通过多孔介质的二维磁流体力学方程组的全局正则性

通过多孔介质的二维磁流体力学方程组的全局正则性
通过多孔介质的二维磁流体力学方程组的全局正则性

磁流体

磁流体 编辑 磁流体,又称磁性液体、铁磁流体或磁液,是一种新型的功能材料,它既具有液体的流动性又具有固体磁性材料 的磁性。是由直径为纳米量级(10纳米以下)的磁性固体颗粒、基载液(也叫媒体)以及界面活性剂三者混合而 成的一种稳定的胶状液体。该流体在静态时无磁性吸引力,当外加磁场作用时,才表现出磁性,正因如此,它才 在实际中有着广泛的应用,在理论上具有很高的学术价值。用纳米金属及合金粉末生产的磁流体性能优异,可广 泛应用于各种苛刻条件的磁性流体密封、减震、医疗器械、声音调节、光显示、磁流体选矿等领域。 目录 1基本介绍 2发展简史 3制备方法 4研究内容 5研究方法 6研究困境 7实际应用 磁流体发电 磁流体密封 1基本介绍 磁流体作为一种特殊的功能材料,是把纳米数量级(10纳米左右)的磁性粒子包 裹一层长链的表面活性剂,均匀的分散在基液中形成的一种均匀稳定的胶体溶液。磁流体由纳米磁性颗粒、基液和表面活性剂组成。一般常用的有

、 、Ni、Co等作为磁性颗粒,以水、有机溶剂、油等作为基液,以油酸等作为活磁流体静力学研究导电流体在磁场力作用于静平衡的问题;磁流体动力学研

年伦德奎斯特首次探讨了利用磁场来保存等离子体的所谓磁约束问题,即磁流体静力学问题。受控热核反应中的磁约束,就是利用这个原理来约束温度高达一亿度量级的等离子体。 然而,磁约束不易稳定,所以研究磁流体力学稳定性成为极重要的问题。1951年,伦德奎斯特给出一个稳定性判据,这个课题的研究至今仍很活跃。 3制备方法 磁流体制备方法主要有研磨法,解胶法,热分解法,放电法等。 (1)碾磨法。即把磁性材料和活性剂、载液一起碾磨成极细的颗粒,然后用离心法或磁分离法将大颗粒分离出来,从而得到所需的磁流体。这种方法是最直接的方法,但很难得到300nm以下颗粒直径的磁流体。 (2)解胶法。是铁盐或亚铁盐在化学作用下产生Fe3O4或γ-Fe2O3,然后加分散剂和载体,并加以搅拌,使其磁性颗粒吸附其中,最后加热后将胶体和溶液分开,得到磁流体。这种方法可得到较小颗粒的磁流体,且成本不高,但只使用于非水系载体的磁流体的制作。 (3)热分解法。是将磁性材料的原料溶入有机溶剂,然后加热分解出游离金属,再在溶液中加入分散剂后分离,溶入载体就得到磁流体。 (4)蒸着法。是在真空条件下把高纯度的磁性材料加热蒸发,蒸发出来的微粒遇到由分散剂和载体组成的地下液膜后凝固,当下地液膜和磁性微粒运动到下地液中,混合均匀就得到磁流体。这种方法得到的磁流体微粒很细,一般在2-10nm 的粒子居多。 (5)放电法。其原理与电火花加工相仿,是在装满工作液(经常与载体相同)的容器中将磁性材料粗大颗粒放在2个电极之间,然后加上脉冲电压进行电火花放电腐蚀,在工作液中凝固成微小颗粒,把大颗粒滤去后加分散剂即可得到磁流体。[1] 4研究内容 研究磁流体问题,首先是建立磁流体力学基本方程组,其次是用这个方程组来解决各种问题。磁流体力学主要用来研究解决的有: 理想导电流体运动对磁场影响的问题;或流体静止时,流体电阻对磁场影响的问题,其中包括磁冻结和磁扩散。 通过磁场力来考察磁场对静止导电流体或理想导电流体的约束机制。这个问题是磁流体静力学的研究范畴,对受控热核反应十分重要。磁流体静力学在天体物理中,例如在研究太阳黑子的平衡、日珥的支撑、星际间无作用力场等问题的解决中也很重要。 研究磁场力对导电流体定常运动的影响。方程的非线性使磁流体动力学流动的数学分析复杂化,通常要用近似方法或数值法求解。它们虽然是简化情况的解,然而清晰地阐明了基本的流动规律,利用这些规律至少可以定性地讨论更复杂的磁流体动力学流动。 研究磁流体动力学波,包括小扰动波、有限振幅波和激波。了解等离子体中波的传播规律,可以探测等离子体的某些性质。此外,激波理论在电磁激波管、天体物理和地球物理上都有重要的应用。

等离子体物理讲义06_磁流体力学及静平衡12汇总

等离子体物理学讲义 No. 6 马石庄 2012.03.07.北京 第6讲 MHD方程与静力平衡 教学目的:建立等离子体的磁流体模型,在拟稳态近似下,建立磁流体动力学方程。依据磁Reynolds数,掌握理想MHD的磁冻结定理和拓扑不变量;无力平衡和有力平衡。 主要内容: §1 MHD方程 (3 1.1导心理论引出 (3 1.2 MHD近似 (9 1.3磁应力张量 (12 §2 电磁感应方程 (15 2.1 磁冻结定理 (16

