武科大流体力学Friction_Factor_for_Turbulent_Pipe_Flow

武科大流体力学Friction_Factor_for_Turbulent_Pipe_Flow
武科大流体力学Friction_Factor_for_Turbulent_Pipe_Flow

Friction Factor for Turbulent Pipe Flow

By Achanta Ramakrishna Rao1 and Bimlesh Kumar2

Abstract:

Present paper proposes a universal resistance equation relating friction factor (λ), the Reynolds number (R) and roughness height (k) for the entire range of turbulent flow in pipes covering all the three regimes: smooth, transition and rough. Experimental data of Nikuradse and others were used. Such an equation is found to be sufficient to predict the friction factor for all ranges of R (≥4000) and different values of k.Present model is found to be equally valid for both cases of commercially available pipes and Nikuradse experiments on sand roughened pipes.

INTRODUCTION

The head loss (h f) due to friction undergone by a fluid motion in a pipe is usually calculated through the Darcy-Weisbach relation as;

In this Eq. (1) λis the or Darcy friction factor, L is the characteristics length of the pipe, D is the diameter of the pipe, u is the velocity of the flow of liquid and g is the acceleration due to the gravity. The friction factor (λ ) is a measure of the shear stress (or shear force per unit area) that the turbulent flow exerts on the wall of a pipe; it is

1 Associate Professor, Department of Civil Engineering, IISc, Bangalore-560012, India.

2 Research Scholar, Department of Civil Engineering, IISc, Bangalore-560012, India.

customarily expressed in dimensionless form asλ = τ/ρū2, where, τ is the shear stress, ρis the density of the liquid that flows in the pipe and ū the mean velocity of the flow.

For laminar flow (Reynolds number, R≤ 2100), the friction factor is linearly dependent on R, and calculated from the well-known Hagen-Poiseuille equation:

Where, R, the Reynolds number, is defined as ūD/ν. Whereas, in turbulent flow (R≥4000), the friction factor, λdepends upon the Reynolds number (R) and on the relative roughness of the pipe, k/D, where, k is the average roughness height of the pipe. The general behavior of turbulent pipe flow in the presence of surface roughness is well established. When k is very small compared to the pipe diameter D i.e. k/D→0, λdepends only on R. When k/D is of a significant value, at low R, the flow can be considered as in smooth regime (there is no effect of roughness). As R increases, the flow becomes transitionally rough, called as transition regime in which the friction factor rises above the smooth value and is a function of both k and R and as R increases more and more, the flow eventually reaches a fully rough regime in which λ is independent of R.

In a smooth pipe flow, the viscous sub layer completely submerges the effect of k on the flow. In this case, the friction factor λis a function of R and is independent of the effect of k on the flow. Nikuradse (1933) had verified the Prandtl’s mixing length theory and proposed the following universal resistance equation for fully developed turbulent flow in smooth pipe;

In case of rough pipe flow, the viscous sub layer thickness is very small when compared to roughness height and thus the flow is dominated by the roughness of the pipe wall and λis the function only of k/D and is independent of R. The following form of the equation is first derived by Von Karman (Schlichting, 1979) and later supported by Nikuradse’s experiments;

For transition regime in which the friction factor varies with both R and k/D, the equation universally adopted is due to Colebrook and White (1937) proposed the following equation;

Equation (5) covers not only the transition region but also the fully developed smooth and rough pipes. By putting k→ 0, Eq. (5) reduces to Eq. (3) for smooth pipes and as R→∞; Eq. (5) becomes Eq. (4) for rough pipes. Moody (1944) presented a friction diagram for commercial pipe friction factors based on the Colebrook–White equation, which has been extensively used for practical applications. Because of Moody’s work and the demonstrated applicability of Colebrook-White equation over a wide range of Reynolds numbers and relative roughness value k/D, Eq. (5) has become the accepted standard for

calculating the friction factors. It suffers; however, from being an implicit equation in λand thus requires an iterative solution. The U.S. Bureau of Reclamation (1965) reported large amounts of field data on commercial pipes: concrete, continuous-interior, girth-riveted, and full-riveted steel pipes. Due to large variations in the field data, average friction factors were used for simplicity. The researchers of the Bureau of Reclamation (1965) found that some of the field data collected could not be explained by the Colebrook–White equation, since the variation of the data followed the curve of transitional turbulent flow which is omitted in the composition of the Colebrook–White equation. The Bureau of Reclamation report (1965) asserted that the Colebrook–White equation was found inadequate over a wide range of flow conditions. Moreover, several researchers have found that the Colebrook–White equation is inadequate for pipes smaller than 2.5 mm. Wesseling and Homma (1967) suggested using a Blasius-type equation or a power law with minor modifications instead of the Colebrook–White equation. They recommended using larger values of the proportionality factor for smaller-size pipes. Since the mid-1970s, many alternative explicit equations have been developed to avoid the iterative process inherent to the Colebrook- White equation. These equations give a reasonable approximation; however, they tend to be less universally accepted. Von Bernuth and Wilson (1989) conducted laboratory experiments and attempted to find the optimum value of the roughness height of PVC pipes for the Colebrook–White equation and then the value of the friction factor of PVC pipes. Their computation results were, however, quite different from those obtained in the laboratory when using the Colebrook–White equation. Instead they proposed to employ a Blasius-type equation with minor modifications. The friction factor determined from laboratory

data decreases with an increase in the Reynolds number even after a certain critical value, whereas the friction factor of the Colebrook–White equation tends to be constant with an increase in the Reynolds number. Zagarola (1996) has indicated that the Prandtl’s law of flow in smooth pipes was not accurate for high Reynolds numbers and the Colebrook-White correlation (which was based on the Prandtl’s law of flow) is not accurate at high Reynolds numbers.

Motivation has thus existed for attempting to develop a universal resistance equation covering the entire ranges of turbulent flows, i.e., smooth to rough turbulent flows, which can be applicable to all the ranges of R and for all values of k/D.

PROPOSED MODEL

The established laws of velocity distribution for turbulent flows are given by,

For smooth pipes and (6)

Where ‘A’, ‘a’ and ‘b’ are constants, u is the velocity at a distance y measured from the pipe wall, u* is the friction velocity, k is the roughness height and n is the kinematic viscosity of the fluid.

As seen from the Eqs. 6 and 7, the characteristic length l for non-dimensionalising the depth y is ν/u* for smooth turbulent flows and k for rough turbulent flows. So it is proposed that l is actually a linear combination of both (ν/u* and k) with a correction

factor, covering the all ranges i.e., smooth, transition and rough regimes of turbulent flows. Thus

Where, R * is the friction Reynolds number and defined equal to ku */ν. At R*→0, pipe is said to be in smooth condition and for rough pipe R*→∞.

For large values of ν/u * the term a ν/u * dominates making the second term bk

negligible in comparison with it. So also for small values of ν/u *, the second term becomes important allowing the neglect of the first term.

Thus the velocity laws covering all the regions can be summarized as,

Now, if a condition that )R (*φ=1 for both when R*→0 and ∞ is imposed, Eq. 9

reduces to Eqs. 6 and 7 respectively.

From the relation λ = 8(u */ū) 2, Eq. 9 can be converted into the equation for the friction factor covering the whole ranges of turbulent flows.

Thus the resistance equation for pipes covering the smooth, transition and rough regimes can be expressed as,

By analyzing Nikuradse’s data on pressure drop measurements in sand roughened pipes, the following values of a = 0.444 and b= 0.135 has been found and Φ(R*) is given by,

The validity of the expression for B* along withφ(R*) is shown in Figure 1 by using the Nikuradse’s experimental data.

Figure 1: Validation of the proposed model

The friction diagram based on Nikuradse’s experimental data on the sand roughened pipe is shown in Figure 2.

