:

//定时器0初始化,用来定时10ms void Init_Timer0(void) { TMOD |= 0x01; //使用模式1,16位定时器,且工作在计时模式 TH0=(65536-10000)/256; //定时10ms TL0=(65536-10000)%6; EA=1; //总中断打开 ET0=1; //定时器中断打开 TR0=1; //定时器开关打开 } // 计数器1初始化,用来统计定时器1计时250ms内PWM波形个数 void Init_Timer1(void) { TMOD |= 0x50; //使用计数模式1,16位计数器模式 TH1=0x00; //给定初值,由0往上计数 TL1=0x00; EA=1; //总中断打开 ET1=1; //定时器中断打开 TR1=1; //定时器开关打开 } //定时器0的中断服务子函数,主要完成脉冲个数的读取,实际转速的计算和PID 控制以及控制结 //果输出等工作 void Timer0_isr(void) interrupt 1 { unsigned char count; TH0=(65536-10000)/256; //重新赋值 10ms TL0=(65536-10000)%6;

光栅尺和磁栅尺的区别

光栅尺和磁栅尺的区别 光栅尺--利用光的干涉和衍射原理制作而成的传感器。当两块栅距相同的光栅叠放在一起,同时让线纹构成一微小角度,这时在平行光照射下,与刻线垂直方向上就能看到对称分布的明暗相间的条纹,称为莫尔条纹,因此莫尔条纹是光的衍射和干涉作用的总效果。当光栅移动一个小栅距时,莫尔条纹随之移动一个条纹间距,这样,我们测量莫尔条纹的宽度就比测量光栅线纹宽度容易的多。此外,由于每条莫尔条纹都是由许多光栅线纹的交点组成,当线纹中有一条线纹有误差时(间距不等或倾斜),这条有误差的线纹和另一光栅线纹的交点位置将产生变化。但是,一条莫尔条纹是由许多光栅线纹交点组成,因此,一个线纹交点位置的变化,对于一条莫尔条纹来讲其影响就非常小了,所以莫尔条纹可以起到放大和平均的作用。 磁栅尺--利用磁极的原理制作而成的传感器。基尺是被均匀磁化的钢带。S和N 极均匀间隔排列在钢带上,通过读数头读取S,N极的变化来记数。 光栅尺受温度影响较大,一般使用环境在40摄士度以下。 敞开式磁栅尺容易受磁场影响,封闭式磁栅尺则无此困扰,但成本较高。 光栅尺是利用了光学原理,把尺子上分成一定密度的小段,然后拿读数头来读这些刻度段,据说是受光线的影响比较严重。 而磁尺是将尺上极化成N、S极的小段,拿相应的读数头来读,据说是受磁场影响比较严重。 光栅尺以精度见长,量程在长度0---2米范围性价比有明显优势,应用如金属切削机床、线切割、电火花、测量光学投影仪等等。因光栅尺生产工艺的原因,若测量长度超过5米,生产制造将很困难(两块玻璃尺要45°斜角对接以增加长度,用于玻璃尺镀铬机空间有限),价格会很贵。同等情况下进口光栅对工作环境的要求很高 磁栅尺以耐水耐油污耐粉尘耐震动性见长,长度在2米以上性价比优势愈加明显,并且长度越长优势越明显。磁栅尺的量程可达30米。在大型金属切削机床如大的镗床、铣床,水下测量,木材石材加工机床(工作环境粉尘很重),金属板材压轧设备(大型成套设备)等应用方面有明显优势。 球栅尺和光栅尺比较:光栅尺在3米以下的价格一般是球栅尺价格的50%,3米以上的至8米的光栅同球栅价格基本一样。8米至10米的光栅尺价格要高出球栅尺价格20%,10米至12米的光栅尺价格要高出球栅尺价格50%。从短尺价格比较光栅尺要便宜,但光栅的使用寿命一般是3年,而球栅的使用寿命在10年以上。从长尺比较球栅的优势就更多了。所以总体说安装球栅尺的效益要好于光栅尺。 安装球栅尺的好处:安装球栅尺从真正意义上说,是从被动测量向主动测量转变。由离线测量转向在线测量。大大提高了产品的加工精度和工作效率,实现了二级工可以干八级工的工作。由于球栅尺最长可以做到30米,所以特别适合安装在大型或超大型机床上。如龙门铣床、镗床等。一般机床安装球栅尺后可

