定子绕组匝间短路时发电机电磁转矩分析_方红伟

定子绕组匝间短路时发电机电磁转矩分析_方红伟
定子绕组匝间短路时发电机电磁转矩分析_方红伟

6.3-同步发电机突然三相短路的物理过程及短路电流分析资料

6.3-同步发电机突然三相短路的物理过程及短路电流分析资料

6.3 同步发电机突然三相短路的物理过程及短路电流分析 6.3.1 同步发电机在空载情况下突然三相短路的物理过程 上一节讨论了无限大电源供电电路发生三相对称短路的情况。实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。 同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。 图6-6 凸极式同步发电机示意图 图6-6为凸极同步发电机的示意图。定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。转子逆时针旋转为正方向,轴超前轴90o。励磁绕组的轴线与轴重合。阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。 定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。下面分析发电机空载突然短路的暂态过程。 1.定子回路短路电流 设短路前发电机处于空载状态,气隙中只有励磁电流产生的磁链,忽略漏磁链后,穿过主磁路为主磁链匝链定子三相绕组,又设为转子轴与A相绕组轴线的初始夹角。由于转子以同步转速旋转,主磁链匝链定子三相绕组的磁链随着的变化而变化,因此 (6-17)

利用三次谐波电压构成的100%发电机定子接地保护

利用三次谐波电压构成的100%发电机定子接地保护的工作原理? 由于发电机气隙磁通密度的非正旋分布和铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在,设以E3表示之。 为便于分析,假定: (1)把发电机每相绕组对地电容CG分成相等的两部分,每部CG/2分等效地分别集中在发电机的中性点N和机端S。 (2)将发电机端部引出线、升压变压器、厂用变压器以及电压互感器等设备的每相对地电容CS 也等效的集中放在机端。 根据理论分析,在上述加设条件下,可得出下列结论: (1)当发电机中性点绝缘时,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=CG/(CG+2CS)<1 (2)当发电机中性点经消弧线圈接地时,若基波电容电流被完全补偿,发电机在正常运行情况下,机端S和中性点N处三次谐波电压之比为 US3/UN3=(7CG-2CS)/9(CG+2CS)<1 (3)不论发电机中性点是否接有消弧线圈,当在距发电机中性点α(中性点到故障点的匝数占每相分支总匝数的百分比)处发生定子绕组金属性单相接地时,中性点N和机端S处的三次处的三次谐波电压恒为 UN3=αE3 US3=(1-α)E3 如图所示: 从上图中可以看出,UN3=f(α)、US3=f(α)皆为线性关系,它们相交于α=0.5处;当发电机中性点接地时,α=0,UN3=0,US3=E3; 当机端接地时,α=1,UN3=E3,US3=0; 当α<O.5时,恒有US3>UN3; 当α>O.5时,恒有 UN3>US3。 综上所述,用US3作为动作量,UN3作为制动量构成发电机定子绕组单相接地保护,且当US3>

发电机转子匝间短路的原因分析及预防措施的探讨

发电机转子匝间短路的原因分析及预防措施的探讨[摘要]沙角A电厂#4发电机转子在开机时或有强励电流时,轴振较大;而 在正常运行时(转子达到3000r/min)各项电气参数均属正常。本次发电机大修时,发现转子存在不稳定匝间短路现象。用极电压平衡以及匝间电压分布等多种方法查找出短路点,经返厂处理后并提出了相应的预防措施。 【关键词】汽轮发电机;匝间短路;原因分析;预防措施 一、概况 沙角A电厂#4发电机(以下简称A4发电机)QFN-300-2是上海发电机厂引进美国西屋公司技术生产的全氢冷汽轮发电机,于2012年12月1日进行第五次大修。 A4发电机在正常运行时,各项电气参数和机械参数均检测正常。只是在开机时或有强励电流时,轴振较大。12月13日抽出转子后,通过两级电压平衡、匝间电压分布以及RSO等试验方法测试,发现转子有不稳定匝间短路现象:转子在做二极平衡时在固定的一个角度(设此时为0度)有9V的差异,随着转动而缩小,180度时消失,至0度时又达到差异9V左右,具体数据见下图(试验数据来源于沙角A电厂高试班)。同时RSO波形法也证实二极不吻合。经工作人员检查,转子护环下也有少量铜粉出现,且汽端多级风扇内比励端护环内多,不稳定匝间短路点发生在励端的可能性较大。 二、短路原因分析 2.1判断依据 判断转子是否为匝间短路通常用两极电压平衡、匝间电压分布以及RSO等试验方法。转子发生匝间短路时,由于短路点的存在,会改变短路线圈的阻抗以及电容的分布,给转子通入交流电流时,转子线圈的两极间或匝间的电压分布的会明显不平衡。 2.2短路故障点的初步确定 根据此判断原理,测得交流下转子线圈的电压分布并绘制曲线图(试验数据来源于中试所)如下: 据上图可知大部分线圈上的电压上级与下级基本相同,只有在#4、#6和#7线圈的电压出现了突然降低趋势,且差值为2V—4V,因此推断故障应发生在#4、#6和7#线圈。24日拆除励端端部护环以及绝缘件后,发现#6、#7线圈之间的扇形绝缘板有电击现象,并且表面有少量铜粉。将绝缘件清理后回装,端部线圈整形模拟护环状态加固线圈后做匝间电压分布试验,短路现象消失,初步认定之前