Figure 2: Friction factor diagram

The resistance equation, as given by Eq. 10 satisfactorily fits the entire data of Nikuradse on sand roughened pipes for varying relative roughness heights. In addition to Nikuradse’s experimental data, resistance equation is also plotted for the most recent experimental pipe friction data on smooth pipes (McKeon et al, 2004). Thus a universal resistance equation is developed in the form of Eq. (10).

REVIEW OF EQUATIONS ON FRICTION FACTOR

During the past years since Moody’s chart, the most promising equations on friction factor have appeared as follows:

1.Wood (1966): It is valid for R > 10000 and 10-5 < ε/D< 0.04.

c

λ(13) a?

R

b

=

+

Where a = 0.53(k/D) +0.094 (k/D) 0.225, b = 88(k/D) 0.44 and C =1.62(k/D) 0.134.

2.Swamee and Jain (1976): They proposed the equation covering the range of R

from 5000 to 107 and the values of k/D between 0.00004 and 0.05 as:

(14)

3.Churchill (1977): The author claimed that his equation holds for all R and k/D and

has the following form:

Where A = [-2log(((k/D)/3.7)+(7/R)0.9)]16 and B = (37530/R)16.

4.Chen (1979): He also proposed equation for friction factor covering all the ranges

of R and k/D.

5.Round (1980): He proposed the equation in the following form:

6.Barr (1981): He proposed the equation as:

7.Zigrang and Sylvester (1982): They proposed the following equation:

8.Haaland (1983): He proposed a variation in the effect of the relative roughness by

the following expression:

9.Manadilli (1997): He proposed the following expressions valid for R ranging from

5235 to 108 and for any value of k/D.

10.Romeo et al. (2002): They proposed the equation as:

Where, A

DISCUSSIONS

The correlations/friction factor relations shown in the literature have been developed by applying the successive substitution method to the Colebrook-White formula. More accuracy can be achieved by using a large number of internal substitutions to the Colebrook-White formula, thus a new explicit formula for calculating the friction factor. As discussed, Colebrook-White formula deviates from Nikuradse experimental results in transition range, because of their difference in roughness factor. Colebrook –White formula is for irregular surface roughness in pipes resulting from the manufacturing process.

Present model is equally valid for commercial pipes and sand roughened pipes. By making correction factor φ(R*) =1, comparison are made for prediction of λ over a wide range of k/D by Eq. (10) and Colebrook-white formula. As shown in Figure 3, present model predicts approximately the same λ as predicted by Colebrook-white

formula. Figure 4 gives the percentage error in prediction of the friction factor by the present model. As shown, the error ranges from -0.12292 to 0.04884%, making the present model acceptable for commercial pipes.

Figure 3 Prediction for commercial pipe

(PM –present model, CW-Colebrook-White formula)

Figure 4 Percentage of error in the estimation of λ with Colebrook-White formula

APPLICATION OF THE PROPOSED MODEL

Estimation of head losses due to friction in pipes is an important task in optimization studies and hydraulic analysis of pipelines and water distribution systems. It is vital in new pipeline design to have a good estimate of flow capacity as the larger part of the economics will be dependent on this. In most cases, hydraulic engineers use the Hazen-Williams formula (V=0.849 C R h0.63 S0.54, where, C is the Hazen-Williams constant, R h is the hydraulic radius of the pipe and S is the slope) to characterize the roughness of the pipe’s inner surface. However, being empirical, the Hazen-Williams equation is not dimensionally homogeneous and its ranges of applicability is limited (Liou, 1998).

By making use of Eq. (1), Eq. (5) and Hazen-Williams formula, C can be interpreted as C = 14.07 λ-0.54 R0.06 (k/D)0.01k-0.01ν0.08, is implying that C is a function of R, k/D, k, and kinematic viscosity, ν. C is also found to be dependent on pipe diameter (Liou, 1998).

Figure 4 Variations in C

IS-SP35:1987 (Handbook on water supply and Drainage with Special Emphasis on Plumbing) gives the values of Hazen-Williams constant ‘C’ in some ranges for different types of pipe materials, i.e., for cast iron new pipe, the recommended value of C is 130 and for design purpose, it is 130. As shown in Figure 4, assuming C as constant is hazardous. As discussed, proposed model predicts reasonably well in the entire turbulent ranges of pipe flow and equally valid in case of commercial pipes as well as sand roughened pipes, this can be used as an alternative of Hazen-Williams formula in designing the pipeline.

CONCLUSION

Based on the Nikuradse’s experimental data, an improved version of equation on friction factor covering the whole turbulent flow range flow has been presented.

Reference:

1.Barr, D.I.H., “Solutions of the Colebrook-White functions for resistance to

uniform turbulent flows.”, Proc. Inst. Civil. Engrs. Part 2. 71,1981.

2.Chen, N.H., “An Explicit Equation for Friction factor in Pipe”, Ind. Eng. Chem.

Fundam., Vol. 18, No. 3, 296-297, 1979.

3.Churchill, S.W., “Friction factor equations spans all fluid-flow ranges.”, Chem.

Eng., 91,1977.

4.Colebrook, C.F. and White, C.M., “Experiments with Fluid friction roughened

pipes.”,Proc. R.Soc.(A), 161,1937.

5.Haaland, S.E., “Simple and Explicit formulas for friction factor in turbulent pipe

flow.”, Trans. ASME, JFE, 105, 1983.

6.Liou, C.P., “Limiations and proper use of the Hazen-Williams equations.”, J.

Hydr., Eng., 124(9), 951-954, 1998.

7.Manadilli, G., “Replace implicit equations with sigmoidal functions.”,

Chem.Eng. Journal, 104(8), 1997.

8.McKeon, B.J., Swanson, C.J., Zagarola, M.V., Donnelly, R.J. and Smits, A.J.,

“Friction factors for smooth pipe flow.”, J.Fluid Mechanics, Vol.541, 41-44, 2004.

9.Moody, L.F., “Friction factors for pipe flows.”, Trans. ASME, 66,641,1944.

10.Nikuradse, J. “Stroemungsgesetze in rauhen Rohren.” Ver. Dtsch. Ing. Forsch.,

361, 1933.

11.Romeo, E., Royo, C., and Monzon, A., ‘‘Improved explicit equations for

estimation of the friction factor in rough and smooth pipes.’’ Chem. Eng. J., 86, 369–374, 2002.

12.Round, G.F., “An explicit approximation for the friction factor-Reynolds number

relation for rough and smooth pipes.”, Can. J. Chem. Eng., 58,122-123,1980.

13.Schlichting, H., “Boundary-Layer Theory” ,McGraw–Hill, New York, 1979..

14.Swamee, P.K. and Jain, A.K., “Explicit equation for pipe flow problems.”, J.

Hydr. Div., ASCE, 102(5), 657-664, 1976.

15.U.S. Bureau of Reclamation., “Friction factors for large conduit flowing full.”

Engineering Monograph, No. 7, U.S. Dept. of Interior, Washington, D.C, 1965.

16.Von Bernuth, R. D., and Wilson, T., “Friction factors for small diameter plastic

pipes.” J. Hydraul. Eng., 115(2), 183–192, 1989.

17.Wesseling, J., and Homma, F., “Hydraulic resistance of drain pipes.” Neth. J.

Agric. Sci., 15, 183–197, 1967.

18.Wood, D.J., “An Explicit friction factor relationship.”, Civil Eng., 60-61,1966.

19.Zagarola, M. V., ‘‘Mean-flow Scaling of Turbulent Pipe Flow,’’ Ph.D.thesis,

Princeton University, USA, 1996.

20.Zigrang, D.J. and Sylvester, N.D., “Explicit approximations to the Colebrook’s

friction factor.”, AICHE J. 28, 3, 514, 1982.