编码器位置与速度检测

制作速度检测部件 实验报告 专业:机械设计制造及其自动化 姓名:xxx 学号:xxx 实验时间:2012-2013学年第2学期

制作速度检测部件 一、实验原理: 1.利用外部中断0对信号源在一定时间内产生的脉冲进行计数,并对外部中断0设置为跳变沿中断(IT0=1) 2.利用定时器0进行计时,并在中断程序中读取这段时间内产生的脉冲数,再利用脉冲数与路程之间的对应关系求得编码器的速度。 3. 光电开关的使用,如图: 测速方法: M 法测速 测取c T 时间内旋转编码器输出的脉冲个数1M ,用以计算这段时间内的平均转速,称作M法测速,图12所示。电机的转速为 r/min 601 c ZT M n = , M 法测速的分辨率: c c c ZT ZT M ZT M Q 60 60)1(6011= -+= M 法测速误差率: c T 1 M 图12 M 测速法原理图

% 1001%10060 ) 1(60 60%1111max ?=?-=M ZT M ZT M ZT M c c c δM 法测速适用于高速段, T 法测速 记录编码器两个相邻输出脉冲的间的高频脉冲个数M2,f0为高频脉冲频率,图13所示。 电机转速 r/min ZM f 60ZT 60n 2 t == T 法测速的分辨率: )1(6060)1(602202020-=--=M ZM f ZM f M Z f Q 或Zn f Zn Q -= 02 60 T法测速误差率: % 10011 %10060 60 )1(60%22 020 20max ?-=?-=M ZM f ZM f M Z f δ T 法测速适用于低速段。 M/T 法测速 把M 法和T 法结合起来,既检测TC 时间内旋转编码器输出的脉冲个数M1,又检测同一时间间隔的高频时钟脉冲个数M2,用来计算转速,称作M/T 法测速。采用M/T 法测速时,应保 2 M 2f M T t =图13 T 测速法 c T 1 M 2 M 图14 M/T 法测速原理图

光栅尺的应用与原理

光栅尺的应用与原理 光栅尺的结构是由有刻有窄的等间距的线纹标尺光栅和读数头组成,读数头是由刻有与标尺光栅光刻密度相同好的指示光栅、光学系统和光路原件等组成。标尺光栅与尺度光栅与一定间距平行放置,并且他们的刻度线相互倾斜一定角度@,标尺光栅固定不动,指示光栅沿着垂直线条纹方向运动,光线照在标尺光栅上放射或者投射在指示光栅并发生光的衍射,产生明暗相间的莫尔条纹,光电探测器检测莫尔条纹的宽度变化并将其转换成电信号输出给控制装置。 莫尔条纹的特点: 1.莫尔条纹的移动与光栅栅距之间的移动关系,光栅移动一个条纹,莫尔条纹正好移动一 个条纹。 2.莫尔条纹的放大作用:B=W/(2SIN2/2)=W/2 主要的元件:发光LED, 标尺光栅,指示光栅,光电探测器。 光栅的选用:选用光栅要综合考虑一下几个要素: 1.考虑被测物理量的性质,要根据呗测量的行程和精度要求选择量程和精度,根据被测量 的最大速度确定光栅尺的最大移动速度以及是否需要基准标记和相位开关传感器,要什么形式的光栅。 2.根据控制器可以控制的信号的类型选择光栅输出类型,还要考虑接口的硬件匹配。 3.根据工作条件确定光栅尺应具备在何种环境下工作的能力 4.根据被测的物体考虑安装方案。考虑到空间,方向等问题。 5.设计电缆的长度 6.价格和服务 7.市场的方便,型号的选择。 光栅的主要技术参数: 分辨率:表征的测量精度,有5.0um ,1.0um ,0.5um ,0.1um 输出波形:方波和正弦波两种。 按控制的形式:数字量和模拟量,要与控制器匹配。 测量周期:没测一次所需的时间 测量长度:可以应许的测量范围 测量方式:绝对值和识字增量坐标 使用温度:5----45度 供电电源:一般为+5+5%,电流大小为120mA 最大移动速度:要大于要求值 最小时钟频率:要保证控制器的频率高于要求值。 安装: 把光栅尺贴在平台的固定部分上。安装要用专用工具,保证光栅的安装合付要求(水平度、垂直度)。 读数头要安装在平台的移动部分上。在安装光栅尺时要先安装光栅尺,然后根据光栅尺安装读数头。保证读头与光栅尺的距离2—3mm,