2.2 拓扑不变量 (21 2.3 磁场扩散 (26 §3 MHD静平衡 (28 3.1维里定理 (30 3.2无力平衡 (34 3.3 有力平衡 (36 习题6 (44 在研究等离子体的宏观运动时,通常可以近似地把它当作导电流体来处理。这种模型适合于缓慢变化的等离子体现象。所谓缓慢变化是指等离子体的特征长度和特征时间远大子等离子体粒子的平均自由程和平均碰撞时间。在这种情况下,等离子体可以近似地看作处于局部热平衡状态,因而可以像通常的流体力学中那样定义流体的速度,压强,密度,温度等流体力学及热力学参量并用这些宏观参量来描述等离子体的宏观运动。 §1 MHD方程 当导电流体在电磁场中运动时,流体内感生出电场从而产生电流。这个电流一方面与磁场相互作用,产生机械力,对流体运动产生重大影响;另一方面感应出改变原有电磁场的磁场。于是就形成了电磁现象和流体动力学现象相互作用的复杂图像。这些现象必须要用电磁场方程和流体动力学方程的联立方程组来进行研究。 1.1导心理论引出 等离子体中的带电粒子在电磁场中的运动可以看作是围绕磁力

线回转的粒子引导中心的漂移叠加,下面探讨微观单个粒子的行为与宏观流体行为之间的关系,给出一种物理直观图象。如图1所示,基本思路是计算导心运动导致的流过等离子体中任意开曲面的垂直电 流密度 ,考察这个电流与等离子体压强梯度和惯性力之间的联系。 取曲面的法向与磁场正交,仔细考虑回转半径扩张的影响。首先考虑粒子运动的主要贡献是来自圆周回转运动,每个粒子进出曲面的方向相反,对电流没有贡献,如图1(b。换言之,在一个回转周期中,没有净电荷流动。垂直电流由两种不同的机制产生。一个是导心垂直漂移产生的穿过曲面的电荷流,如图1(c;还有一种曲面边界附近的回转运动,如图1(d,所谓磁化电流。 粒子的导心漂移速度由漂移, B漂移,曲率漂移和极化漂移构成 E B 2 d d E B 2

ISAPI_Rewrite3.1教程中文版

第一章:软件介绍 ISAPI_Re write是一款适用于IIS的功能强大的基于正则表达式的URL处理模块。它兼容Apache的mod_re write的语法,从而使仅仅复制.htaccess文件就把配置从appach移植到IIS中或者从IIS移值到appach中变成可能。请参阅3.2兼容性图表这一节。 ISAPI_Re write最重要的功能: ? ISAPI_Re write提供了和Apach mod_re write相同的句法和行为,使仅仅拷贝.htaccess 文件就完成配置移植成为功能。(要想阅读更多关于与mod_re write的兼容性,请参阅3.2兼容性图表这一节。) ? 正则表达式支持灵活而强大的配置。 ? 极速而且容易升级的纯C++代码。 ? 真正的分布式配置:实时监控服务器全局级别、虚拟主机(网站)级别、目录级别 的.htaccess文件。 ? 隔离性:用户级配置只影响本地用户环境,从而使ISAPI_Re write成为Web主机提供商的理想解决方案。 重要的应用示例: ? 搜索引擎优化。 ? 一台Web服务器的代理内容经过另一台web服务器。 ? 防止内容被吸血(盗链)。 ? 阻断特定主机、反向链接或者烦人的搜索机器人。 ? 内容商议:向不同的语言用户或者不同的浏览器用户提供不同的文件。示例 ? 为群集式服务器架构模拟负载均衡。 定价资料

? 45天的试用期 ? 单机版99美元 ? ISAPI_Re write精简版是免费的。在这里可以看到受限的细节说明。 ? 大宗采购可议折扣。 2.1系统要求 ISAPI_Re write可以被安装在下列操作系统中: ? Windows 2000 with IIS 5 ? Windows XP with IIS 5.1 ? Windows Se rver 2003 with IIS 6.0 ? Windows Vista with IIS 7.0 ? Windows Se rver 2008 with IIS 7.0 在安装ISAPI_Re write之前,操作系统中必须先安装IIS。 32位和64位的Windo ws版本都是支持的,但是你必须下载32位版和64位版两种不同的安装包。Windo ws Installer 2.0必须运行安装程序。你可以从微软的网站上下载到最新版本的Windows Installer。 在Windows Vista和Windows Se rver 2008上安装ISAPI_Re write,还必须先安装下面两个模块(默认情况下这两个模块是不安装的) ? ISAPI过滤器 ? ISAPI 扩展 2.2安装程序 在运行安装包之前请先阅读系统要求部分。下载并安装某个版本的ISAPI_Re write.msi,依照安装向导的说明操作。安装过程是自动的,并有自我描述。ISAPI_Re write在自动安装过

磁流体力学magnetohydrodynamics

磁流体力学magnetohydrodynamics 磁流体力学magnetohydrodynamics 结合流体力学和电动力学的方法研究导电流体和电磁场相 互作用的学科。 导电流体在电磁场里运动时,流体中就会产生电流。此电流与磁场相互作用,产生洛伦兹力,从而改变流体的运动,同时此电流又导致电磁场的改变。对这类问题进行理论探讨,必须既考虑其力学效应,又考虑其电磁效应。磁流体力学包括磁流体静力学和磁流体动力学。磁流体静力学研究导电流体在电磁力作用下的静平衡问题,如太阳黑子理论、受控热核聚变的磁约束机制等。磁流体动力学研究导电流体与电磁场相互作用时的运动规律,如各种磁流体动力学流动和磁流体动力学波等。等离子体和液态金属都是导电流体。前者包括99%以上的宇宙物质,后者包括核动力装置中的携热介质(如钠、钾、钠钾合金)、化学工业中的置换剂(如钠、钾、汞)、冶金铸造工业中的熔融金属等。地球表面一般不存在自然等离子体,但可因核辐射、气体放电、燃烧、电磁激波、激光等方法产生人工等离子体。因此,磁流体力学不仅与等离子体物理学有联系,还在天体物理研究(如磁场对日冕、黑子、耀斑的影响)、受控热核聚变和工业新技术(如电磁泵、电弧加热器、磁流体发电、电磁输送、电磁推进等)中