NOTATION

C = Hazen-Williams Constant;

D = Pipe diameter;

f = Friction factor;

g = Acceleration due to gravity;

h f= Head loss;

k = Roughness height;

L = Characteristics length of the pipe;

u = Velocity of the flow;

ū = Mean velocity of the flow;

u* = Shear velocity;

r = Pipe radius;

R = Reynolds number;

R h = Hydraulic radius of the pipe;

ν = Kinematic viscosity;

τ = Shear stress;

B* = Function of R*;

R*= Particle Reynolds number.

流体力学课后习题解答自己整理孔珑4版

《工程流体力学》课后习题答案 孔珑第四版

第2章流体及其物理性质 (4) 2-1 (4) 2-3 (4) 2-4 (6) 2-5 (6) 2-6 (6) 2-7 (7) 2-8 (7) 2-9 (8) 2-11 (8) 2-12 (9) 2-13 (9) 2-14 (10) 2-15 (10) 2-16 (11) 第3章流体静力学 (12) 3-1 (12) 3-2 (12) 3-3 (13) 3-5 (13) 3-6 (14) 3-9 (14) 3-10 (15) 3-21 (18) 3-22 (19) 3-23 (20) 3-25 (20) 3-27 (20) 第4章流体运动学及动力学基础 (22) 4-2 (22) 4-5 (22) 4-6 (23) 4-8 (23) 4-11 (24) 4-12 (24) 4-14 (25) 4-22 (25) 4-24 (26) 4-26 (27) 第6章作业 (28) 6-1 (28) 6-3 (28) 6-7 (29)

6-10 (29) 6-11 (29) 6-12 (30) 6-17 (31)

第2章流体及其物理性质 2-1 已知某种物质的密度ρ=2.94g/cm3,试求它的相对密度d。【2.94】解:ρ=2.94g/cm3=2940kg/m3,相对密度d=2940/1000=2.94 2-2已知某厂1号炉水平烟道中烟气组分的百分数为,α(CO2)=13.5%α(SO2)=0.3%,α(O2)=5.2%,α(N2)=76%,α(H2O)=5%。试求烟气的密度。 解:查课表7页表2-1,可知ρ(CO2)=1.976kg/m3,ρ(SO2)=2.927kg/m3,ρ(O2)=1.429kg/m3,ρ(N2)=1.251kg/m3,ρ(H2O)=1.976kg/m3,ρ(CO2)=1.976kg/m3, 3 ρ =∑i iαρ = 341 .1 kg/m 2-3 上题中烟气的实测温度t=170℃,实测静计示压强Pe=1432Pa,当地大气压Pa=100858Pa。试求工作状态下烟气的密度和运动粘度。【0.8109kg/m3,2.869×10-5㎡∕s】 解: 1)设标准状态下为1状态,则p1=101325pa,T1=273K,ρ1=1.341kg/m3工作状态下为2状态,则p2=p a-p e=100858-1432=99416pa,T2=273+170=443K,

流体力学的发展现状

流体力学的发展和现状 作为物理的一部分,流体力学在很早以前就得到发展。在19世纪,流体力学沿着两个方面发展,一方面,将流体视为无粘性的,有一大批有名的力学数学家从事理论研究,对数学物理方法和复变函数的发展,起了相当重要的作用; 另一方面,由于灌溉、给排水、造船,及各种工业中管道流体输运的需要,使得工程流体力学,特别是水力学得到高度发展。将二者统一起来的关键是本世纪初边界层理论的提出,其中心思想是在大部分区域,因流体粘性起的作用很小,流体确实可以看成是无粘的。这样,很多理想流体力学理论就有了应用的地方。但在邻近物体表面附近的一薄层中,粘性起着重要的作用而不能忽略。边界层理论则提供了一个将这两个区域结合起来的理论框架。边界层这样一个现在看来是显而易见的现象,是德国的普朗特在水槽中直接观察到的。这虽也是很多人可以观察到的,却未引起重视,普朗特的重大贡献就在于他提出了处理这种把两个物理机制不同的区域结合起来的理论方法。这一理论提出后,在经过约10年的时间,奠定了近代流体力学的基础。 流体力学又是很多工业的基础。最突出的例子是航空航天工业。可以毫不夸大地说,没有流体力学的发展,就没有今天的航空航天技术。当然,航空航天工业的需要,也是流体力学,特别是空气动力学发展的最重要的推动力。就以亚音速的民航机为例,如果坐在一架波音747飞机上,想一下这种有400多人坐在其中,总重量超过300吨,总的长宽有大半个足球场大的飞机,竟是由比鸿毛还轻的空气支托着,这是任何人都不能不惊叹流体力学的成就。更不用说今后会将出现更大、飞行速度更快的飞机。 同样,也不可能想象,没有流体力学的发展,能设计制造排水量超过50万吨的船舶,能建造长江三峡水利工程这种超大规模工程,能设计90万kW汽轮机组,能建造每台价值超过10亿美元的海上采油平台,能进行气候的中长期预报,等等。甚至天文上观测到的一些宇宙现象,如星系螺旋结构形成的机理,也通过流体力学中形成的理论得到了解释。近年来从流体力学的角度对鱼类游动原理的研究,发现了采用只是摆动尾部(指身体大部不动)来产生推进力的鱼类,最好的尾型应该是细长的月牙型。这正是经过几亿年进化而形成的鲨鱼和鲸鱼的尾型,而这些鱼类的游动能力在鱼类中是最好的。这就为生物学进化方面提供了说明,引起了生物学家的很大兴趣。 所以很明显,流体力学研究,既对整个科学的发展起了重要的作用,又对很多与国计民生有关的工业和工程,起着不可缺少的作用。它既有基础学科的性质,又有很强的应用性,是工程科学或技术科学的重要组成部分。今后流体力学的发展仍应二者并重。 本世纪的流体力学取得多方面的重大进展,特别是在本世纪下半叶,由于实验测试技术、数值计算手段和分析方法上的进步,在多种非线性流动以及力学和其他物理、化学效应相耦合的流动等方面呈现了丰富多采的发展态势。 在实验方面,已经建立了适合于研究不同马赫数、雷诺数范围典型流动的风洞、激波管、弹道靶以及水槽、水洞、转盘等实验设备,发展了热线技术、激光技术、超声技术和速度、温度、浓度及涡度的测量技术,流动显示和数字化技术的迅猛发展使得大量数据采集、处理和分析成为可能,为提供新现象和验证新理论创造了条件。 流体力学是在人类同自然界作斗争,在长期的生产实践中,逐步发展起来的。早在几千年前,劳动人民为了生存,修水利,除水害,在治河防洪,农田灌溉,河道航运,水能利用等方面总结了丰富的经验。我国秦代李冰父子根据“深淘滩,低作堰”的工程经验,修建设计的四川都江堰工程具有相当高的科学水平,反映出当时人们对明渠流和堰流的认识已经达

吉林大学本科“十二五”规划教材修订教材选题立项名单.doc

吉林大学本科“十二五”规划教材修订教材选题立项名单 序号教材名称版次主编主编单位方式出版单位 1 田野考古学一版冯恩学文学院考古系修订吉林大学出版社 2 藏品管理学二版吕军文学院博物馆系修订高等教育出版社 3 语言国情学一版刘佐艳外国语学院修订吉林大学出版社 4 新世纪实用英语写作三版王青华公共外语教育学院修订外语教研出版社 5 国际贸易一版李俊江经济学院修订高等教育出版社 6 发展经济学三版马春文经济学院修订高等教育出版社 7 保险学教程一版池晶经济学院修订科学出版社 8 刑法学(上、下册)一版李洁法学院修订中人大出版社 9 地缘政治学一版刘雪莲行政学院修订高等教育出版社 10 当代国际关系一版黄凤志行政学院修订吉林大学出版社 11 会计信息系统原理与实验教程二版李清商学院修订清华大学出版社 12 电子档案管理基础一版王萍管理学院修订清华大学出版社 13 大学数学系列教材三版李辉来数学中心: 修订高等教育出版社 14 经济数学基础系列教材二版孙毅数学中心: 修订清华大学出版社 15 工程数学系列教材二版袁洪军数学中心: 修订高等教育出版社 16 常微分方程一版伍卓群、李勇、 史少云 数学学院修订高等教育出版社 17 高等代数一版杜现昆、原永久、 牛凤文 数学学院修订高等教育出版社 18 近代物理实验(一)二版韩炜物理学院修订科学出版社 19 热力学与统计物理学一版崔海宁物理学院修订吉大出版社 谢谢你的阅读