M法与T法在编码器测速方面的区别和频率问题

编码器的测速原理: M/T法大家都比较清楚在闭环伺服系统中,编码器的反馈脉冲个数和系统所走位置的多少成正比,但对于怎样通过编码器所反馈的脉冲个数来求得电机的旋转速度了解的人就不是很多了。 根据脉冲计数来测量转速的方法有以下三种: (1)在规定时间内测量所产生的脉冲个数来获得被测速度,称为M法测速;(2)测量相邻两个脉冲的时间来测量速度,称为T法测速;(3)同时测量检测时间和在此时间内脉冲发生器发出的脉冲个数来测量速度,称为M/T法测速。 以上三中测速方法中,M法适合于测量较高的速度,能获得较高分辨率;T 法适合于测量较低的速度,这时能获得较高的分辨率;而M/T法则无论高速低速都适合测量。 以下只对T法测速进行详细介绍。 T法测速的原理是用一已知频率fc(此频率一般都比较高)的时钟脉冲向一计数器发送脉冲,计数器的起停由码盘反馈的相邻两个脉冲来控制,原理图见图 1。 若计数器读数为m1,则电机每分钟转速为nM=60fc/Pm1(r/min)图1 T法测速原理其中P为码盘一圈发出的脉冲个数即码盘线数,m1为相邻两个脉冲间高频脉冲个数。 测速分辨率: 当对应转速由n1变为n2时则分辨率Q的定义为Q=n2-n1,Q值越小说明测量装置对转速变化越敏感即分辨率越高。 因此可以得到T法测速的分辨率为Q=60fc/Pm1-60fc/P(m1+1)= n2M P/(60fc+ nMP)由上式可见随着转速nM的降低,Q值越小,即T法测速在低速时有较高的分辨率。

MT法测速之定量分析速度测量是工控系统中最基本的需求之一,最常用的是用数字脉冲测量某根轴的转速,再根据机械比、直径换算成线速度。 脉冲测速最典型的方法有测频率(M法)和测周期(T法)。 定性分析: M法是测量单位时间内的脉数换算成频率,因存在测量时间内首尾的半个脉冲问题,可能会有2个脉的误差。 速度较低时,因测量时间内的脉冲数变少,误差所占的比例会变大,所以M法宜测量高速。 如要降低测量的速度下限,可以提高编码器线数或加大测量的单位时间,使用一次采集的脉冲数尽可能多。 T法是测量两个脉冲之间的时间换算成周期,从而得到频率。 因存在半个时间单位的问题,可能会有1个时间单位的误差。 速度较高时,测得的周期较小,误差所占的比例变大,所以T法宜测量低速。 如要增加速度测量的上限,可以减码器的脉冲数,或使用更小更精确的计时单位,使一次测量的时间值尽可能大。 M法、T法各且优劣和适应范围,编码器线数不能无限增加、测量时间也不能太长(得考虑实时性)、计时单位也不能无限小,所以往往候M法、T法都无法胜任全速度范围内的测量。 因此产生了M法、T法结合的M/T测速法: 低速时测周期、高速时测频率。 定量分析: M/T法中的“低速”、“高速”如何确定呢?假定能接受的误差范围为1%、M 法测得脉冲数为f, T法测得时间为t。