得到发展和应用。 基础 磁流体力学以流体力学和电动力学为基础﹐把流场方程和 电磁场方程联立起来﹐引进了许多新的特徵过程﹐因而内 容十分丰富。宇宙磁流体力学更有其特色。首先﹐它所研究的对象的特徵长度一般来说是非常大的﹐因而电感的作用 远远大于电阻的作用。其次﹐其有效时间非常久﹐所以由电磁原因引起的某些作用力纵然不大﹐却能产生重大效应。磁流体力学大体上可以和流体力学平行地进行研究﹐但因磁 场的存在也具有自己的特点﹕在磁流体静力学中的平衡方 程﹐和流体静力学相比﹐增加了磁应力部分﹐这就是产旁 际母荨T硕г诖帕魈辶ρе杏兄煌暮濠o它研究磁场的“运动”﹐即在介质流动下磁场的演变。与正压流体中的涡旋相似﹐磁场的变化也是由对流和扩散两种作用引起的。如果流体是理想导体﹐磁力线则冻结在流体上﹐即在同一磁力线 上的质点恒在同一磁力线上﹐如果电导率是有限的﹐则磁 场还要扩散。两种作用的强弱取决于磁雷诺数4πUL/c(c为光速﹐为电导率﹐U和L分别为问题的特徵速度和特徵长度)的大小。研究流动如何产生和维持天体中磁流发电机制(见太阳平均磁流发电机机制)﹐目前大多是以运动学为基础的。分支 磁流体力学是结合经典流体力学和电动力学的方法,研究导

正则表达式语法完整版

正则表达式基础知识 一个正则表达式就是由普通字符(例如字符a 到z)以及特殊字符(称为元字符)组成的文字模式。该模式描述在查找文字主体时待匹配的一个或多个字符串。正则表达式作为一个模板,将某个字符模式与所搜索的字符串进行匹配。如:

下面看几个例子: "^The":表示所有以"The"开始的字符串("There","The cat"等); "of despair$":表示所以以"of despair"结尾的字符串; "^abc$":表示开始和结尾都是"abc"的字符串——呵呵,只有"abc"自己了;"notice":表示任何包含"notice"的字符串。 '*','+'和'?'这三个符号,表示一个或一序列字符重复出现的次数。它们分别表示“没有或更多”,“一次或更多”还有“没有或一次”。下面是几个例子: "ab*":表示一个字符串有一个a后面跟着零个或若干个b。("a", "ab", "abbb",……);"ab+":表示一个字符串有一个a后面跟着至少一个b或者更多; "ab?":表示一个字符串有一个a后面跟着零个或者一个b; "a?b+$":表示在字符串的末尾有零个或一个a跟着一个或几个b。 也可以使用范围,用大括号括起,用以表示重复次数的范围。 "ab{2}":表示一个字符串有一个a跟着2个b("abb"); "ab{2,}":表示一个字符串有一个a跟着至少2个b; "ab{3,5}":表示一个字符串有一个a跟着3到5个b。

请注意,你必须指定范围的下限(如:"{0,2}"而不是"{,2}")。 还有,你可能注意到了,'*','+'和'?'相当于"{0,}","{1,}"和"{0,1}"。 还有一个'|',表示“或”操作: "hi|hello":表示一个字符串里有"hi"或者"hello"; "(b|cd)ef":表示"bef"或"cdef"; "(a|b)*c":表示一串"a""b"混合的字符串后面跟一个"c"; '.'可以替代任何字符: "a.[0-9]":表示一个字符串有一个"a"后面跟着一个任意字符和一个数字; "^.{3}$":表示有任意三个字符的字符串(长度为3个字符); 方括号表示某些字符允许在一个字符串中的某一特定位置出现: "[ab]":表示一个字符串有一个"a"或"b"(相当于"a|b"); "[a-d]":表示一个字符串包含小写的'a'到'd'中的一个(相当于"a|b|c|d"或者"[abcd]");"^[a-zA-Z]":表示一个以字母开头的字符串; "[0-9]%":表示一个百分号前有一位的数字; "[0-9]+":表示一个以上的数字; ",[a-zA-Z0-9]$":表示一个字符串以一个逗号后面跟着一个字母或数字结束。 你也可以在方括号里用'^'表示不希望出现的字符,'^'应在方括号里的第一位。(如:"%[^a-zA-Z]%"表 示两个百分号中不应该出现字母)。 为了逐字表达,必须在"^.$()|*+?{\"这些字符前加上转移字符'\'。 请注意在方括号中,不需要转义字符。