20 医用物理学二版梁路光物理教学中心修订高教出版社 21 大学物理学(上下)一版张铁强物理教学中心修订高教出版社 22 医用物理实验一版付研物理教学中心修订高教出版社 23 无机化学(下)二版宋天佑化学学院修订高等教育出版社 24 有机化学实验二版丁长江化学学院修订科学出版社 25 精细化工概要一版高大维、张玉敏化学学院修订吉林大学出版社 26 综合和设计化学一版张寒琦化学学院修订高等教育出版社 27 生命科学仪器使用技术教程一版滕利荣生命科学学院修订科学出版社 28 电视原理一版李秀英电子科学与工程学院修订西安电子科技大学出版社 29 计算机操作系统教程三版左万历计算机科学与技术学院修订高等教育出版社 30 大学计算机程序设计基础一版陈娟计算机科学与技术学院修订清华大学出版社 31 数字电子技术二版杨永健软件学院修订人民邮电出版社 32 计算机网络三版刘衍珩软件学院修订科学出版社 33 机械制造技术基础二版邹青机械科学与工程学院修订机械工业出版社 34 机械设计二版谭庆昌机械科学与工程学院修订高等教育出版社 35 工程设计制图一版潘淑璋机械科学与工程学院修订科学出版社 36 工程流体力学一版于萍机械科学与工程学院修订科学出版社 37 工程机械设计一版秦四成机械科学与工程学院修订科学出版社 38 CATIA V5R21实用基础教程一版潘志刚机械科学与工程学院修订科学出版社 39 AutoCAD2013实用教程一版张云辉机械科学与工程学院修订科学出版社 40 现代工程制图一版张秀芝机械科学与工程学院修订科学出版社 41 机械设计课程设计一版寇尊权机械科学与工程学院修订机械工业出版社 42 机械设计基础一版贾艳辉机械科学与工程学院修订高等教育出版社 43 机械精度设计与检测二版陈晓华、侯磊机械科学与工程学院修订中国质检出版社 44 汽车设计四版宋传学汽车工程学院修订机械工业出版社 谢谢你的阅读

工程流体力学简答

工程流体力学简答 1.流体的粘性 ①什么是粘性? 当流体在外力作用下,流体微元间出现相对运动时,随之产生阻碍流体层相对运动的内摩擦力,流体产生内摩擦力的这种性质称为粘性。 ②粘性力(粘性内摩擦力)产生的原因? 这种阻力是由分子间的相互吸引力和分子不规则运动的动量交换产生的阻力组合而成。 (a)分子间吸引力产生的阻力:当相邻两液体层有相对运动时,会引起相邻分子间距的加大。这种间距的加大会使分子间吸引力明显表现出来,即快速运动的分子层拖动慢速的分子层使其加快运动,而慢速运动的分子层反过来阻滞快速层的运动,这种相互作用的宏观表现为粘性力。 (b)分子不规则运动的动量交换产生的阻力:当流体定向或不定向流动时,由于分子的不规则运动,分子在层与层间有跳跃迁移,这种跳跃迁移将导致动量交换。快速层与慢速层的分子相互跃迁进行动量交换,而动量交换的结果将使彼此相互牵制,宏观表现就是粘性力。 ③液体与气体粘性力产生的主要因素? 液体:低速流动时,不规则运动弱,主要取决于分子间的吸引力; 高速流动时,不规则运动增强,变为不规则运动的动量交换引起。 气体:主要取决于分子不规则运动的动量交换。 ④压强和温度对流体粘性的影响? 压强:由于压强变化对分子动量交换影响小,所以气体的粘度随压强变化很小。而压强加大 使分子间距减小,故压强对液体粘性的影响较大。但低压下压强对液体粘度影响很小。 温度:对于液体,温度升高,分子间距增大,粘度将显著减小; 对于气体,温度升高,分子不规则运动加剧,粘度增大。 2.流体静压强的两个重要特征? (1)流体静压强的方向沿作用面的内法线方向。 (2)流体静压强的数值与作用面在空间的方位无关,即在任一点的压强不论来自何方均相等。 3.等压面的三个特性 一.等压面就是等势面。

流体力学试题及答案2

考试试卷(A B 卷) 学年第 二 学期 课程名称:流体力学 一、判断题(20分) 1. 从微观的角度来看,流体的物理量在时间上的分布是不连续的。 (T ) 2. 大气层中的压强与密度、温度的变化有关而且受季节、气候等因素的影 响。(T ) 3. 压力体的体积表示一个数学积分,与压力体内是否有气体无关。(T ) 4. 流体静止时,切应力为零。 (T ) 5. 温度升高液体的表面张力系数增大。 (F ) 6. 液滴内的压强比大气压小。 (F ) 7. 声音传播过程是一个等熵过程。 (T ) 8. 气体的粘性随温度的升高而增大。 (T ) 9. 应用总流伯努利方程解题时,两个断面间一定是缓变流,方程才成立。(F ) 10. 雷诺数是表征重力与惯性力的比值。 (F ) 11. 不可压缩流体只有在有势力的作用下才能保持平衡。(T ) 12. 对流程是指海拔11km 以上的高空。 (F ) 13. 静止的流体中任意一点的各个方向上的压强值均相等。(T ) 14. 在拉格朗日法中,流体质点轨迹给定,因此加速度很容易求得。(T ) 15. 对于定常流动的总流,任意两个截面上的流量都是相等的。(T ) 16. 紊流水力粗糙管的沿程水头损失系数与雷诺数无关。(T ) 17. 在研究水击现象时,一定要考虑流体的压缩性。(T ) 18. 雷诺数是一个无量纲数,它反映流动的粘性力与重力的关系。 (F ) 19. 当马赫数小于一时,在收缩截面管道中作加速流动。 (T ) 20. 对于冷却流动dq 小于0,亚音速流作减速运动,超音速流作加速运动。(T ) 二、填空题(10分) 1. 管道截面的变化、 剪切应力 及壁面的热交换,都会对一元可压缩流动产生影响。 2. 自由面上的压强的任何变化,都会 等值 地传递到液体中的任何一点,这就是由斯卡定律。 3. 液体在相对静止时,液体在重力、 惯性力 、和压力的联合作用下保持平衡。 4. 从海平面到11km 处是 对流层 ,该层内温度随高度线性地 降低 。 5. 平面壁所受到的液体的总压力的大小等于 形心处 的表压强与面积的乘积。 6. 水头损失可分为两种类型: 沿层损失 和 局部损失 。 7. 在工程实践中,通常认为,当管流的雷诺数超过 2320 ,流态属于紊流。 8. 在工程实际中,如果管道比较长,沿程损失远大于局部损失,局部损失可以忽略,这种管在水 力学中称为 长管 。 9. 紊流区的时均速度分布具有对数函数的形式,比旋转抛物面要均匀得多,这主要是因为脉动速 度使流体质点之间发生强烈的 动量交换 ,使速度分布趋于均匀。 10. 流体在运动中如果遇到因边界发生急剧变化的局部障碍(如阀门,截面积突变),流线会发生变 形,并出现许多大小小的 旋涡 ,耗散一部分 机械能,这种在局部区域被耗散掉的机械能称为局部水头损失。 三、选择题(单选题,请正确的答案前字母下打“∨”) 1. 流体的粘性与流体的__ __无关。 (A) 分子内聚力 (B) 分子动量交换 (C) 温度 (D) ∨ 速度梯度 2. 表面张力系数 的量纲是____ 。 (A) ∨ (B) (C) (D) 3. 下列四种液体中,接触角 的液体不润湿固体。 (A) ∨120o (B) 20o (C) 10o (D) 0o 4. 毛细液柱高度h 与____成反比。 (A) 表面张力系数 (B) 接触角 (C) ∨ 管径 (D) 粘性系数 5. 用一块平板挡水,平板形心的淹深为 ,压力中心的淹深为 ,当 增大时, 。 (A)增大 (B)不变 (C) ∨减小

流体力学发展简史.