发电机常见故障及解决方案汇总

双馈发电机简介及常见故障 一:双馈电机简介及工作原理 (1)简介: 双馈异步风力发电机(DFIG,Double-Fed Induction Generator)是一种绕线式感应发电机,是变速恒频风力发电机组的核心部件,也是风力发电机组国产化的关键部件之一。该发电机主要由电机本体和冷却系统两大部分组成。电机本体由定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构. 双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变流器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。由于采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。 (2)工作原理: 双馈感应发电机由定子绕组直连定频三相电网的绕线型感应发 电机和安装在转子绕组上的双向背靠背IGBT电压源变流器组成。“双馈”的含义是定子电压由电网提供,转子电压由变流器提供。该系统允许在限定的大范围内变速运行。通过注入变流器的转子电流,变流器对机械频率和电频率之差进行补偿。在正常运行和故障期间,发电机的运转状态由变流器及其控制器管理。

变流器由两部分组成:转子侧变流器和电网侧变流器,它们是彼此独立控制的。电力电子变流器的主要原理是转子侧变流器通过控制转子电流分量控制有功功率和无功功率,而电网侧变流器控制直流母线电压并确保变流器运行在统一功率因数(即零无功功率)。 功率是馈入转子还是从转子提取取决于传动链的运行条件:在超同步状态,功率从转子通过变流器馈入电网;而在欠同步状态,功率反方向传送。在两种情况(超同步和欠同步)下,定子都向电网馈电。(3)优点: 首先,它能控制无功功率,并通过独立控制转子励磁电流解耦有功功率和无功功率控制。其次,双馈感应发电机无需从电网励磁,而从转子电路中励磁。最后,它还能产生无功功率,并可以通过电网侧变流器传送给定子。但是,电网侧变流器正常工作在单位功率因数,并不包含风力机与电网的无功功率交换。 二:电机常见故障及解决办法 1:电机轴电流电流? 电机的轴--轴承座--底座回路中的电流称为轴电流 轴电流产生的原因: (1)磁场不对称; (2)供电电流中有谐波; (3)制造、安装不好,由于转子偏心造成气隙不匀; (4)可拆式定子铁心两个半圆间有缝隙; (5)有扇形叠成的定子铁心的拼片数目选择不合适。

发电机定子单相接地处理(仅给借鉴)

发电机定子绕组单相接地,是发电机最常见的一种电气故障。非故障相对地电压上升为线电压,可能导致绝缘薄弱处发生接地形成两点接地短路,扩大事故。定子绕组单相接地的危害性主要是流过故障点的电容电流产生电弧可能烧坏定子铁心,进一步造成匝间短路或相间短路(铁心灼伤后造成磁场分布不均,定子绕组局部温度高,后果必然是相间短路损坏发电机。),使发电机遭受更为严重的破坏。 6kV发电机为中性点不接地系统,当发生定子绕组单相接地时,故障点将出现零序电压。下面以A相定子绕组任一点发生金属性接地故障为例进行分析。如图1所示,假设A相在距中性点a处(a表示由中性点到故障点的匝数占该相总匝数的百分数)的d点发生接地故障。 则零序电压为(推导过程略):Ud0=-aEA 上式表明,故障点的零序电压与a成正比, 即接地点离中性点越远,零序电压越高。这样,可以利用接于机端的电压互感器开口三角形侧取得零序电压,构成单相接地保护,如图2所示。 零序电压型单相接地保护,是从机端电压互感器开口三角形侧取得零序电压,接入保护用的过电压继电器。理想情况下,发电机正常运行时,TV开口三角形侧无零序电压,继电器不动作。但实际上,发电机在正常运行情况下,其相电压中存在三次谐波电压;另外,在变压器高压侧发生接地短路时,由于变压器高低压绕组之间有电容存在,发电机机端也会产生零序电压。为了保证保护动作的选择性,保护的整定值应躲开上述三次谐波电压与零序电压。根据运行经验,电压值一般整定为15~20V之间。按此值整定后,由于靠近中性点附近发生接地故障时,零序电压低,保护可能不会起动,故此种保护的保护范围约为由机端到中性点绕组的85%左右,保护存在死区。 规程规定,对于出口电压为6 3kV的发电机,当接地电流等于或大于5A时,单相接地保护作用跳闸;小于5A时,一般只发信号不跳闸,这是基于保护发电机定子绕组而作出的规定。 保护动作时间国家有关规程对发电机定子绕组单相接地保护的动作时间未作明确规定,各电厂应根据本厂机组的实际运行情况给出延时时间。根据运行经验,延时时间应躲过变压器高压侧后备保护的动作时间,一般为3~5s为宜,否则容易误动。 发电机定子绕组单相接地保护,对于中小型发电机,可采用零序电压型保护,实际运行中,应根据系统接线与运行方式,决定保护接线、定值整定、跳闸方式等,以利于发电机定子单相接地保护准确而可靠地动作。 如果查明接地点在发电机内部(在窥视孔能见到放电火花或电弧),应立即减负荷停机,并向上级调度汇报。如果现场检查不能发现明显故障,但“定子接地”报警又不消失,应视为发电机内部接地,30min内必须停机检查处理。 一、零序电压式定子接地保护的整定计算 1、零序动作电压 零序电压式定子接地保护的动作电压,应按躲过发电机正常工况下及恶劣条件下发电机系统