磁流体力学数值方法及其在磁约束聚变中的应用-LSEC

磁流体力学数值方法及其在磁约束聚变中的应用 (2018年7月16日-17日) 倪明玖研究员 中国科学院大学 本系列课程主要介绍求解三维不可压磁流体动力学问题的有限体积法,主要围绕磁约束聚变反应堆关键部件研发,介绍液态金属磁流体力学的计算方法及应用。课程内容主要包括: - 磁约束聚变反应堆关键部件研发涉及的液态金属磁流体力学的研究背景 - 不可压流体的Navier-Stokes方程,介绍投影法及源项的处理方法 - 磁流体力学的一种精确计算方法-相容守恒格式 - 自由界面MHD,固体颗粒两相流MHD,湍流MHD,介绍其基本算法及具体应用。 授课老师简介 倪明玖,1997年获西安交通大学博士学位,1999-2001年为日本京都大学JSPS(日本学术振兴会)博士后,2001-2007年在美国加州大学洛杉矶分校(UCLA)从事磁约束聚变相关的磁流体力学研究,2007年起为中国科学院大学教授。曾获国家杰出青金科学基金和中国科学院“百人计划”支持,为磁约束聚变能专项项目首席,基金委重点基金项目负责人。研究方向:磁流体力学、计算流体力学、多相流传热、核聚变工程技术。

不可压磁流体动力学方程组的混合有限元方法 (2018年7月18日-21日) 郑伟英研究员 中国科学院数学与系统科学研究院 本系列课程主要介绍求解三维不可压磁流体动力学方程组的混合有限元方法及高效求解算法,重点关注有限元方法的守恒型和求解算法的最优性。课程内容主要包括: - Stokes 方程和不可压 Navier-Stokes 方程的有限元方法; - 无感应磁流体方程组的电荷守恒型有限元方法; - 完整磁流体方程组的质量、磁通守恒有限元方法; - 基于算子预处理,设计离散问题的高效求解算法。 授课老师简介 郑伟英,研究员,1996年和1999年于郑州大学分别获数学学士、硕士学位;2002年于北京大学获计算数学博士学位,2002.7-2004.6年为中科院数学与系统科学研究院博士后;2006.11—2007.12为德国慕尼黑科技大学(TUM)洪堡基金访问学者;2004年6月以来在中科院数学与系统科学研究院工作至今;现任研究员,“科学与工程计算国家重点实验室”副主任;2017年获国家杰出青年科学基金资助。主要从事复杂介质电磁场问题、不可压磁流体问题的算法研究与并行程序研制,曾在大型变压器的可计算建模、分层介质电磁散射问题的完美匹配层方法、三维磁流体的守恒型有限元方法等方向取得重要进展。

常用正则表达式

1. 平时做网站经常要用正则表达式,下面是一些讲解和例子,仅供大家参考和修改使用: 2. "^\d+$"//非负整数(正整数+ 0) 3. "^[0-9]*[1-9][0-9]*$"//正整数 4. "^((-\d+)|(0+))$"//非正整数(负整数+ 0) 5. "^-[0-9]*[1-9][0-9]*$"//负整数 6. "^-?\d+$"//整数 7. "^\d+(\.\d+)?$"//非负浮点数(正浮点数+ 0) 8. "^(([0-9]+\.[0-9]*[1-9][0-9]*)|([0-9]*[1-9][0-9]*\.[0-9]+)|([0-9]*[1-9][0-9]*))$"//正浮点数 9. "^((-\d+(\.\d+)?)|(0+(\.0+)?))$"//非正浮点数(负浮点数+ 0) 10. "^(-(([0-9]+\.[0-9]*[1-9][0-9]*)|([0-9]*[1-9][0-9]*\.[0-9]+)|([0-9]*[1-9][0-9]*)))$"//负浮点数 11. "^(-?\d+)(\.\d+)?$"//浮点数 12. "^[A-Za-z]+$"//由26个英文字母组成的字符串 13. "^[A-Z]+$"//由26个英文字母的大写组成的字符串 14. "^[a-z]+$"//由26个英文字母的小写组成的字符串 15. "^[A-Za-z0-9]+$"//由数字和26个英文字母组成的字符串 16. "^\w+$"//由数字、26个英文字母或者下划线组成的字符串 17. "^[\w-]+(\.[\w-]+)*@[\w-]+(\.[\w-]+)+$"//email地址 18. "^[a-zA-z]+://(\w+(-\w+)*)(\.(\w+(-\w+)*))*(\?\S*)?$"//url 19. /^(d{2}|d{4})-((0([1-9]{1}))|(1[1|2]))-(([0-2]([1-9]{1}))|(3[0|1]))$/ // 年-月-日 20. /^((0([1-9]{1}))|(1[1|2]))/(([0-2]([1-9]{1}))|(3[0|1]))/(d{2}|d{4})$/ // 月/日/年 21. "^([w-.]+)@(([[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.)|(([w-]+.)+))([a-zA-Z]{2,4}|[0-9]{1,3})(]?)$" //Emil 22. /^((\+?[0-9]{2,4}\-[0-9]{3,4}\-)|([0-9]{3,4}\-))?([0-9]{7,8})(\-[0-9]+)?$/ //电话号码 23. "^(d{1,2}|1dd|2[0-4]d|25[0-5]).(d{1,2}|1dd|2[0-4]d|25[0-5]).(d{1,2}|1dd|2[0-4]d|25[0-5]).(d{1,2}| 1dd|2[0-4]d|25[0-5])$" //IP地址 24. 25. 匹配中文字符的正则表达式:[\u4e00-\u9fa5] 26. 匹配双字节字符(包括汉字在内):[^\x00-\xff] 27. 匹配空行的正则表达式:\n[\s| ]*\r 28. 匹配HTML标记的正则表达式:/<(.*)>.*<\/\1>|<(.*) \/>/ 29. 匹配首尾空格的正则表达式:(^\s*)|(\s*$) 30. 匹配Email地址的正则表达式:\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)* 31. 匹配网址URL的正则表达式:^[a-zA-z]+://(\\w+(-\\w+)*)(\\.(\\w+(-\\w+)*))*(\\?\\S*)?$ 32. 匹配帐号是否合法(字母开头,允许5-16字节,允许字母数字下划线):^[a-zA-Z][a-zA-Z0-9_]{4,15}$ 33. 匹配国内电话号码:(\d{3}-|\d{4}-)?(\d{8}|\d{7})? 34. 匹配腾讯QQ号:^[1-9]*[1-9][0-9]*$ 35. 36. 37. 元字符及其在正则表达式上下文中的行为:

编译原理1、3章作业答案

第一章 习题1.6.3:对于图1-14中的块结构代码,假设使用常见的声明的静态作用域规则,给出其中12个声明中的每一个的作用域? 习题1.6.4:下面C代码的打印结果是什么? 答:输出结果是 3 2 调用函数b()时,a=x+1此处x为全局变量值2,故输出为3 调用函数c()时,x局部定义为1,此处a=x+1为2,故输出为2 第三章 习题3.3.2:试描述下列正则表达式定义的语言: (1)a(a|b)*a:以a开头和以a结束的中间由任意个a或b组成的串的集合 (2)(( |a)b*)*:由0个和多个b组成的串以及由0个或多个以a开头由任意个b组成的实例所组成的串的集合 (3)(a|b)*a(a|b)(a|b):由a或b构成的长度至少为3的且倒数第三个字符为a的串的集合 (4)a*ba*ba*ba*:由a、b构成的b的个数为3的串的集合 习题3.3.5:试写出下列语言的正则定义: (1)包含5个元音的所有小写字母串,这些串中的元音按顺序出现

:a[bcd]*e[fgh]* i[jklmn]*o[pqrst]*u[vwxyz]* (2)所有由按字典递增排序的小写字母组成的串 :a*b*c*d*…z* (3)注释,即/*和*/之间的串,且串中没有不在双引号(")中的*/ :[/*]([a-zA-Z]|("*/"))*[*/] 习题3.4.1:给出识别练习3.3.2中各个正则表达式所描述的语言的状态转换图(1)a(a|b)*a (3)(a|b)* a(a|b)(a|b) 习题3.7.3使用算法3.23和3.20将下列正则表达式转换成DFA (1)(a|b)* 由(a|b)*生成相应的NFA,如下图所示

磁流体力学方程

第三章 磁流体力学方程(MHD ) §3.1引言 由上一章的讨论可以看出,等离子体动力学理论是在位形及速度空间中讨论带电粒子的分布函数随时间的演化规律。由于动力学方程是一个非线性的积分微分方程,数学处理较复杂,在一般情况下很难求解。实际上,我们可以把等离子体看成为是一种电磁流体,它的宏观状态可以用密度、流速、温度等状态变量及电磁场来描述。这些状态参量及电磁场是在三维位形空间中随时间演 化的。建立电磁流体状态参置随时间的演化方程称为磁流体力学(Magnetohydrodynamics-MHD )。与动力学理论相比,磁流体力学在数学处理上简单的多,而且等离子体中的许多过程,如等离子体的宏观平衡与稳定,波动过程均可以用MHD 理论来描述。但对于等离子体中的另外一些现象,如Landau 阻尼、速度空间中的不稳定性等则MHD 理论却无能力描述。下面我们从动力学方程出发,建立MHD 方程。 §3.2二份量MHD 方程 设等离子体是由电子成份和一种离子成份组成的二份量电磁流体。首先我们引入二份量磁流体的宏观状态变量,我们知道,对于一个多粒子系统,其宏观变量是对应的微观变量的统计平均值。这样,第α类成份流体的密度(,) n r t α、流速火(,)r u t α及温度(,)r T t α的定义为: (,)(,,)r v r v n t d f t αα=? (3-1) (,)(,)(,,)r r vv r v n t u t d f t ααα=? (3-2) 231(,)(,)()(,,)22 r r v v r v B k n t T t d m u f t αααα=-? 下面我们利用上章给出的等离子体运动学方程来建立MHD 方程。动力学方程可

流体动力学模拟理论 (2)

面内的质量速率相等。(换句话说,曲面内的质量为定值,曲面外的质量也是定值)以上方程可以用曲面上的积分式表示。 流体力学假设所有流体满足以下的假设: ·质量守恒·动量守恒·连续体假设 在流体力学中常会假设流体是不可压缩流体,也就是流体的密度为一定值。液体可以算是不可压缩流体,气体则不是。有时也会假设流体的黏度为零,此时流体即为非粘性流体。气体常常可视为非粘性流体。若流体黏度不为零,而且流体被容器包围(如管子),则在边界处流体的速度为零。 流体力学的研究内容 流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体,所以流体力学是与人类日常生活和生产事业密切相关的。大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。 20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相连的。这些学科是流体力学中最活跃、最富有成果的领域。 石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。 燃烧离不开气体,这是有化学反应和热能变化的流体力学问题,是物理-化学流体动力学的内容之一。爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。 沙漠迁移、河流泥沙运动、管道中煤粉输送、化工中气体催化剂的运动等,都涉及流体中带有固体颗粒或液体中带有气泡等问题,这类问题是多相流体力学研究的范围。 等离子体是自由电子、带等量正电荷的离子以及中性粒子的集合体。等离子体在磁场作用下有特殊的运动规律。研究等离子体的运动规律的学科称为等离子体动力学和电磁流体力学,它们在受控热核反应、磁流体发电、宇宙气体运动等方面有广泛的应用。 风对建筑物、桥梁、电缆等的作用使它们承受载荷和激发振动;废气和废水的排放造成环境污染;河床冲刷迁移和海岸遭受侵蚀;研究这些流体本身的运动及其同人类、动植物间的相互作用的学科称为环境流体力学(其中包括环境空气动力学、建筑空气动力学)。这是一门涉及经典流体力学、气象学、海洋学和水力学、结构动力学等的新兴边缘学科。 生物流变学研究人体或其他动植物中有关的流体力学问题,例如血液在血管中的流动,心、肺、肾中的生理流体运动和植物中营养液的输送。此外,还研究鸟类在空中的飞翔,动物在水中的游动,等等。