基于51单片机的光电编码器测速报告

课程设计报告 课程名称:微机原理课程设计 题目:基于51单片机的光电编码器测速

光电编码器是高精度位置控制系统常用的一种位移检测传感器。在位置控制系统中,由于电机既可能正转,也可能反转,所以要对与其相连的编码器输出的脉冲进行计数,要求相应的计数器既能实现加计数,又能实现减计数,即进行可逆计数。其计数的方法有多种,包括纯粹的软件计数和硬件计数。文中分别对这两种常用的计数方法进行了分析,对其优缺点进行了对比,最后提出了一种新的计数方法,利用80C51单片机内部的计数器实现对光电编码器输出脉冲的加减可逆计数,既节省了硬件资源,又能得到较高的计数频率。本设计就是由单片机STC89C52RC芯片,光电编码器和1602液晶为核心,辅以必要的电路,构成了一个基于51单片机的光电编码器测速器。该系统有两个控制按键,分别用于控制每秒的转速和每分钟的转速,并将速度用1602液晶显示出来。该测速器测速精准,具有实时检测的功能,操作简单。 关键词:光电编码器,51单片机,C语言,1602液晶

一、设计任务与要求 (4) 1.1 设计任务 (4) 1.2 设计要求 (4) 二、方案总体设计 (5) 2.1 方案一 (5) 2.2 方案二 (5) 2.3 系统采用方案 (5) 三、硬件设计 (7) 3.1 单片机最小系统 (7) 3.2 液晶显示模块 (7) 3.3 系统电源 (8) 3.4光电编码器电路 (8) 3.5 整体电路 (9) 四、软件设计 (10) 4.1 keil软件介绍 (10) 4.2 系统程序流程 (10) 五、仿真与实现 (12) 5.1 proteus软件介绍 (12) 5.2 仿真过程 (12) 5.3 实物制作与调试 (13) 5.4 使用说明 (14) 六、总结 (15) 6.1 设计总结 (15) 6.2 经验总结 (15) 七、参考文献 (16)

基于51单片机的光电编码器测速

摘要 光电编码器是高精度位置控制系统常用的一种位移检测传感器。在位置控制系统中,由于电机既可能正转,也可能反转,所以要对与其相连的编码器输出的脉冲进行计数,要求相应的计数器既能实现加计数,又能实现减计数,即进行可逆计数。其计数的方法有多种,包括纯粹的软件计数和硬件计数。文中分别对这两种常用的计数方法进行了分析,对其优缺点进行了对比,最后提出了一种新的计数方法,利用80C51单片机内部的计数器实现对光电编码器输出脉冲的加减可逆计数,既节省了硬件资源,又能得到较高的计数频率。本设计就是由单片机STC89C52RC芯片,光电编码器和1602液晶为核心,辅以必要的电路,构成了一个基于51单片机的光电编码器测速器。该系统有两个控制按键,分别用于控制每秒的转速和每分钟的转速,并将速度用1602液晶显示出来。该测速器测速精准,具有实时检测的功能,操作简单。 关键词:光电编码器,51单片机,C语言,1602液晶

目录 一、设计任务与要求 (3) 1.1 设计任务 (3) 1.2 设计要求 (3) 二、方案总体设计 (4) 2.1 方案一 (4) 2.2 方案二 (4) 2.3 系统采用方案 (4) 三、硬件设计 (6) 3.1 单片机最小系统 (6) 3.2 液晶显示模块 (6) 3.3 系统电源 (7) 3.4光电编码器电路 (7) 3.5 整体电路 (8) 四、软件设计 (9) 4.1 keil软件介绍 (9) 4.2 系统程序流程 (9) 五、仿真与实现 (11) 5.1 proteus软件介绍 (11) 5.2 仿真过程 (11) 5.3 实物制作与调试 (12) 5.4 使用说明 (13) 六、总结 (14) 6.1 设计总结 (14) 6.2 经验总结 (14) 七、参考文献 (15)

海德汉-光栅与编码器介绍

位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。 光栅,现代光栅测量技术 简要介绍: 将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。这些信号的空间位置周期为W。下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。输出方波的光栅尺有A 相、B相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。Z信号可以作为较准信号以消除累积误差。 一、栅式测量系统简述 从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。它们有各自的优势,相互补充,在竞争中都得到了发展。由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。测量长度从1m、3m达到30m和100m。 二、光栅测量技术发展的回顾 计量光栅技术的基础是莫尔条纹(Moire fringes),1874年由英国物理学家 L.Rayleigh首先提出这种图案的工程价值,直到20世纪50年代人们才开始利用光栅的莫

