吗啉

吗啉
吗啉

1、物质的理化常数

2.对环境的影响:

一、健康危害

侵入途径吸入、食入、经皮吸收。

健康危害:吸入本品蒸气或雾强烈刺激呼吸道粘膜,可引起支气管炎、肺炎、肺水肿。高浓度吸入可致死。蒸气、雾或液体对眼有强烈刺激性,严重者可导致失明。皮肤接触可发生灼伤。吞咽本品液体可灼伤消化道,大量吞咽可致死。

二、毒理学资料及环境行为

毒性:属中等毒类。

急性毒性:LD501050mg/kg(大鼠经口);500mg/kg(兔经皮);LC5028480mg/m3,8小时(大鼠吸入);人口服30~60mg/kg,虚弱、恶心、呕吐、流涎、呼吸困难、肌肉瘫痪和窒息,以致死亡。

亚急性和慢性毒性:大鼠吸入6.4g/m3(反复吸入),眼、呼吸道刺激,肺、肝和肾有病变。

危险特性:易燃,遇高热、明火或与氧化剂接触,有引起燃烧爆炸的危险。受热分解放出有毒的氧化氮烟气。

燃烧(分解)产物:一氧化碳、二氧化碳、氧化氮。

3.现场应急监测方法:

4.实验室监测方法:

空气中:样品用硅胶吸附后,用硫酸洗脱,再用气相色谱法测定(NIOSH法)

5.环境标准:

6.应急处理处置方法:

一、泄漏应急处理

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。不要直接接触泄漏物。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。喷雾状水冷却和稀释蒸气、保护现场人员、把泄漏物稀释成不燃物。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。