发电机匝间短路故障诊断

目录 1 引言 (1) 1.1 研究目的与意义 (1) 1.2 发电机故障诊断技术的发展状况 (1) 1.3 发电机转子绕组匝间短路故障检测的研究现状 (2) 1.4 本文的内容和主要工作 (4) 2 汽轮发电机转子绕组匝间短路的理论分析 (6) 2.1 汽轮发电机的转子结构 (6) 2.2 转子绕组发生匝间短路的原因 (6) 2.3 匝间短路的磁场分析 (7) 2.3.1 发电机发生匝间短路的磁场分析 (9) 3 发电机转子绕组匝间短路故障的探测线圈法 (12) 3.1 探测线圈法的测试原理 (12) 3.2 探测线圈的结构及置放 (14) 3.2.1 诊断系统及其功能组成 (15) 3.2.2 基本参数 (16) 3.2.3 传感器安装和定位 (16) 3.3.3 故障判断 (16) 3.3 大亚湾核电站发电机组的探测线圈法实例分析 (17) 参考文献 (20)

1引言 1.1研究目的与意义 随着我国国民经济的快速发展,电力工业正处于大电机和大电网的发展阶段。人们的生活和生产水平迅速提高,使得电能需求量日益增长,进而对电力系统的供电质量、可靠性及经济性等指标的要求也不断提高。发电机是电能生产的重要设备,它为整个电力系统提供电能,是整个电网的心脏,因此如果发电机发生故障,可能会导致局部停电甚至整个系统崩溃。 发电机转子作为发电机的重要组成部分,主要由励磁绕组线圈、线圈引线以及阻尼绕组等部分组成。发电机运行时,由于转子处于高速旋转状态,这些部件将承受很大的机械应力和热负荷,若超过其极限值时将导致部件的损坏。转子绕组是发电机经常出现故障的部位,除本体故障外,主要是转子绕组的短路故障,如匝间短路、一点接地短路、两点接地短路等。发电机正常运行时,转子绕组对地之间会有一定的分布电容和绝缘电阻,绝缘甩阻的阻值通大于1兆欧。但是因某种原因导致对地绝缘损坏或绝缘电阻严重下降时,就会发生转子绕组接地事故。当发电机转子发生一点接地故障时,因为励磁电源的泄漏电阻很大,一般不会造成多大的伤害,限制了接地泄露电流的数值。但是,发电机转子两点接地故障将会产生很大的电流,经故障点处流过的故障电流会烧坏转子本体。而部分转子绕组的短接,励磁绕组中增加的电流可能会导致转子因过热而烧坏,气隙磁通也会失去平衡,从而引起发电机的振动,还可能使转子大轴磁化,甚至会导致灾难性的后果,因此两点接地故障的后果是很严重的。 目前,在国内运行的大型发电机组中,发电机匝间短路故障占故障总数的比重较大,大多数发电机都发生过或已经存在转子绕组匝间短路的故障。由于转子绕组绝缘的损坏,转子绕组匝间短路后会形成短路电流,从而导致局部过热。发电机长期在这种环境下运行,会进一步引起绝缘的损坏,导致更为严重的匝间短路,最终形成恶性循环。据统计资料表明,发电机转子匝间短路故障并不会影响机组的正常运行,所以常常被忽略,但是如果任其发展,转子电流将会显著增加,绕组温升过高,无功输出降低,电压波形畸变,机组振动加剧,并且还会引起其它的机械故障,严重时还会影响发电机的无功出力。如果发生的是不对称的匝间短路故障,发电机组的振动将会加剧,转子绕组的绝缘也有可能进一步的损坏,进而发展成为接地故障,对发电机组的安全稳定运行构成了严重的威胁。因此,对发电机绕组匝间短路故障的诊断与识别是十分必要的。 1.2 发电机故障诊断技术的发展状况 早期的故障诊断主要依靠人工经验,如:看、听、触、摸等方法进行诊断,