流体力学发展简史 流体力学作为经典力学的一个重要分支,其发展与数学、力学的发展密不可分。它同样是人类在长期与自然灾害作斗争的过程中逐步认识和掌握自然规律,逐渐发展形成的,是人类集体智慧的结晶。 人类最早对流体力学的认识是从治水、灌溉、航行等方面开始的。在我国水力事业的历史十分悠久。 4000多年前的大禹治水,说明我国古代已有大规模的治河工程。 秦代,在公元前256-前210年间便修建了都江堰、郑国渠、灵渠三大水利工程,特别是李冰父子领导修建的都江堰,既有利于岷江洪水的疏排,又能常年用于灌溉农田,并总结出“深淘滩,低作堰”、"遇弯截角,逢正抽心"的治水原则。说明当时对明槽水流和堰流流动规律的认识已经达到相当水平。 西汉武帝(公元前156-前87)时期,为引洛水灌溉农田,在黄土高原上修建了龙首渠,创造性地采用了井渠法,即用竖井沟通长十余里的穿山隧洞,有效地防止了黄土的塌方。 在古代,以水为动力的简单机械也有了长足的发展,例如用水轮提水,或通过简单的机械传动去碾米、磨面等。东汉杜诗任南阳太守时(公元37年)曾创造水排(水力鼓风机),利用水力,通过传动机械,使皮制鼓风囊连续开合,将空气送入冶金炉,较西欧约早了一千一百年。 古代的铜壶滴漏(铜壶刻漏)--计时工具,就是利用孔口出流

使铜壶的水位变化来计算时间的。说明当时对孔口出流已有相当的认识。 北宋(960-1126)时期,在运河上修建的真州船闸与十四世纪末荷兰的同类船闸相比,约早三百多年。 明朝的水利家潘季顺(1521-1595)提出了"筑堤防溢,建坝减水,以堤束水,以水攻沙"和"借清刷黄"的治黄原则,并著有《两河管见》、《两河经略》和《河防一揽》。 清朝雍正年间,何梦瑶在《算迪》一书中提出流量等于过水断面面积乘以断面平均流速的计算方法。 欧美诸国历史上有记载的最早从事流体力学现象研究的是古希腊学者 阿基米德(Archimedes,公元前287-212),在公元前250年发表学术论文《论浮体》,第一个阐明了相对密度的概念,发现了物体在流体中所受浮力的基本原理──阿基米德原理。 著名物理学家和艺术家列奥纳德达芬奇(Leonardo.da.Vinci,1452-1519)设计建造了一小型水渠,系统地研究了物体的沉浮、孔口出流、物体的运动阻力以及管道、明渠中水流等问题。 斯蒂文(S.Stevin,1548-1620)将用于研究固体平衡的凝结原理转用到流体上。 伽利略(Galileo,1564-1642)在流体静力学中应用了虚位移原理,并首先提出,运动物体的阻力随着流体介质密度的增大和速度

流体力学简答题

流体力学 1流体的粘滞性 (1)流体粘性概念的表述 ①运动流体具有抵抗剪切变形的能力,就是粘滞性,这种抵抗体现在剪切变形的快慢(速率)上。 ②发生相对运动的流体质点(或流层)之间所呈现的内摩擦力以抵抗剪切变形(发生相对运动)的物理特 性称为流体的黏性或黏滞性。 ③黏性是指发生相对运动时流体内部呈现的内摩擦力特性。在剪切变形中,流体内部出现成对的切应力 , 称为内摩擦应力,来抵抗相邻两层流体之间的相对运动。 ④粘性是流体的固有属性。但理想流体分子间无引力,故没有黏性;静止的流体因为没有相对运动而不表 现出黏性。 2毛细管现象 ①将直径很小两端开口的细管竖直插入液体中,由于表面张力的作用,管中的液面会发生上升或下降的现 象,称为毛细管现象。 ②毛细管现象中液面究竟上升还是下降,取决于液体与管壁分子间的吸引力(附着力)与液体分子间的吸 引力(内聚力)之间大小的比较:附着力>内聚力,液面上升;附着力<内聚力,液面下降。 ③由液体重量与表面张力的铅垂分量相平衡,确定毛细管中液面升降高度h, ④为减小毛细管现象引起误差,测压用的玻璃管内径应不小于10mm。 3流体静压强的两个基本特性 ①静压强作用的垂向性:静止流体的应力只有内法向分量—静压强(静止流体内的压应力)。 ②静压强的各向等值性:静压强的大小与作用面的方位无关—静压强是标量函数。 4平衡微分方程的物理意义 (1)静压强场的梯度 p 的三个分量是压强在三个坐标轴方向的方向导数,它反映了标量场p在空间上的不均匀性(inhomogeneity)。 (2)流体的平衡微分方程实质上反映了静止(平衡)流体中质量力和压差力之间的平衡。 (3)静压强对流体受力的影响是通过压差来体现的 5测压原理 (1)用测压管测量 测压管的一端接大气,可得到测压管水头,再利用液体的平衡规律,可知连通的静止液体区域中任何一点 的压强,包括测点处的压强。如果连通的静止液体区域包括多种液体,则须在它们的分界面处作过渡 6拉格朗日法:着眼于流体质点,跟踪质点描述其运动历程。 ①以研究单个流体质点运动过程作为基础,综合所有质点的运动,构成整个流体的运动。

流体力学习题及答案-第二章

第二章 流体静力学 2-1如果地面上空气压力为0.101325MPa ,求距地面100m 和1000m 高空处的压力。 答:取空气密度为( )3 /226.1m kg =ρ,并注意到()()Pa a 6 10MP 1=。 (1)100米高空处: ()()()()()()() Pa Pa Pa m s m m kg Pa gh p p 5 23501000122.11203101325100/81.9/226.11001325.1?=-=??-?=-=ρ (2)1000米高空处: ()()() ()()()() Pa Pa Pa m s m m kg Pa gh p p 5 23501089298.0120271013251000/81.9/226.11001325.1?=-=??-?=-=ρ 2-2 如果海面压力为一个工程大气压,求潜艇下潜深度为50m 、500m 和5000m 时所承受海水的压力分别为多少? 答:取海水密度为( )3 3 /10025.1m kg ?=ρ,并注意到所求压力为相对压力。 (1)当水深为50米时: () ( ) ()()Pa m s m m kg gh p 523310028.550/81.9/10025.1?=???==ρ。 (2)当水深为500米时: ()() ()()Pa m s m m kg gh p 623310028.5500/81.9/10025.1?=???==ρ。 (3)当水深为5000米时: ()() ()()Pa m s m m kg gh p 723310028.55000/81.9/10025.1?=???==ρ。 2-3试决定图示装置中A ,B 两点间的压力差。已知:mm 500h 1=,mm 200h 2=, mm 150h 3=,mm 250h 4=,mm 400h 5=;酒精重度31/7848m N =γ,水银重度 32/133400m N =γ,水的重度33/9810m N =γ。 答:设A ,B 两点的压力分别为A p 和B p ,1,2,3,4各个点处的压力分别为1p ,2p ,3 p 和4p 。根据各个等压面的关系有: 131h p p A γ+=, 2221h p p γ+=,