废弃物处置方法:用控制焚烧法。焚烧炉排气中的氮氧化物通过洗涤器或高温装置除去。

二、防护措施

呼吸系统防护:空气中浓度超标时,应该佩戴自吸引过滤式防毒面具(半面罩)。紧急事态抢救或撤离时,建议佩戴自给式呼吸器。

眼睛防护:呼吸系统防护中已作防护。

身体防护:穿防毒物渗透工作服。

手防护:戴橡胶手套。

其它:工作现场严禁吸烟。工作毕,淋浴更衣。注意个人清洁卫生。

三、急救措施

皮肤接触:脱去被污染的衣着,用大量流动清水冲洗皮肤,至少15分钟。就医。

眼睛接触:提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。

食入:误服者用水漱口,给饮牛奶或蛋清。就医。

灭火方法:灭火剂:抗溶性泡沫、干粉、二氧化碳、砂土。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。

二甘醇与吗啉生产

二甘醇(Diethylene glycol)(Diglycol)又称乙二醇醚或二乙二醇醚,分子结构式 HO-CH2-CH2-O-CH2-CH2-OH,分子量C4H10O3 106.12,其具有无色、无臭、透明、吸湿性的粘稠液体,有着辛辣的甜味,无腐蚀性,低毒。沸点245℃,熔点-6.5℃,凝固点 -10.45℃,闪点123.9,折射率1.4472,相对密度1.1184,粘度0.30泊,易溶于水、醇、丙酮、乙醚、乙二醇等其它极性溶剂,化学性质与乙二醇相似。主要可用作各种用途的溶剂、天然气脱水干燥剂、芳烃分离萃取剂、纺织品润滑剂、软化剂、整理剂,以及硝酸纤维素、树脂、油脂和印刷油墨等溶剂,也用作刹车液、压缩机润滑油中的防冻剂组份,还可用于配制清洗剂,并在油墨等其它日用化学品中作分散性溶剂。 二甘醇分子结构中含有醚键和羟基两种官能团,使它具有独特的物理性能和化学性能。因此,以二甘醇为原料,可制取醚、酸、酯、胺、等多种化工产品,其主要产品有吗啉及其衍生物,1,4一二恶烷(1,4一二氧环已烯),二甘醇单(双)醚,二甘醇酯类(饱和酯和不饱和酯)等,被广泛应用于石油化工、橡胶、塑料、纺织、涂料、粘合剂、制药等行业,用途十分广泛。 二、二甘醇原料来源 二甘醇主要来自于环氧乙烷(EO)水合生产乙二醇(EG)的副产物,在副产物中二乙二醇(二甘醇)含量约占8~9%、三乙二醇(三甘醇)占~1%、其余为更高分子量的聚乙二醇,而副产物生成量随着环氧乙烷和水的配比的变化而变化。近年来,随着国内大型乙二醇生产装置的相继建成投产,目前我国乙二醇生产能力已高达104~105万吨/年,那么二甘醇的产量增长就很快,估计约可达10万吨/年左右。随着即将建成投产的南海石化的32万吨/年乙二醇装置和不久上海石化的38万吨/年乙二醇装置也将建成,届时全国和上海地区的二甘醇产量将会进一步增长。因此,开发二甘醇的下游产品,做好二甘醇的综合利用,是极具有经济价值和市场潜力的项目。 三、二甘醇主要下游产品的应用 以二甘醇与相应的醇或卤代烷为原料,可制得二甘醇单(双)甲醚、二甘醇单(双)丁醚,广泛用作油墨、油漆、树脂、涂料及染料等的溶剂,也用作有机合成的溶剂及汽车燃料的防冻添加剂。 二甘醇与氨反应,可合成吗啉,用于制造橡胶硫化助剂、纺织助剂、医药、农药及其他精细化工品。 二甘醇与甲胺反应可生产N-甲基吗啉,用作聚氨酯塑料发泡剂、有机全盛的溶剂,也作某些合成医药的催化剂。 由二甘醇和脂肪酸可生产脂肪酸二甘醇增塑剂,作为聚氯乙烯增塑剂,具有良好的加工性和耐寒性,可代替DBS、DOS,在与DOP、DBP等复配时,可改善塑料制品的耐用低温性能。该产品工艺成熟,北京燕山前进化工厂和哈尔滨动力化工厂都分别建有C7-9脂肪酸二甘醇酸酯及C5-9脂肪酸二甘醇生产装置。 由二甘醇与苯甲酸为原料可合成二苯甲酸二甘醇酯,可代替DOP、DBP、DOS作PVC树脂的增塑剂,用于PVC制品、PVC人造革、PVC地板的生产。 二甘醇在质子酸或强酸性离子交换树脂催化作用下可合成1,4一二恶烷。该产品为优良的溶剂、反应介质及萃取溶剂,用于医药、农药的提取、石油产品脱蜡以及纺织、涂料、合成树脂等的生产,也用作低毒含氯溶剂1,1,1一三氯乙烷的稳定剂,以及用于代替聚氨酯合成革历来使用的二甲基甲酰胺、四氢呋喃等价格昂贵的溶剂。 此外,以二甘醇和丙烯醇为原料合成的二甘醇双烯丙基碳酸酯可作生产透镜的原料;由二甘醇和甲基丙烯酸合成的二甘醇双甲基丙烯酸酯则广泛用于制造压敏胶粘剂和光固化涂料的