同步发电机突然三相短路的仿真研究_高仕红

第26卷第1期 湖北民族学院学报(自然科学版) V o.l26 N o.1 2008年3月 J ourna l o fHubei Institute for N ati ona liti es(N at ural Science Editi on) M a r.2008同步发电机突然三相短路的仿真研究 高仕红 (湖北民族学院电气工程系,湖北恩施445000) 摘要:同步发电机的突然三相短路,是电力系统最严重的故障,对电机本身和相关的电气设备都可能产生严重的影响,研究它有着非常重要的意义.在d-p坐标系统下,构建了同步发电机的数学模型以及动态等效电路.利用M a tlab7.1/Si m uli nk6.3的强大功能,构建了同步发电机机端突然三相短路的仿真模型,并对同步发电机的各物理量在短路期间进行了仿真研究.通过理论和仿真对比分析,同步发电机的各物理量在突然短路的暂态过程中产生很大的冲击和振荡,最后稳定在短路前的状态,仿真结果与理论分析相吻合.此方法还可用来研究同步发电机某些动态过程,从而为电机的优化设计提供必要的理论依据. 关键词:同步发电机;突然三相短路;数学模型;动态等效电路;仿真模型 中图分类号:TM301文献标识码:A文章编号:1008-8423(2008)01-0036-05 Si m ul ati on Study of Synchronous G enerator on Sudden Three-phase Short C ircuit GAO Sh i-hong (Depart m ent o f E l ec trical Eng i neeri ng,H ube i Institute f o r N a ti ona li ties,Enshi445000,Chi na) Abst ract:Three-phase short circuit of synchr onous generator is a seri o us fau lt i n t h e electric po w er sys-te m,wh ich is like l y to i n fl u ence bad l y on the nou m enon of electr icm ach i n e and correlati v e electric equ i p-m en,t so it is i m portant to study i.t In the reference fra m e,m athe m atic m ode l and dyna m ic equivalent c ir-cu itw as bu il.t By m aking use of po w erful f u ncti o n ofM atlab7.1/S i m uli n k6.3,si m ulati o n mode l of syn-chronous generator on sudden three-phase short circu it w as buil,t vari o us physica l quantities were stud-ied by si m u lation duri n g t h e short c ircu i.t By co mpari n g theoretics w ith si m ulati o n,various physica l quan-tities o f synchronous generator produced tre m endous i m pact and surge duri n g the sudden circu it and they stabilized in the pr oceedi n g state of short c ircu i.t The e m u lational resu lts are consi s tent w ith theore tic a-nalysis.Th ism ethod is a lso for the use o f researching certa i n dyna m ic course of synchronous generator, w hich provided necessary theoreti c basis for opti m u m desi g n of e lectric m ach i n e. K ey w ords:synchronous generator;sudden three-phase short c ircu i;t m athe m atic m ode;l dyna m ic equ i v-alent circu i;t si m ulati o n m odel 同步发电机是电力系统中最重要和最复杂的元件,由多个具有电磁耦合关系的绕组构成.同步发电机突然短路的暂态过程所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响,因此对同步发电机动态特性的研究历来是电力系统中的重要课题之一[1~3].而同步电机的突然三相短路,是电力系统的最严重的故障,它是人们最为关心、研究最多的过渡过程.虽然短路过程所经历的时间是极短的(通常约为0.1~0.3s),但对电枢短路电流和转子电流的分析计算,却有着非常重要的意 收稿日期:2007-12-12. 基金项目:湖北省教育厅科学研究计划项目(B20082908). 作者简介:高仕红(1971-),男,硕士,讲师,主要从事电机控制和同步电机励磁控制.