吉林大学培养方案

机械工程及自动化专业本科培养方案2009版 一、培养目标 培养适应现代化建设和未来社会与科技发展需要,立志为国家富强、民族振兴和人类文明进步而奋斗,德智体美全面发展与健康个性和谐统一,富有创新精神和实践能力的高级机械工程专业人才。 学生毕业后可在有关企业、科研单位、国家机关和高等院校从事设计、制造、管理、营销、科研和教学等工作。 二、业务培养要求 本专业培养的学生具有坚实的数学、力学、外语和计算机基础,掌握机械科学的基础理论和基本技能,了解市场经济的基本知识,获得初步的科学研究、科技开发、组织管理和社会活动能力训练。本专业的毕业生应能在以下几方面获得相应的知识和能力: 1.掌握现代设计的基本理论和技能, 有较强的自动化技术应用能力,能够较熟练地运用计算机辅助设计技术,初步具有综合运用机械、电子、液压等知识进行机械产品设计的能力。 2.熟悉现代机械制造的基本理论、技术和装备,能够制定机械产品的加工和装配工艺规程,正确选择和设计工艺装备,具有加工质量及产品性能的检测、分析与控制的基本知识和能力。 3. 掌握自动控制的基本理论,熟悉数控技术,初步具有现代机械制造系统如数控机床、加工中心、柔性制造系统的运行和维护能力。 4.初步具有新工艺、新技术、新设备的研究与开发能力,懂得机械产品及其制造过程的技术经济分析与生产组织管理。 5.具有较强的自学能力,掌握独立获取、消化和应用新知识的能力和方法;基本掌握一门外国语,能顺利阅读本专业的外文资料,具有一定的国际学术交流能力。 6.具有一定的市场经济知识与管理知识;懂得一定的法律知识和国防知识。 三、主干学科及主要课程 主干学科:机械设计及理论、机械制造及自动化、机械电子工程。 主要课程:理论力学、材料力学、工程图学、工程材料、机械原理、机械设计、制造技术基础、电工学、控制工程基础、微机原理与接口技术、测试与传感技术、机电传动控制、液压与气压传动、机械制造装备设计、机电控制系统分析与设计、工程机械设计等。 四、专业特色及专业方向 机械工程及自动化专业是集机械、电子、信息技术为一体的综合性专业,知识结构先进,综合性强。培养的学生知识面宽,思路开阔,具有较强的创新意识和实践能力,适应面广阔,发展迅速,需求巨大。 五、学制 一般为四年 六、学位授予 工学学士 七、毕业合格标准 1.具有良好的思想和身体素质,符合学校规定的德育和体育标准。 2.通过培养方案规定的全部教学环节,按照规定内容取得212学分。

长江大学石油工程的专业专升本教学计划清单的应用清单

长江大学石油工程专业教学计划 (成人高等教育函授专升本) 一、学制:三年。 二、培养目标 石油工程专业培养适应社会主义现代化建设需要,德智体全面发展,获得工程师基本 训练,能在本领域从事石油工程设计、生产管理、应用研究与科技开发等方面工作的石油工程高等技术人才。 三、业务培养要求 (1)具有较扎实的自然科学基础,掌握一门外语,具有较强的外语读、写能力。 (2)掌握工程力学、工程化学、地质学等基础理论。 (3)具有应用基础理论、基本知识进行石油工程设计,解决实际问题、进行本专业 领域内生产、工艺技术更新、改造的初步能力。 四、主干学科和主要课程 主干学科:石油与天然气工程。 主要课程:英语、高级语言程序设计、工程数学、工程流体力学、油层物理、渗流力 学、油气田开发地质学、采油工程、油藏工程基础、钻井完井工程等。 教学要求:高等函授教育是以学员自学为主,平时辅导和集中面授为辅的教学形式。 自学是函授教学的基本形式,是函授教学的中心环节。函授学员必须按教学计划和大纲、 自学指导书的要求,系统地学习教材内容,认真阅读指定的参考书,掌握课程的基本原理、基本知识、基本技能和基本方法。自学时间一般为计划学时的2?3倍。 本计划不专门安排实践教学,实践(含上机、实验、实习等)教学环节由学员自己在平时工作

中或自学学时中完成。 本计划不安排体育课,但要求函授学员应按本人的实际情况,经常锻炼身体,保持健康的体魄。 五、毕业规定 函授学员学完规定的课程,总学分达到毕业要求,思想品德经鉴定符合要求,可准予毕业,由长江大学颁发成人高等教育本科毕业证书。 学员在学习期间完成的并获得局级或局级以上科研成果奖(本人系主要研究人员)的科研设计(论文)或在公开出版的刊物上,署名长江大学继续教育学院的第一作者论文,可作为毕业设计论文参加答辩。 六、授予学位 函授学员达到教学计划规定要求,通过湖北省学位办组织的成人本科外语(英语)学位考试或国家四级外语考试;通过本专业学位课程,油层物理、采油工程、钻井工程与完井工程考试。可授予长江大学工学学士学位。

流体力学简答题

第一章 1、在连续介质的概念中,何为质点? 流体质点就是指体积小的可以瞧作一个几何点,但它又包含有大量的分子,且具有诸如速度、密度及压强等物理量的流体微团。 2、什么就是理想流体?正压流体? 当流体物质的粘度较小,同时期内部运动的相对速度也不大,所产生的粘性应力比起其她类型的力来说可以忽略不计时,可把流体近似瞧作就是无粘性的,这样无粘性的流体称为理想流体。内部任一点的压力只就是密度的函数的流体,称为正压流体。 3、什么就是不可压缩流体? 流体的体积或密度的相对变化量很小时,一般可以瞧成就是不可压缩的,这种流体就被称为不可压缩流体。 4、什么就是定常场;均匀场。 如果一个场不随空间的变化而变化,即场中不显含空间坐标变量r,则这个场就被称为均匀场。如果一个场不随时间的变化而变化,则这个场就被称为定常场。 5、简述迹线的定义并用张量下标的形式标的。 迹线时流体质点在空间运动过程中描绘出来的曲线。张量下表形式为()t x u dx i i ,dt i = 6、概述流线的定义及与迹线的不同。 流线就是流场中的一条曲线,曲线上每一点的速度矢量方向与曲线在该点的切线方向相同。 与迹线的不同,流线在同一时刻与不同流体质点的速度矢量相切。 7、脉线的定义,在定常流动与非定常流动中迹线、流线、脉线分别怎样。 脉线就是把相继经过流场中同一空间点的流体质点在某瞬时顺序连接起来得到的一条线。在非定常流动中,迹线、流线、脉线一般来说就是不相重合的。但在定常流动中迹线、流线、脉线三线合而为一。 8、叙述有旋流动与无旋流动的定义,依据什么划分的。 若在整个流场中处处0=? ?μ,则称此流动为无旋流动,否则称有旋流动。划分依据为涡 量就是否为零。

工程流体力学简答题

1. 什么是黏性?当温度变化时, 黏性如何变化?为什么? 当流体内部存在相对运动时,流体内产生内摩擦力阻碍相对运动的属性。 气体的粘性随温度的升高而升高;液体的粘性随温度的升高而降低。 分子间的引力是形成液体粘性的主要原因。温度的升高,分子间距离增大,引力减小。 分子作混乱运动时不同流层间动量交换是形成气体粘性的主要原因。温度的升高,混乱运动强烈,动量交换频繁,气体粘度越大 2. 解释:牛顿流体、理想流体 牛顿流体:切应力与速度梯度成正比的流体 理想流体:没有粘性的流体 3.流体静压强的两的特性是什么? 流体静压强的方向是作用面内法线方向,即垂直指向作用面。 流体静压强的大小与作用面方位无关,是点坐标的函数