吗啉工艺

吗啉(Morpholine),又名吗啡啉或1,4-氧氮杂环 己烷,分子式C4H9NO,是工业用重要的环胺之一。无色吸水性油状液体,为一种柔和的碱类。吗啉含有仲胺基团,具有仲胺基团的所有典型反应特征。与无机酸反应生成盐,与有机酸反应生成盐或酰胺。可进行烷基化反应,还可以与环氧乙烷、酮反应或进行Willgerodt反应。由于具有氮氧杂环的特点,吗啉在化工生产中占有重要位置,是制造许多精细化工产品的中间,成为当前具有重要商业用途的精细石油化工产品之一。它可以用于制备NOBS (N-氧代二亚乙基-2-本并噻唑次磺酰胺)、OTOS(- 氧代二亚乙基代氨基甲酰基-N-氧代二亚乙基次硫酰胺)等橡胶硫化促进剂和防锈剂,防腐剂、表面活性剂、除垢剂止痛药、局部麻醉剂、水果保鲜剂、纺织印染助剂等,在橡胶、医药、农药、染料、涂料等领域用途广泛。 吗啉的合成路线依据所用原料的不同,可以分为二乙 醇胺脱水法、双氰甲基醚催化加氢法、环氧乙烷催化氨化法、二氯乙醚脱氯氨化环化法、胺脱水环化法、二甘醇催化氨解环化法等。其中二甘醇催化氨解环化法具有原料易得价低,毒性小,产生三废少等优点,很适宜工业化大规模生产。国内各生产厂家基本都使用此法。 国内吗啉生产技术的发展按工艺大致可以分为两个阶段:二乙醇胺强酸脱水法、二甘醇催化氨解环化法

二乙醇胺强酸脱水法生产原理反应化学式如下: (HOCH2CH2)2NH+H2SO4——O(CH2CH2)2NH· H2SO4+NaOH——吗啉 90年代以前国内大部分生产厂家都采用此法,如具 有代表性的沈阳新生和上海长征化工厂,不过目前装置都 已停产。二乙醇胺强酸脱水法生产吗啉存在很多缺陷,主 要为:一是二乙醇胺价格较高;二是产品质量长期上不 去,徘徊在含量95%~97%之间,制约着吗啉产品的广泛 应用;三是由于生产过程中使用强酸、碱介质,导致设备 腐蚀严重,设备维护费用较高;四是环境污染较重。因此 该工艺现已完全被淘汰。 ——二甘醇催化氨解环化法 二甘醇法是近年来新开发的吗啉生产工艺,以二甘醇 和液氨为原料,工艺过程简单,转化率高,二甘醇来源充 足,特别是合成氨厂开发吗啉更具有液氨和氢气优势。根 据反应压力不同,合成工艺主要可分为3种方法:(1)高 压液相法;(2)低压汽液相接触法;(3)低压汽相法。 催化剂研发采用常压法制取吗啉,是国内首创。 虽属同种原理生产吗啉,国内不同的科研院所采取的 工艺也有差别,90年代后工业化放大的生产装置也有几 种,比如中低压汽液相接触法:液相滴流床反应器装置(图1所示),二甘醇加水40%

杂环胺类化合物吗啉110-91-8的合成及下游产品简述

杂环胺类化合物吗啉|110-91-8|的合成及下游产品简述 摘要:吗啉,是含N、O的六元杂环化合物,又名吗啡啉或者1,4-氧氮杂环己烷,是目前使用的杂胺类化合物。其在化工中占据着及其重要的位置。本文介绍合成吗啉的几种工艺,大多数合成工艺都是脱水环化。并且提到了一些下游产品。 关键词:吗啉,110-91-8,吗啉下游产品,合成,杂环胺类化合物 前言 吗啉,是含N、O的六元杂环化合物,又名吗啡啉或者1,4-氧氮杂环己烷,是目前使用的杂胺类化合物。 基于其氮氧杂环的结构,吗啉在化工生产中占据重要位置,是制造许多精细化工产品的中间体,可用于制备NOBS、OTOS等橡胶硫化促进剂和防锈剂、防腐剂、清洁剂、除垢剂、止痛药、局部麻醉剂、水果保鲜剂、纺织印染助剂等,在橡胶、医药、农药、染料、涂料等领域用途广泛。吗啉含有仲胺基团,具有仲胺基团的所有典型反应特征。与无机酸反应生成盐,与有机酸反应生成盐或酰胺。 可进行烷基化反应,还可以与环氧乙烷、酮反应或进行Willgerodt反应。由于吗啉所具有的化学性质,使其成为当前具有重要商业用途的精细石油化工产品之一。另外吗啉还是一种重要的有机溶剂。 吗啉的生产工艺 目前,生产吗啉的主要方法有如下几种: (1)二乙醇胺(DEA)强酸脱水法。 最初发现吗啉时,是二乙醇胺在浓盐酸中加热至150 ℃以上生成的,后来发现用浓硫酸作为脱水剂更有效。该法曾在工业上大规模应用,美国的道化学公司和联合碳化物公司、日本的大阪有机化学公司以及我国的沈阳新生化工厂和上海长江化工厂曾采用此法。其缺点是生产成本高、三废多,因而限制了吗啉的生产。