怎样判断测速编码器的好与坏[1]

怎样判断测速编码器的好与坏 最佳答案 1、编码器静止时,可测得A、B相的电压为15V左右或者0V。 轻轻转动编码器时,应能轮流得到以上两种电压。A-、B-相应能得到0V或-15V电压。 2、编码器连续旋转时,输出得到的是电压有效值的平均值,可能只有3~5V左右的稳定电压值。 3、万用表只能做粗略检查,如果测量结果与上述描述相差太大,则可以初步认为编码器已有故障。 4、但是仅仅用万用表,是无法精确检查编码器是否完全正常的。 因为正常时,编码器是输出高频的脉冲信号的,所以建议你最好使用示波器来进行测量。 5、方法是:将编码器的输出A相或者B相信号接到示波器中,然后旋转编码器轴,如果此时在示波器上观察到高频的15V方波脉冲信号,则说明编码器是好的。 其他回答 1、用万用表电压档测试输出是否正常。 编码器为NPN输出时: 测量电源正极和信号输出线, 晶体管置ON时输出电压接近供电电压, 晶体管置OFF时输出电压接近0V。 编码器为PNP输出时: 测量电源负极和信号输出线, 晶体管置ON时输出电压接近供电电压, 晶体管置OFF时输出电压接近0V 2、把编码器拆下来,在不断电的情况下,用手转动编码器,同时观察屏幕显示的数据,看有没有变动,如数据不变动,该编码器就是坏的,如有变动,就证明该编码器是好的。

编码器一般情况下都要带电监测。如果编码器能拆下来最好,上电后用手转动编码器,伺服电机如果能根据编码器数值的变化运动证明是好的,如果上电后用手转动,数值不变化或者变化无规律就是坏的。但谨防出现飞车情况 用示波器测量看输出波形是否正常。 编码器一般情况下都要带电监测。 若安装在电机上,可以驱动器上电,盘车,在驱动器的窗口即可监控是否有速度。 再就是上电,低速转动编码器轴,测量电压。注意集电极开路输出型的,需要在电源正和信号输出之间跨接上拉电阻,否则量不出。 判断编码器的好坏,可以用万用表来判断, 1、由测速编码器为提供随动电机提供速度指令时,出现随动电机速度比其应有速度低的情况时,很可能是编码器问题。 2、由测速编码器提供设备速度信号在屏幕上显示时,显示的速度比实际速度低,很可能是编码器的问题。 3、由测速编码器相位用于工位的检测时,实际的工位与编码器相位有偏差时,可能时编码器故障。 除了编码器受到撞击等意外情况,编码器一般不会出现输出端无信号的情况,出故障也是有信号,但信号不正常。 必须用示波器测量。 1 编一段试验程序,编码器通电,观测结果。 2 通过示波器,直接看波形。此办法非常直观。

光栅尺与磁栅尺的优缺点与特长

介绍一下开环控制系统和闭环控制系统吗?若在机床上用闭环控制系统有哪些优缺点?还有光栅尺磁栅尺的优缺点及特长,通常磁栅尺光栅尺在哪些地方应用? -------------------------- 回复如下:(经整理) 控制系统大致分类:按控制原理的不同,自动控制系统分为开环控制系统和闭环控制系统。 1)开环控制系统 开环控制系统是指被控对象的输出(被控制量)对控制器的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 2)闭环控制系统 闭环控制系统的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈,若极性相同,则称为正反馈。一般闭环控制系统均采用负反馈,又称负反馈控制系统。 3)开环、闭环控制系统的各自特点: 在开环控制系统中,系统输出只受输入的控制,控制精度和抑制干扰的特性都相对比较差。 闭环控制系统是建立在反馈原理基础之上的,利用输出量同期望值的偏差对系统进行控制,可获得比较好的控制性能。通常大多数重要的自动控制系统都采用闭环控制的方式。 闭环控制系统按控制和测量信号的不同,又可分为连续控制系统和离散控制系统。控制信号连续地作用于系统的,称为连续控制系统。控制信号断续地作用于系统的,称为离散控制系统。此外,在工程中,自动控制系统也有按所控制变量的物理属性进行分类,如速度、位置、压力、温度、流量、液位等等。 4)闭环控制系统的应用 自动控制系统已被广泛应用于人类社会的各个领域。在工业方面,对于冶金、化工、机械制造等生产过程中遇到的各种物理量,包括温度、流量、压力、厚度、张力、速度、位置、频率、相位等等。 应用例子有很多,人类使用自动装置的历史可以追溯到古代。中国古代的指南车和铜壶滴漏,古罗马人家庭水管系统的简单水位调节装置都是自动控制系统的萌芽。