4、画出下列曲面对应的压力体。(4分) ★ 5. 分别画出下图中曲面A 、B 、C 对应的压力体(6分) 6.写出不可压缩粘性流体总流的能量方程式,并说明各项的物理意义和应用条件。 w h z g p a z g p a +++=++222 22112 112g v 2g v ρρ 2g v 2a 单位重量流体的动能 g p ρ单位重量流体的压 能

z单位重量流体的位能w h单位重量流体的两断面间流动损失 不可压缩粘性流体在重力场中定常流动,沿流向任两缓变流过流断面 7. 什么是流线?它有那些基本特性? 流场中某一瞬时一系列流体质点的流动方向线。一般流线是一条光滑曲线、不能相交和转折 定常流动中,流线与迹线重合。 8.解释:定常流动、层流流动、二元流动。 定常流动:运动要素不随时间改变 层流流动:流体分层流动,层与层之间互不混合。二元流动:运动要素是两个坐标的函数。 9.解释:流线、迹线 流线:流场中某一瞬时,一系列流体质点的平均流动方向线。曲线上任意一点的切线方向与该点速度方向一致。 迹线:流场中一时间段内某流体质点的运动轨迹。 10. 描述流动运动有哪两种方法,它们的区别是什

流体力学考试试题(附答案)汇总

一、单项选择题 1.与牛顿内摩擦定律有关的因素是(A) A压强、速度和粘度;B流体的粘度、切应力与角变形率; 2C切应力、温度、粘度和速度; D压强、粘度和角变形。2.流体是一种(D)物质。 A不断膨胀直到充满容器的;B实际上是不可压缩的; C不能承受剪切力的; D 在任一剪切力的作用下不能保持静止的。0年考研《(毛中 3.圆管层流流动,过流断面上切应力分布为(B) A.在过流断面上是常数; B.管轴处是零,且与半径成正比; C.管壁处是零,向管轴线性增大; D. 按抛物线分布。2014年考研《政治》考前点题(毛中特) 4.在圆管流中,层流的断面流速分布符合(C) A.均匀规律; B.直线变化规律; C.抛物线规律; D. 对+曲线规律。 5. 圆管层流,实测管轴线上流速为4m/s,则断面平均流速为() A. 4m/s; B. 3.2m/s; C. 2m/s; D. 1m /s。2014年考研《政治》考前点题(毛中特) 6.应用动量方程求流体对物体的合力时,进、出口的压强应使用 () A 绝对压强 B 相对压强 C 大气压 D 真空度

7.流量为Q ,速度为v 的射流冲击一块与流向垂直的平板,则平板受到的冲击力为() A Qv B Qv 2 C ρQv D ρQv 2 8.在(D )流动中,伯努利方程不成立。 (A)定常 (B) 理想流体 (C) 不可压缩 (D) 可压缩 9.速度水头的表达式为(D ) (A)h g 2 (B)2ρ2v (C) 22v (D) g v 22 10.在总流的伯努利方程中的速度v 是(B )速度。 (A) 某点 (B) 截面平均 (C) 截面形心处 (D) 截面上最 大 2014年考研《政治》考前点题(毛中特) 11.应用总流的伯努利方程时,两截面之间(D ) 。 (A)必须都是急变流 (B) 必须都是缓变流 (C) 不能出现急变流 (D) 可以出现急变流 12.定常流动是(B )2014年考研《政治》考前点题(毛中特) A.流动随时间按一定规律变化; B.流场中任意空间点的运动要素不随时间变化; C.各过流断面的速度分布相同; D.各过流断面的压强相同。 13.非定常流动是 (B ) A. 0=??t u B. 0≠??t u C. 0=??s u D.0≠??s u 2014年考研《政治》考前点题(毛中特)

重大流体力学实验1(流体静力学实验)

《流体力学》实验报告 开课实验室:年月日 学院年级、专业、班姓名成绩 课程名称流体力学实验 实验项目 名称 流体静力学实验 指导教 师 教师 评语教师签名: 年月日 一、实验目的 1、验证静力学的基本方程; 2、学会使用测压管与U形测压计的量测技能; 3、理解绝对压强与相对压强及毛细管现象; 4、灵活应用静力学的基本知识进行实际工程测量。 二、实验原理 流体的最大特点是具有易动性,在任何微小的剪切力作用下都会发生变形,变形必将引起质点的相对运动,破坏流体的平衡。因此,流体处于静止或处于相对静止时,流体内部质点之间只体现出压应力作用,切应力为零。此应力称静压强。静压强的方向垂直并指向受压面,静压强大小与其作用面的方位无关,只与该点位置有关。 1、静力学的基本方程静止流体中任意点的测压管水头相等,即:z + p /ρg=c 在重力作用下, 静止流体中任一点的静压强p也可以写成:p=p + ρg h 2、等压面连续的同种介质中,静压强值相等的各点组成的面称为等压面。质量力只为重力时, 静止液体中,位于同一淹没密度的各点的静压强相等,因此再重力作用下的静止液体中等压面是水平面。若质量有惯性时,流体做等加速直线运动,等压面为一斜面;若流体做等角速度旋转运动,等压面为旋转抛物面。 3、绝对压强与相对压强流体压强的测量和标定有俩种不同的基准,一种以完全真空时绝对压强 为基准来计量的压强,一种以当地大气压强为基准来计量的压强。

三、使用仪器、材料 使用仪器:盛水密闭容器、连通管、U 形测压管、真空测压管、通气管、通气阀、截止阀、加 压打气球、减压阀 材 料:水、油 四、实验步骤 1、熟悉一起的构成及其使用方法; 2、记录仪器编号及各点标高,确立测试基准面; 测点标高a ?=1.60CM b ?=-3.40CM c ? =-6.40CM 测点位能a Z =8.00CM b Z = 3.00CM c Z =0.00CM 水的容重为a=0.0098N/cm 3 3、测量各点静压强:关闭阀11,开启通气阀6,0p =0,记录水箱液面标高0?和测管2液面标高2?(此时0?=2?);关闭通气阀6和截止阀8,开启减压放水阀11,使0p > 0,测记0?及2?(加压3次);关闭通气阀6和截止阀8,开启减压放水阀11,使0p < 0(减压3次,要求其中一次,2?< 3?),测记0?及2?。 4、测定油容量 (1)开启通气阀6,使0p =0,即测压管1、2液面与水箱液面齐平后再关闭通气阀6和截止阀8,加压打气球7,使0p > 0,并使U 形测压管中的油水界面略高于水面,然后微调加压打气球首部的微调螺母,使U 形测压管中的油水界面齐平水面,测记0?及2?,取平均值,计算 0?-2?=H 1。设油的容重为r ,为油的高度h 。由等压面原理得:01p =a H=r h (1.4) a 为水的容重 (2)开启通气阀6,使0p =0,即测压管1、2液面与水箱液面齐平后再关闭通气阀6和截止阀8,开启放水阀11减压,使U 形管中的水面与油面齐平,测记0?及2?,取平均值,计算0?-2?=H 2。得:02p =-a H 2=(r-a)h (1.5) a 为水的容重 式(1.4)除以式(1.5),整理得:H 1/ H 2=r/(a-r) r= H 1a/( H 1+ H 2)