(2)二甘醇胺(DGA)脱水环化法。 二甘醇胺在Cu、Ni、Cr催化剂、H2及NH3存在下,在150-250℃、6.5-22.5 MPa下,或在含P、Sr和Si、Al组分催化剂及稀释剂存在下,在280-420 ℃及<0.15 MPa条件下反应,可制得高质量分数吗啉。高反应需求温度较高,对设备要求较高。 (3) 二甘醇(DEG)催化氨解环化法。二甘醇在加氢催化剂和H2存在下,在240 ℃和1.7 MPa 压力下可与液氨或氨水作用,同时完成氨解和环化反应得到吗啉产品和重要的副产品二甘醇胺(DGA)。根据操作压力的不同,以二甘醇为原料的合成路线又可分高压液相法、低压汽液相接触法、常压气相法3种。该工艺比较适合工业生产,要较强的适应性。 (4) 二氯乙醚(DCEE)脱氯环化法。在衬镍的反应器中加入二氯乙醚和苯的混合溶液,然后加入无水氨,通入氮气使反应压力增到l0.65 MPa,温度50 ℃,反应24 h。反应完毕后,减压放出未反应的NH3,重新液化,循环使用。将反应物过滤、分馏。分离出未反应的二氯乙醚、苯和吗啉。在280-420 ℃及<0.15 MPa条件下反应,可制得高质量分数吗啉。该法的缺点是产生大量的废水。该反应需要高温加压条件下进行,对设备的要求较高,需要进一步改进。

乙醇胺的生产现状及应用分析

乙醇胺的生产现状及应用分析 1 前言 乙醇胺是一乙醇胺、二乙醇胺及三乙醇胺的总称。它作为环氧乙烷重要的衍生物之一,是氨基醇中最有实用价值的产品,产量占氨基醇总产量的90%~95%。乙醇胺分子中有氮原子与羟基,故兼有胺与醇的化学性质。目前,乙醇胺产品最重要的用途是生产表面活性剂,另外还用于纺织化学品、气体净化剂、水泥促凝剂、石油添加剂、皮革软化剂、润滑油抗腐蚀剂、防积炭添加剂等。 2 乙醇胺的生产工艺 2.1 反应机理 在水作为催化剂的条件下,环氧乙烷与氨反应生成了一乙醇胺、二乙醇胺和三乙醇的混合物。生成的三种乙醇胺的比例由环氧乙烷和氨的比例确定。 2.2 生产工艺流程 整个生产装置可分为以下三个工序: ①原料工序:主要是贮存原料并把符合工艺要求的原料向反应工序输送。在此过程中,液氨被配制成95%~99%的浓氨水,与液态环氧乙烷按比例进入预混合器进行静态混合,然后进入塔式反应器或管式反应器。 ②反应-蒸氨、脱水工序:进入到反应器中的原料在一定的温度下,进行高压液-液均相反应。反应后的混合物经过高压闪蒸,脱去90%以上的氨,残余的氨在一定的温度下于蒸氨塔中蒸净。而从蒸氨塔中出来的混合乙醇胺进入常压脱水塔,脱去物料中的大部分水,残余的水分脱水塔中蒸净。蒸出的水和氨定期返回原料工序。 ③精制工序:本工序采用连续精馏技术,混合乙醇胺从MEA塔中部进料,在高真空条件下,高纯度的MEA 从塔顶蒸出。脱掉MEA的混合液进入DEA、TEA塔,DEA从塔顶精制而出,从侧线和塔低分别得到TEA的系列产品。 3 乙醇胺的生产技术进展 3.1 国外技术发展状况 由于乙醇胺的应用领域非常广泛,因此国外从19世纪早期就对此技术的进行了开发和应用。生产乙醇胺的方法有以下几种:[1] 3.1.1 甲醛氰醇催化加氢法:该法利用甲醛氰醇和氢气在镍催化剂的存在下进行反应,除生成一乙醇胺和二乙醇胺外,还生成氨。 3.1.2 氯乙醇氨解法:该法始于1860年,是最古老的生产方法,法国化学家Wurty把氯乙醇和氨水在封闭管中加热合成了乙醇胺。其缺点是在反应产物中的氯化铵难以分离。 3.1.3 硝基乙醇还原法:该法既可用硝基乙醇在镍催化下还原,也可用电解还原或酸性铁还原。 3.1.4 环氧乙烷氨解法:1897年,Knorr利用环氧乙烷和氨水反应,合成并通过分馏获得了三种乙醇胺。该法反应过程的催化剂是水或醇胺等的羟基,不需特殊的催化剂。 表1 的发展,环氧乙烷合成乙醇胺的技术路线也相应得到了迅速发展,逐步取代了其它的几种工艺。此后,世界范围内大规模的进行乙醇胺的生产,使乙醇胺的生产技术日趋完善和成熟。目前,国外利用环氧乙烷合成乙醇胺技术的专利公司如表1所示。 利用环氧乙烷生产乙醇胺是目前世界上最主要的生产方法。国外SecientificDesign Company.Inc(SD)、Oxriane International、 Union Carbide Company等公司的专利技术都已实现工业应用,其年生产规模都在万