基于STC89C52光电码盘测速 C程序

基于STC89C52光电码盘测速C程序#include #include #define uint unsignedint #define uchar unsigned char float f=0; uchar LED0_data,LED1_data,LED2_data,LED3_data; uchari=0; uchar code table[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; void display(); void delay(uint v); voidinit(); /*定时器初始化*/ voidinit() { TMOD=0x51; //T1计数器,T0定时器,方式1 TH0=(65536-10000)/256; TL0=(65536-10000)%256; EA=1; //开总中断 TL1=0; TH1=0; ET0=1; //开定时器0中断 } /*延时子函数*/ void delay(unsigned int c) { unsignedinti,j; for(i=c;i>0;i--) for(j=110;j>0;j--); } /*将十进制数拆成送数码管的显示码*/ voiddectobit(intdec) { LED3_data=dec/1000; dec=dec % 1000; LED2_data=dec/100; dec=dec % 100;

LED1_data=dec/10; dec=dec % 10; LED0_data=dec; } /*显示程序*/ void display() { P0=table[LED3_data]; //个位 P2&=~0x01; delay(10); P2|=0x01; P0=table[LED2_data]; //十位 P2&=~0x02; delay(20); P2|=0x02; P0=table[LED1_data]; P2&=~0x04; delay(20); P2|=0x04; //百位P0=table[LED0_data]; //千位 P2&=~0x08; delay(20); P2|=0x08; } void main(void) { init(); TR0=1; //启动定时器0 TR1=1; while(1) { dectobit(f); display(); } }

光栅、编码器基本知识

光栅、编码器基本知识 位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。 光栅,现代光栅测量技术 简要介绍: 将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。这些信号的空间位置周期为W。下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。输出方波的光栅尺有A相、B 相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。Z信号可以作为较准信号以消除累积误差。 一、栅式测量系统简述 从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。它们有各自的优势,相互补充,在竞争中都得到了发展。由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。测量长度从1m、3m 达到30m和100m。 二、光栅测量技术发展的回顾 计量光栅技术的基础是莫尔条纹(Moire fringes),1874年由英国物理学家L.Rayleigh首先提出这种图案的工程价值,直到20世纪50年代人们才开始利用光栅的莫尔条纹进行精密测量。1950年德国Heidenhain首创DIADUR复制工艺,也就是在玻璃基板上蒸发镀铬的光刻复制工艺,这才能制造高精度、价廉的光栅刻度尺,光栅计量仪器才能为用户所接受,进入商品市场。1953年英国Ferranti公司提出了一个4相信号系统,可以在一个莫尔条纹周期实现4倍频细分,并能鉴别移动方向,这就是4倍频鉴相技术,是光栅测量系统的基础,并一直广泛应用至今。 德国Heidenhain公司1961年开始开发光栅尺和圆栅编码器,并制造出栅距为4μm(250线/mm)的光栅尺和10000线/转的圆光栅测量系统,能实现1微米和1角秒的测量分辨力。1966年制造出了栅距为20μm(50线/mm)的封闭式直线光栅编码器。在80年代又推出AURODUR工艺,是在钢基材料上制作高反射率的金属线纹反射光栅。并在光栅一个参考标

相关文档
最新文档