PHP 常用正则表达式 正则

PHP 常用正则表达式正则 平时做网站经常要用正则表达式,下面是一些讲解和例子,仅供大家参考和修改使用:"^\d+$"//非负整数(正整数+ 0) "^[0-9]*[1-9][0-9]*$"//正整数 "^((-\d+)|(0+))$"//非正整数(负整数+ 0) "^-[0-9]*[1-9][0-9]*$"//负整数 "^-?\d+$"//整数 "^\d+(\.\d+)?$"//非负浮点数(正浮点数+ 0) "^(([0-9]+\.[0-9]*[1-9][0-9]*)|([0-9]*[1-9][0-9]*\.[0-9]+)|([0-9]*[1-9][0-9]*))$"//正浮点数"^((-\d+(\.\d+)?)|(0+(\.0+)?))$"//非正浮点数(负浮点数+ 0) "^(-(([0-9]+\.[0-9]*[1-9][0-9]*)|([0-9]*[1-9][0-9]*\.[0-9]+)|([0-9]*[1-9][0-9]*)))$"//负浮点数 "^(-?\d+)(\.\d+)?$"//浮点数 "^[A-Za-z]+$"//由26个英文字母组成的字符串 "^[A-Z]+$"//由26个英文字母的大写组成的字符串 "^[a-z]+$"//由26个英文字母的小写组成的字符串 "^[A-Za-z0-9]+$"//由数字和26个英文字母组成的字符串 "^\w+$"//由数字、26个英文字母或者下划线组成的字符串 "^[\w-]+(\.[\w-]+)*@[\w-]+(\.[\w-]+)+$"//email地址 "^[a-zA-z]+://(\w+(-\w+)*)(\.(\w+(-\w+)*))*(\?\S*)?$"//url /^(d{2}|d{4})-((0([1-9]{1}))|(1[1|2]))-(([0-2]([1-9]{1}))|(3[0|1]))$/ // 年-月-日 /^((0([1-9]{1}))|(1[1|2]))/(([0-2]([1-9]{1}))|(3[0|1]))/(d{2}|d{4})$/ // 月/日/年 "^([w-.]+)@(([[0-9]{1,3}.[0-9]{1,3}.[0-9]{1,3}.)|(([w-]+.)+))([a-zA-Z]{2,4}|[0-9]{1,3})(]?)$" //Emil /^((\+?[0-9]{2,4}\-[0-9]{3,4}\-)|([0-9]{3,4}\-))?([0-9]{7,8})(\-[0-9]+)?$/ //电话号码 "^(d{1,2}|1dd|2[0-4]d|25[0-5]).(d{1,2}|1dd|2[0-4]d|25[0-5]).(d{1,2}|1dd|2[0-4]d|25[0-5]).(d{1,2}| 1dd|2[0-4]d|25[0-5])$" //IP地址 匹配中文字符的正则表达式:[\u4e00-\u9fa5] 匹配双字节字符(包括汉字在内):[^\x00-\xff] 匹配空行的正则表达式:\n[\s| ]*\r 匹配HTML标记的正则表达式:/<(.*)>.*<\/\1>|<(.*) \/>/ 匹配首尾空格的正则表达式:(^\s*)|(\s*$) 匹配Email地址的正则表达式:\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)* 匹配网址URL的正则表达式:^[a-zA-z]+://(\\w+(-\\w+)*)(\\.(\\w+(-\\w+)*))*(\\?\\S*)?$ 匹配帐号是否合法(字母开头,允许5-16字节,允许字母数字下划线):^[a-zA-Z][a-zA-Z0-9_]{4,15}$ 匹配国内电话号码:(\d{3}-|\d{4}-)?(\d{8}|\d{7})? 匹配腾讯QQ号:^[1-9]*[1-9][0-9]*$ 元字符及其在正则表达式上下文中的行为: \ 将下一个字符标记为一个特殊字符、或一个原义字符、或一个后向引用、或一个八进制转

(完整版)编译原理及实现课后习题答案

编译原理及实现课后习题解答 2.1设字母表A={a},符号串x=aaa,写出下列符号串及其长度:x0,xx,x5 以及A+和A*. x0=(aaa)0=ε| x0|=0 xx=aaaaaa |xx|=6 x5=aaaaaaaaaaaaaaa | x5|=15 A+ =A1∪A2∪ …. ∪A n∪…={a,aa,aaa,aaaa,aaaaa…} A* = A0 ∪A1 ∪A2 ∪…. ∪A n ∪…={ε,a,aa,aaa,aaaa,aaaaa…} 2.2令∑={a,b,c},又令x=abc,y=b,z=aab,写出如下符号串及它们的长度:xy,xyz,(xy)3 xy=abcb |xy|=4 xyz=abcbaab |xyz|=7 (xy)3=(abcb)3 =abcbabcbabcb | (xy)3 |=12 2.3设有文法G[S]:S∷=SS*|SS+|a,写出符号串aa+a*规范推导,并构造语 法树。 S => SS* => Sa* => SS+a* => Sa+a* => aa+a*