新版长江大学资源与环境专硕考研经验考研参考书考研真题

考研是一项小火慢炖的工程,切不可操之过急,得是一步一个脚印,像走长征那样走下来。在过去的一年中,我几乎从来没有在12点之前睡去过。也从来也没有过睡到自然醒的惬意生活,我总是想着可能就因为这一时的懒惰,一切都不同了。所以,我非常谨小慎微,以至于有时会陷入自我纠结中,像是强迫症那样。 如今想来,这些都是不应该的,首先在心态上尽量保持一个轻松的状态,不要给自己过大的压力。虽然考研是如此的重要,但它并不能给我们的人生下一个定论。所以在看待这个问题上不可过于极端,把自己逼到一个退无可退的地步。 而在备考复习方面呢,好多学弟学妹们都在问我备考需要准备什么,在我看来考研大工程,里面的内容实在实在是太多了。首先当你下定决心准备备考的时候,要根据自己的实际情况、知识准备、心理准备、学习习惯做好学习计划,学习计划要细致到每日、每周、每日都要规划好,这样就可以很好的掌握自己的学习进度,稳扎稳打步步为营。另外,复试备考计划融合在初试复习中。在进入复习之后,自己也可以根据自己学习情况灵活调整我们的计划。总之,定好计划之后,一定要坚持下去。 最近我花费了一些时间,整理了我的一些考研经验供大家参考。 篇幅比较长,希望大家能够有耐心读完,文章结尾处会附上我的学习资料供大家下载。 长江大学资源与环境专硕的初试科目为: (101)思想政治理论(204)英语二(302)数学二(821)有机化学 (101)思想政治理论(204)英语二(302)数学二(824)钻井工程 (101)思想政治理论(204)英语二(302)数学二(825)工程流体力

学 (101)思想政治理论(204)英语二(302)数学二(854)C++程序设计 (821)有机化学参考书目: 《有机化学》,高鸿宾,高等教育出版社 (824)钻井工程参考书目: 《钻井工程》,楼一珊,李琪,石油工业出版社,2013 (825)工程流体力学 《工程流体力学》(第一版),袁恩熙,石油工业出版社,2002 (854)C++程序设计 《C++程序设计》,谭浩强,清华大学出版社,2011 先说一下我的英语单词复习策略 1、单词 背单词很重要,一定要背单词,而且要反复背!!!你只要每天背1-2个小时,不要去纠结记住记不住的问题,你要做的就是不断的背,时间久了自然就记住了。 考察英语单词的题目表面上看难度不大,但5500个考研单词,量算是非常多了。我们可以将其区分为三类:高频核心词、基础词和生僻词,分别从各自的特点掌握。 (1)高频核心词 单词书可以用《木糖英语单词闪电版》,真题用书是《木糖英语真题手译》里面的单词都是从历年考研英语中根据考试频率来编写的。

流体力学名词解释和简答题

流体力学名词解释和问答题 一、绪论 1.连续介质假设:把流体当作是由密集质点构成的、内部无空隙的连续体来研究,这就 是连续介质假设。或 连续介质:由密集质点构成的、内部无空隙的连续体。 2.表面力:通过直接接触作用在所取流体表面上的力。 3.质量力:作用在流体内每个质点上,大小与流体质点质量成正比的力。 4. 粘性:是流体在运动过程中抵抗剪切变形的能力,是产生机械能损失的根源。或粘性是 流体的内摩擦特性。或相邻流层在发生相对运动时产生内摩擦力的性质。 5.理想流体:指无粘性,动力粘度0=μ或运动粘度0=ν的流体。 6.不可压缩流体:流体的每个质点在运动全过程中,密度不变化的流体。 (1)什么是理想流体?为什么要引入理想流体的概念? (2)试从力学分析的角度,比较流体与固体对外力抵抗能力的差别。 二、流体静力学 1.真空度:指绝对压强不足当地大气压的差值,即相对压强的负值。 2.相对压强:以当地大气压为基准起算的压强。 3.绝对压强:以没有气体分子存在的完全真空为基准起算的压强。 4.测压管水头:g p z ρ+称为测压管水头,是单位重量流体具有的总势能。或,位置高度(或位置水头)与测压管高度(压强水头)之和。 5.帕斯卡原理:在平衡状态下,液体任一点压强的变化将等值地传到其他各点。 6.等压面:流体中压强相等的空间点构成的面(平面或曲面)。 7.阿基米德原理:液体作用于潜体(或浮体)上的总压力,只有铅垂向上的浮力,大小等 于所排的液体重量,作用线通过潜体的几何中心。 (1)简述静止流体中应力的特性。 (2)何为压力体?压力体的作用是什么?如何确定压力体? (3)试述液体静力学基本方程C g p z =+ρ及其各项的物理和几何意义? 三、流体动力学 1.流线:表示某时刻流动方向的曲线,曲线上各质点的速度矢量都与该曲线相切。 2.迹线:流体质点在一段时间内的运动轨迹称为迹线。 3.水力坡度:粘性流体的总水头线沿程单调下降的快慢程度,亦即单位流程内的水头损失。 4.过流断面:在流束上作出的与所有流线正交的横断面是过流断面(或称过水断面)。 5.恒定流:以时间为标准,若各空间点上的运动参数都不随时间变化,这样的流动是恒定 流。 6.渐变流:即质点的迁移加速度很小的流动(或,流线近似于平行直线的流动)

流体力学习题及答案-第七章

第七章 粘性流体动力学 7-1 油在水平圆管内做定常层流运动,已知75=d (mm ),7=Q (litres/s ),800=ρ (kg/m 3),壁面上480=τ(N/m 2),求油的粘性系数ν。 答:根据圆管内定常层流流动的速度分布可得出2 08 1m u λρτ=; 其中:λ是阻力系数,并且Re 64= λ; m u 是平均速度,585.1075.014.325.01074 123 2=???==-d Q u m π(m/s )。 由于阻力系数2 8m u ρτλ=,因此02 02886464Re τρτρλm m u u ===; 即: 2 8τρν m m u d u = ; 所以油的粘性系数为401055.3585 .18008075 .0488-?=???== m u d ρτν(m 2/s )。 7-2 Prandtl 混合长度理论的基本思路是什么? 答:把湍流中流体微团的脉动与气体分子的运动相比拟。 7-3无限大倾斜平板上有厚度为h 的一层粘性流体,在重力g 的作用下做定常层流运动,自由液面上的压力为大气压Pa ,且剪切应力为0,流体密度为ρ,运动粘性系数为ν,平板倾斜角为θ。试求垂直于x 轴的截面上的速度分布和压力分布。 答:首先建立如图所示坐标系。 二维定常N-S 方程为: ???? ????+??+??-=??+??22221y u x u x p f y u v x u u x νρ ??? ? ????+??+??-=??+??22221y v x v y p f y v v x v u y νρ 对于如图所示的流动,易知()y u u =,()y p p =,0=v ,θsin g f x =,θcos g f y -=;

流体力学结课论文

谈流体力学的研究内容及发展简史 流体力学是力学的一个独立分支,是一门研究流体的平衡和流体机 械运动规律及其实际应用的技术科学,在许多工业部门中都有着广泛应 用,航空工业中飞机的制造离不开空气动力学;造船工业部门要用到水 动力学,与土建类各专业有着更加密切的关系,了解流体动力学的研究 内容及发展简史对学习流体力学知识具有的一定的引导作用,为以后的 学习铺设台阶,引起学习的兴趣。 流体力学的研究内容 流体是气体和液体的总称。在人们的生活和生产活动中随时随地都 可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。 大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70% 是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等) 乃至地球深处熔浆的流动都是流体力学的研究内容。 流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的 应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动 学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力 学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛 顿流体力学等。 在流体力学中为简化计算,对流体模型做出了假设:质量守恒;动量 守恒;能量守恒。 在流体力学中常会假设流体是不可压缩流体,也就是流体的密 度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会 假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为 非粘性流体。若流体黏度不为零,而且流体被容器包围(如管子), 则在边界处流体的速度为零。 流体的主要物理性质: 1、流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。液体 有一定的体积,存在一个自由液面;气体能充满任意形状的容器,无一 定的体积,不存在自由液面。 2、流体的连续介质模型 微观:流体是由大量做无规则运动的分子组成的,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右的分子,相邻分子间的距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右的分子,相邻分子间的距离约为3.2×10-7cm。 宏观:考虑宏观特性,在流动空间和时间上所采用的一切特征尺度和特征时间都

相关文档
最新文档