吗啉跟其N-烷基衍生物的合成工艺总结

Hans Journal of Chemical Engineering and Technology 化学工程与技术, 2017, 7(1), 31-37 Published Online January 2017 in Hans. https://www.360docs.net/doc/0c2892582.html,/journal/hjcet https://www.360docs.net/doc/0c2892582.html,/10.12677/hjcet.2017.71005 文章引用: 竺贝贝, 张琪, 施锁连, 叶小明, 钱超, 陈新志. 吗啉及其N -烷基衍生物的合成工艺总结[J]. 化学工程与技 Overview on the Synthesis of Morpholine and Its N -Alkyl Derivatives Beibei Zhu 1*, Qi Zhang 1,2, Suolian Shi 2, Xiaoming Ye 1,2, Chao Qian 1, Xinzhi Chen 1 1 Zhejiang Provincial Key Laboratory of High Efficiency Chemical Engineering Manufacturing Technology, College of Chemical Engineering and Bioengineering, Zhejiang University, Hangzhou Zhejiang 2Sichuan Zhijiang High-Tech Material Co., Ltd., Suining Sichuan Received: Jan. 1st , 2017; accepted: Jan. 19th , 2017; published: Jan. 22nd , 2017 Abstract Morpholine and its N -Alkyl derivatives are a class of important intermediates for many fine chem-icals, which have been widely used in rubber, medicine, pesticide and other fields. This paper summarized several methods to synthetize these compounds according to their structural cha-racteristics: the etherification of C-O-C bond linkage, the amination of C-N-C bond linkage and the N -alkylation of morpholine. The features of each method were analyzed. Finally, the development in the synthesis technology of morpholine and its N -alkyl derivatives was proposed. Keywords Amine, Etherification, Amination, N -Alkylation 吗啉及其N -烷基衍生物的合成 工艺总结 竺贝贝1*,张 琪1,2,施锁连2,叶小明1,2,钱 超1,陈新志1 1 浙江大学化学工程与生物工程学院,浙江省化工高效制造技术重点实验室,浙江 杭州 2 四川之江高新材料股份有限公司,四川 遂宁 收稿日期:2017年1月1日;录用日期:2017年1月19日;发布日期:2017年1月22日 *通讯作者。

相关文档
最新文档