发电机定子接地处理及原因分析(完稿)

中国华能集团公司 2017年技师考评申报材料 (论文) 申报单位:华能九台电厂 姓名:赵丽丽 工种:电气试验工 专业:电气检修

发电机定子接地处理及原因分析 华能吉林发电有限公司九台电厂赵丽丽 摘要:发电机是电力之源,作为火力发电厂主要设备,发电机的定子和转子绕组绝缘和接头由于电、热和机械振动影响会逐渐老化和接触不良,运行中易产生事故。发电机在日常生产中起着至关重要的作用,它的健康运行与否直接关系到发电厂能否经济运行,当发电机发生接地故障时,对事故发生原因进行分析和判断,并根据现场保护动作及设备情况及时分析原因,准确判断出是一次设备还是二次设备造成,并快速消除设备隐患,保证机组安全稳定运行。本文介绍了我厂发电机定子接地故障的查找过程、处理经过、原因分析及防范措施等。 关键词:发电机绝缘定子接地直流耐压故障分析 1、机组概述 我电厂2号发电机组为670MW超临界燃煤发电机组,汽轮发电机(QFSN-670—2型)由哈尔滨电机厂有限责任公司制造。机组型式为水-氢-氢冷670MW发电机组。本型发电机为三相交流隐极式同步发电机。发电机采用整体全密封、内部氢气循环、定子绕组水内冷、定子铁芯及端部结构件氢气表面冷却、转子绕组气隙取氢气内冷的冷却方式。定子电压20KV,定子电流21.49KA。该机组于2009年12月6日投运至今,曾发生过励侧主引线并联环上下接头处漏氢已处理好,本次故障发生前机组运行稳定,已持续运行一年多。 2、机组运行方式及动作情况 故障前,我厂1号、2号机组正常双机运行,1号发电机有功功率540MW,2号发电机有功功率465MW,频率50Hz。,2号发电机组于2014年08月22日19时06分跳闸,发变组保护正确动作,厂用电切换正确。主机联跳2号炉机组打闸停机,500KV开关场内5021、5022断路器跳闸,检查发变组保护动作报告为:2014-08-22 19:06:22:111,01000ms,定子零序电压,01005ms,定子零序电压高段。查看发变组保护起动后1至2个周波内发电机机端电压UA1=16.67V,UB1=82.24V,UC1=89.28V,发电机机端零序电压值72.18V,发电机中性点零序电压值40.12V。(详见附图1)

转子绕组匝间短路产生的原因和危害(正式版)

文件编号:TP-AR-L1649 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 转子绕组匝间短路产生的原因和危害(正式版)

转子绕组匝间短路产生的原因和危 害(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 (1)产生原因 ①制造工艺不良。例如:在下线、整形等工艺过 程中损伤匝间绝缘;铜线有硬块、毛刺,也会造成匝 间绝缘损伤。 ②运行中,在电、热和机械等综合应力的作用 下,绕组产生变形、位移,造成匝间绝缘断裂、磨 损、脱落;另外,由于脏污等,也可能造成匝间(尤 其是转子绕组的端部匝间)短路。

③运行年久、绝缘老化,也会造成匝间短路。 (2)危害 转子绕组匝间短路故障是发电机常见性缺陷;轻微的匝间短路,机组仍可继续运行,但应注意加强监视和试验;当匝间短路严重时,将使转子电流显著增大,转子绕组温度升高,限制了发电机无功功率的输出,或者使机组振功加剧,甚至被迫停机。因此,当转子绕组发生匝间短路故障时,必须通过试验找出匝间短路点,予以消除,使发电机恢复正常运行。 (3)匝间短路的分类

发电机定子绕组冒烟事故的分析及改进

安全管理编号:LX-FS-A22141 发电机定子绕组冒烟事故的分析及 改进 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

发电机定子绕组冒烟事故的分析及 改进 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1 事故现象 20xx年4月,我厂将三级电站2号发电机组的励磁系统由原来的旋转式励磁机励磁更新为可控硅静止式励磁。该励磁装置于2000-09-20机组运行过程中,出现直流系统接地。在查找接地时,当瞬切操作母线总把手时接地信号仍然存在,立即切回后,发现励磁调节器由主通道自动转换为备用通道运行,人工手动将其切回主通道,但装置又自动转换至备用通道,同时机组出现如下症状: (1)转子过电压保护指示灯亮;