S S S * S S + a a a 2.4 已知文法G[Z]:Z∷=U0∣V1 、U∷=Z1∣1 、V∷=Z0∣0 ,请写出全部由此文法描述的只含有四个符号的句子。 Z=>U0=>Z10=>U010=>1010 Z=>U0=>Z10=>V110=>0110 Z=>V1=>Z01=>U001=>1001 Z=>V1=>Z01=>V101=>0101 2.5已知文法G[S]:S∷=AB A∷=aA︱εB∷=bBc︱bc , 写出该文法描述的语言。 A∷=aA︱ε描述的语言: {a n|n>=0} B∷=bBc︱bc 描述的语言:{b n c n|n>=1} L(G[S])={a n b m c m|n>=0,m>=1} 2.6已知文法E∷=T∣E+T∣E-T 、T∷=F∣T*F∣T/F 、F∷=(E)∣i,写出该文法的开始符号、终结符号集合V T、非终结符号集合V N。 开始符号:E V t={+, - , * , / ,(, ), i} V n={E , F , T}

常用正则表达式(判断)

正则表达式判断 //判断输入内容是否为空 function IsNull(){ var str = document.getElementById('str').value.trim(); if(str.length==0){ alert('对不起,文本框不能为空或者为空格!');//请将“文本框”改成你需要验证的属性名称! } } //判断日期类型是否为YYYY-MM-DD格式的类型 function IsDate(){ var str = document.getElementById('str').value.trim(); if(str.length!=0){ var reg = /^(\d{1,4})(-|\/)(\d{1,2})\2(\d{1,2})$/; var r = str.match(reg); if(r==null) alert('对不起,您输入的日期格式不正确!'); //请将“日期”改成你需要验证的属性名称! } } //判断日期类型是否为YYYY-MM-DD hh:mm:ss格式的类型 function IsDateTime(){ var str = document.getElementById('str').value.trim(); if(str.length!=0){ var reg = /^(\d{1,4})(-|\/)(\d{1,2})\2(\d{1,2}) (\d{1,2}):(\d{1,2}):(\d{1,2})$/; var r = str.match(reg); if(r==null) alert('对不起,您输入的日期格式不正确!'); //请将“日期”改成你需要验证的属性名称! } } //判断日期类型是否为hh:mm:ss格式的类型 function IsTime() { var str = document.getElementById('str').value.trim(); if(str.length!=0){ reg=/^((20|21|22|23|[0-1]\d)\:[0-5][0-9])(\:[0-5][0-9])?$/ if(!reg.test(str)){ alert("对不起,您输入的日期格式不正确!");//请将“日期”改成你需要验证的属性名称!

带Hall项的一类磁流体力学方程组解的性态分析

带Hall项的一类磁流体力学方程组解的性态分析本文研究一类带Hall项的磁流体力学方程组,包括带正常扩散的不可压 Hall-MHD方程组、带反常扩散即分数阶耗散的广义Hall-MHD方程组及带分数阶耗散的广义两相流MHD方程组等.Hall项被认为是发生在大型磁剪切中磁重联现象的一个本质特征,能很好地描述地球物理、天体物理、等离子体物理中的物理现象.本文讨论了这类方程的适定性和解的长时间行为,并给出了一些解在有限时间爆破的判别准则.首先,我们研究三维带电阻的粘性不可压Hall-MHD方程组的Cauchy问题:利用Holder不等式,估值空间Hs(R3)(s>3/2)的代数性 质,Young不等式,我们证明了该初值问题在低正则Sobolev空间 Hs(R3)(3/2<s ≤2/5)中强解的局部适定性.在证明方法中,合理有效的交换子估计和Sobolev嵌入关系对处理该方程组中Hall项的强非线性性和降低正则指标起到了关键作用.进一步,我们证明了该Cauchy问题小初值解的全局存在性.针对三维带电阻的粘性不可压广义Hall-MHD方程组的Cauchy问题:首先,在做磁场的高阶正则估计时,通过分部积分转移掉对流项中的一阶导数,然后利用 Kato-Ponce交换子估计和Sobolev嵌入关系,我们证明了小初值解的全局存在性,并将文献中的耗散指标α,β从α = β∈(1,6]扩大到α = β∈(1,3/2).进一步,我们讨论了耗散指标α = β∈[1,5/4)时,相应解的长时间行为.其次,我们考虑三维带电阻的粘性不可压广义Hall-MHD方程组Cauchy问题解的爆破准则.利用Fourier局部化技术,Bony仿积分解,Sobolev嵌入,插值不等式和Young不等式等分析技巧,我们得到了在更一般的函数空间-Besov空间中局部解的爆破 准则.最后,我们考虑三维不可压的广义two-fluid MHD方程组的Cauchy问题:首先通过交换子估计,Sobolev嵌入,插值不等式,Young不等式,我们证明了α =β∈(1,3/2)时,初值在低正则Sobolv空间Hm(R3)× Hm+1(R3),m>7/2-2α中系统解的局部存在性.其次,通过Fourier局部化技术和交换子估计,我们获得了局部解在t = T时刻的正则准则.

网络爬虫的设计与实现(完整版)

网络爬虫的设计与实现

摘要 网络爬虫将下载的网页和收集到的网页信息存储在本地数据库中以供搜索引擎使用,它是一个专门从万维网上下载网页并分析网页的程序。随着网络的快速发展,人们对搜索引擎的要求也越来越高,而网络爬虫的效率直接影响着搜索引擎的质量。 本课题研究的是通用网络爬虫,它是从一个或若干个初始网页的链接开始进而得到一个链接队列。伴随着网页的抓取又不断从抓取到的网页中抽取新链接放入到链接队列中,直到爬虫系统满足了停止条件。该课题主要涉及到了缓冲池技术,多线程技术,套接字技术,HTTP和SSL协议,正则表达式,Linux网络编程技术,PHP+Apache的使用等相关技术。 本说明书叙述的网络爬虫是以Linux C实现的,加以PHP语言编写的界面使用户更加方面的操作,利用Shell脚本和Apache服务器使得爬虫系统和界面很好的结合在一起。 关键词:网络爬虫缓冲池正则表达式 SSL协议多线程

目次 1 引言 (1) 1.1 课题选题背景 (1) 1.2 课题研究的意义 (2) 2 需求分析 (3) 2.1 功能需求分析 (3) 2.2 系统性能分析 (4) 3 系统设计 (5) 3.1 系统工作流程图 (5) 3.2 数据结构设计 (6) 3.3 系统各功能流程图 (7) 4 系统实现 (10) 4.1 相关技术分析 (10) 4.2 系统功能模块的实现 (11) 5 测试与结果 (17) 结论 (23) 致谢............................................................................................ 错误!未定义书签。参考文献. (24)

C#中常用正则表达式总结

C# 中的常用正则表达式总结
这是我发了不少时间整理的 C#的正则表达式,新手朋友注意一定要手册一下哦,这样可以节省很多 写代码的时间,中国自学编程网为新手朋友整理发布。 只能输入数字:"^[0-9]*$"。 只能输入 n 位的数字:"^\d{n}$"。 只能输入至少 n 位的数字:"^\d{n,}$"。 只能输入 m~n 位的数字:。"^\d{m,n}$" 只能输入零和非零开头的数字:"^(0|[1-9][0-9]*)$"。 只能输入有两位小数的正实数:"^[0-9]+(.[0-9]{2})?$"。 只能输入有 1~3 位小数的正实数:"^[0-9]+(.[0-9]{1,3})?$"。 只能输入非零的正整数:"^\+?[1-9][0-9]*$"。 只能输入非零的负整数:"^\-[1-9][]0-9"*$。 只能输入长度为 3 的字符:"^.{3}$"。 只能输入由 26 个英文字母组成的字符串:"^[A-Za-z]+$"。 只能输入由 26 个大写英文字母组成的字符串:"^[A-Z]+$"。 只能输入由 26 个小写英文字母组成的字符串:"^[a-z]+$"。 只能输入由数字和 26 个英文字母组成的字符串:"^[A-Za-z0-9]+$"。 只能输入由数字、26 个英文字母或者下划线组成的字符串:"^\w+$"。 验证用户密码:"^[a-zA-Z]\w{5,17}$"正确格式为:以字母开头,长度在 6~18 之间,只能包含 字符、数字和下划线。 验证是否含有^%&’,;=?$\"等字符:"[^%&’,;=?$\x22]+"。

只能输入汉字:"^[\u4e00-\u9fa5]{0,}$" 验证 Email 地址:"^\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*$"。 验证 InternetURL:"^http://([\w-]+\.)+[\w-]+(/[\w-./?%&=]*)?$"。 验证电话号码:"^(\(\d{3,4}-)|\d{3.4}-)?\d{7,8}$"正确格式为:"XXX-XXXXXXX"、"XXXXXXXXXXXX"、"XXX-XXXXXXX"、"XXX-XXXXXXXX"、"XXXXXXX"和"XXXXXXXX"。 验证身份证号(15 位或 18 位数字):"^\d{15}|\d{18}$"。 验证一年的 12 个月:"^(0?[1-9]|1[0-2])$"正确格式为:"01"~"09"和"1"~"12"。 验证一个月的 31 天:"^((0?[1-9])|((1|2)[0-9])|30|31)$"正确格式为;"01"~"09"和"1"~ "31"。 利用正则表达式限制网页表单里的文本框输入内容: 利用正则表达式限制网页表单里的文本框输入内容: 制网页表单里的文本框输入内容 用正则表达式限制只能输入中文: onkeyup="value=value.replace(/[^\u4E00-\u9FA5]/g,’’)" onbeforepaste="cliPBoardData.setData(’text’,clipboardData.getData(’text’).replace(/ [^\u4E00-\u9FA5]/g,’’))" 用正则表达式限制只能输入全角字符: onkeyup="value=value.replace(/[^\uFF00-\uFFFF]/g,’’)" onbeforepaste="clipboardData.setData(’text’,clipboardData.getData(’text’).replace(/ [^\uFF00-\uFFFF]/g,’’))" 用正则表达式限制只能输入数字:onkeyup="value=value.replace(/[^\d]/g,’’) "onbeforepaste="clipboardData.setData(’text’,clipboardData.getData(’text’).replace( /[^\d]/g,’’))" 用正则表达式限制只能输入数字和英文:onkeyup="value=value.replace(/[\W]/g,’’) "onbeforepaste="clipboardData.setData(’text’,clipboardData.getData(’text’).replace( /[^\d]/g,’’))" 得用正则表达式从 URL 地址中提取文件名的 JavaScript 程序,如下结果为 page1

相关文档
最新文档