同步发电机突然三相短路中的几问题

第2章作业参考答案 2-1 为何要对同步发电机的基本电压方程组及磁链方程组进行派克变换答:由于同步发电机的定子、转子之间存在相对运动,定转子各个绕组的磁路会发生周期性的变化,故其电感系数(自感和互感)或为1倍或为2倍转子角θ的周期函数(θ本身是时间的三角周期函数),故磁链电压方程是一组变系数的微分方程,求解非常困难。因此,通过对同步发电机基本的电压及磁链方程组进行派克变换,可把变系数微分方程变换为常系数微分方程。 2-2 无阻尼绕组同步发电机突然三相短路时,定子和转子电流中出现了哪些分量其中哪些部分是衰减的各按什么时间常数衰减试用磁链守恒原理说明它们是如何产生的 答:无阻尼绕组同步发电机突然三相短路时,定子电流中出现的分量包含:a)基频交流分量(含强制分量和自由分量),基频自由分量的衰减时间常数’。 为T d 。 b)直流分量(自由分量),其衰减时间常数为T a 。 c)倍频交流分量(若d、q磁阻相等,无此量),其衰减时间常数为T a 转子电流中出现的分量包含: ’。 a)直流分量(含强制分量和自由分量),自由分量的衰减时间常数为T d b)基频分量(自由分量),其衰减时间常数为T 。 a 产生原因简要说明: 1)三相短路瞬间,由于定子回路阻抗减小,定子电流突然增大,电枢反应 使得转子f绕组中磁链突然增大,f绕组为保持磁链守恒,将增加一个自 由直流分量,并在定子回路中感应基频交流,最后定子基频分量与转子 直流分量达到相对平衡(其中的自由分量要衰减为0). 2)同样,定子绕组为保持磁链守恒,将产生一脉动直流分量(脉动是由于d、 q不对称),该脉动直流可分解为恒定直流以及倍频交流,并在转子中感 应出基频交流分量。这些量均为自由分量,最后衰减为0。 2-3 有阻尼绕组同步发电机突然三相短路时,定子和转子电流中出现了哪些分量其中哪些部分是衰减的各按什么时间常数衰减

发电机100%定子接地保护的实现

发电机100%定子接地保护的实现 发电机能实现100%定子接地保护,采用了基波零序电压式定子接地保护和三次谐波电压构成的定子接地保护。,前者可反应发电机的机端向机内不少于85%定子绕组单相接地故障(85%~95%),后者反应发电机中性点向机端20%左右定子绕组单相接地故障(0~50%)。通过这两种保护的相互配合,达到了大容量机组100%定子接地保护的要求。 发电机定子单相接地后,接地电流经故障点、三相对地电容、三相定子绕组 而构成通路。当接地电流较大能在故障点引起电弧时,将使定子绕组的绝缘和定 子铁芯烧坏,也容易发展成危害更大的定了绕组相间或匝间短路。 第一部分是基波零序电压式定子接地保护: 保护接人的3Uo电压,取自发电机机端电压互感器开口三角绕组两端和发电机中性点电压互感器的二次侧。零序电压式定子接地保护的交流输入回路如图1所示。

第二部分是利用发电机三次谐波电动势构成的定子接地保护 由于发电机气隙磁通密度的非正旋分布和受铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在。 正常运行时,发电机中性点的三次谐波电压总是大于发电机机端的三次谐波电压。而当发电机靠中性点侧0~50%范围内有接地故障时,发电机机端的三次谐波电压大于发电机中性点的三次谐波电压。 根据发电机定子绕组中性点附近接地故障的三次谐波分布特性,保护装置取发电机中性点及机端三次谐波电压,并对其进行大小和相位的矢量比较。三次谐波定子接地保护交流接入回路如图6所示。

该保护的动作逻辑图如图7所示。

发电机转子匝间短路的原因与分类

发电机转子匝间短路的原因与分类 核心提示:现场运行经验表明,发电机转子绕组匝间短路故障多发生在绕组端部,尤其是在有过桥连线的一端居多。造成发电机转子绕组匝间短路故障的原因很多,总体上可分为制造和运行两大方面。 1.匝间短路产生的原因 (1)设计制 现场运行经验表明,发电机转子绕组匝间短路故障多发生在绕组端部,尤其是在有过桥连线的一端居多。造成发电机转子绕组匝间短路故障的原因很多,总体上可分为制造和运行两大方面。 1.匝间短路产生的原因 (1)设计制造方面 1)设计不够合理有的转于结构设计不够合理,如端部弧线转弯处的曲率半径偏小,致使外弧翘起,运行中在离心力的作用下,匝间绝缘被压断,造成了匝间短路。 2)制造质量不良 ①转子端部绕组固定不牢,垫块松动。发电机运行中由于铜铁温差引起的绕组相对位移,设计上未采取相应的有效措施。 ②有的转子绕组在制造时所应用的匝同绝缘材料材质不良,含有金属性硬刺,绕组铜导线加工成形后不严格的倒角与去毛刺,运行中在离心力的作用下刺穿了匝间绝缘,造戒匝间短路。 ③端部拐角整形不好和局部遗留褶皱或凸凹不平;匝间绝缘垫片垫偏、漏垫或堵孔(直接冷却的绕组通风孔);绕组导线的焊接头和相邻两套绕组间的连接线焊口整形不良;制造工艺粗糙留下的工艺性损伤;转子护环内残存加工后的金属切屑等异物。

④有的转子线匝局部未铣风孔扎或风量不合格造成严重过热,从而引起匝间短路。 2.转子绕组匝间短路的分类 转子绕组匝间短路按照短路是否随着转子的转动状态和运行工况发生变化,可以分为稳定性匝间短路和不稳定性匝间短路(或称为动态匝间短路).其中动态匝间短路又占多数。 就故障发展的过程来分,可以分为三个阶段:萌芽期、发展期和故障期。在萌芽期,转子绕组匝间出现初始异常征兆,机组运行还未受到影响,发电机组振动、励磁电流、机组无功及轴电压等均符合正常运行工况。故障表现为局部过热、匝间以稳定的高阻短路或匝间绝缘间存在油污、漆片等污染物。在发展期,机组运行已经出现异常,匝间短路基本或已经具备稳定特征。发电机在运行状态下振动增大、机组励磁和无功受到影响,但运行工况限制尚未突破。在故障期,绕组匝间绝缘已经出现明显的严重短路征兆,发电机组振动超标、无功严重降低(励磁电流超过额定要求)、转于温度高等异常运行工况,已危及发电机组的安全运行,甚至包括已经促发转子接地等故障的发生。因此,在这种状态下要求机组立即停机,进行故障处理和全面检修。 发电机转子绕组匝间短路故障诊断的目的是尽可能在故障的萌芽期和发展期准确地诊断出稳定性匝间短路和动态匝问短路,分析故障发生的原因,并确定故障发生的部位和严重程度。

转子绕组匝间短路产生的原因和危害

安全管理编号:LX-FS-A53839 转子绕组匝间短路产生的原因和危 害 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

转子绕组匝间短路产生的原因和危 害 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 (1)产生原因 ①制造工艺不良。例如:在下线、整形等工艺过程中损伤匝间绝缘;铜线有硬块、毛刺,也会造成匝间绝缘损伤。 ②运行中,在电、热和机械等综合应力的作用下,绕组产生变形、位移,造成匝间绝缘断裂、磨损、脱落;另外,由于脏污等,也可能造成匝间(尤其是转子绕组的端部匝间)短路。

③运行年久、绝缘老化,也会造成匝间短路。 (2)危害 转子绕组匝间短路故障是发电机常见性缺陷;轻微的匝间短路,机组仍可继续运行,但应注意加强监视和试验;当匝间短路严重时,将使转子电流显著增大,转子绕组温度升高,限制了发电机无功功率的输出,或者使机组振功加剧,甚至被迫停机。因此,当转子绕组发生匝间短路故障时,必须通过试验找出匝间短路点,予以消除,使发电机恢复正常运行。 (3)匝间短路的分类

电机常见故障分析及其处理

电机常见故障分析及其处理 摘要:发电机在运行中会不断受到振动、发热、电晕等各种机械力和电磁力的作用,加之由于设计、制造、运行管理以及系统故障等原因,常常引起发电机温度升高、转子绕组接地、定子绕组绝缘损坏、励磁机碳刷打火、发电机过负载等故障。与之相似的是电动机的故障也主要有机械故障和电气故障两方面。 关键词:定子线圈,激磁电流,短路故障,接地故障。 电机可分为电动机和发电机两类,电动机又可分为同步电动机和异步电动机,发电机也可分为同步发电机和异步发电机,本文将主要围绕异步电动机和同步发电机为例,简要分析电机常见的故障及其处理方法。 一、三相交流异步电动机常见故障分析及其处理 1.机械方面有扫膛、振动、轴承过热、损坏等故障。 ⑴异步电动机定、转子之间气隙很小,容易导致定、转子之间相碰。一般由于轴承严重超差及端盖内孔磨损或端盖止口与机座止口磨损变形,使机座、端盖、转子三者不同轴心引起扫膛。如发现对轴承应及时更换,对端盖进行更换或刷镀处理。 ⑵振动应先区分是电动机本身引起的,还是传动装置不良所造成的,或者是机械负载端传递过来的,而后针对具体情况进行排除。属于电动机本身引起的振动,多数是由于转子动平衡不好,以及轴承不良,转轴弯曲,或端盖、机座、转子不同轴心,或者电动机安装地基不平,安装不到位,紧固件松动造成的。振动会产生噪声,还会产生额外负荷。 ⑶如果轴承工作不正常,可凭经验用听觉及温度来判断。用听棒(铜棒)接触轴承盒,若听到冲击声,就表示可能有一只或几只滚珠扎碎,如果听到有咝咝声,那就是表示轴承的润滑油不足,因为电动机要每运行3000-5000小时左右需换一次润滑脂。电机超过规定运转时间后,轴承发出不正常的声音,用听棒接触轴承盒,听到了“咝咝”的声响,同时还有微小“哒哒”的冲击声,原因是轴承盒内缺油,同时轴承滚柱有的以有细微的麻痕。通过对轴承进行了更换,添加润滑油脂。在添润滑脂时不易太多,如果太多会使轴承旋转部分和润滑脂之间产生很大的磨擦而发热,一般轴承盒内所放润滑脂约为全溶积二分之一到三分之二即可。在轴承安装时如果不正确,配合公差太紧或太松,也都会引起轴承发热。在卧式电动机中装配良好的轴承只受径向应力,如果配合过盈过大,装配后会使轴承间隙过小,有时接近于零,用手转动不灵活,这样运行中就会发热。 2. 电气方面有电压不正常绕组接地绕组短路绕组断路缺相运行等。 ⑴电源电压偏高,激磁电流增大,电动机会过分发热,过分的高电压会危机电动机的绝缘,使其有被击穿的危险。电源电压过低时,电磁转矩就会大大降低,如果负载转距没有减小,转子转数过低,这时转差率增大造成电动机过载而发热,长时间会影响电动机的寿命。当三相电压不对称时,即一相电压偏高或偏低时,会导致某相电流过大,电动机发热,同时转距减小会发出“翁嗡”声,时间长会损坏绕组。总之无论电压过高过低或三相电压不对称都会使电流增加,电动机发热而损坏电动机。所以按照国家标准电动机电源电压在额定值±5%内变化,电动机输出功率保持额定值。电动机电源电压不允许超过额定值的±10%,;三相电源电压之间的差值不应大于额定值的±5%。

关于发电机定子绕组接地保护3U0整定的讨论

关于发电机定子绕组接地保护3U0整定的讨论 发表时间:2017-07-17T15:17:51.820Z 来源:《电力设备》2017年第8期作者:吴文宝 [导读] 摘要:本文主要叙述了大型发电机组定子接地保护的作用以及发电机定子绕组接地保护的概念 (江西省火电建设公司江西南昌 330001) 摘要:本文主要叙述了大型发电机组定子接地保护的作用以及发电机定子绕组接地保护的概念,并介绍了新疆某600MW电厂使用的定子接地保护整定方法。在各种运行条件下,对主变高压侧发生单相接地故障时耦合至发电机侧的零序电压进行分析计算,提出了发电机定子接地保护的整定建议。 关键词:发电机组;定子接地保护;3U0电容;接地电流 一、定子接地保护在大型汽轮发电机组中的地位 发电机是电力系统中最重要的设备之一,其外壳完全接地。当发电机定子绕组与铁心之间的绝缘被破坏时,就形成了定子单相接地故障。发电机定子绕组发生单相接地故障时,中性点流过的接地故障电流与中性点接地方式有关,发电机中性点接地方式的不同,对发电机定子接地保护的出口方式要求也不同,而且动作时限也是长短不一。由于现代大型发电机组在电力系统的重要性,所以大型发电机一般都装设作为发电机主要保护的100%定子接地保护,并保证该保护能够可靠正确动作,确保小异常不酿成大事故。 二、大型发电机定子接地保护的构成 我国大型发电机组大都采用单元接线方式,中性点接地方式主要采用中性点经配电变压器(二次侧接电阻)接地,电阻值较大,取为高阻接地,其电阻吸收功率大于或等于三相对地电容的无功伏安。为限制动态过电压不超过2.6倍额定相电压,接地电阻(一次值)RN′≤1/3ωCg,Cg为发电机每相对地耦合电容。 三、发电机定子绕组接地保护 (1)接地电阻定值的确定发电机中性点经配电变高阻接地,当定子绕组发生单相接地故障时,其等效的基波零序回路电路如下图所 示: 粗略估计电容容抗与中性点接地电阻(一次值)相等,根据DLT 684-2012 大型发电机变压器继电保护整定计算导则,发电机允许的接地故障电流值为1A中性点变压器变比为20000/240V,二次电阻为0.46Ω,令α=1(机端接地),IE=Iper=1A,E=UN/1.732,得

发电机转子绕组匝间短路故障的诊断分析

发电机转子绕组匝间短路故障的诊断分析 摘要:本文通过对车间24MW汽轮发电机1#发电机内部转子绕组匝间运作时出 现的短路故障进行分析和讨论,并结合积累的运行经验,对其故障诊断技术所存 在的问题及其特点进行深入性的探讨。并据此提出转子绕匝组间发生短路故障的 几种常见形态,同时对各种状态模式下所选用的检测方法其自身的适用性进行有 效评价,对未来一段时间内进一步提高匝间短路故障的检测以及诊断水平提供了 一些建议。 关键词:短路故障;汽轮发电机;转子绕组;诊断 前言:2012年11月2日,车间按照检修工作计划对1#汽轮发电机组进行同 轴度调整时,检修人员揭开4#瓦上轴承盖后,发现轴承座底部有大量金属铁削,于是立即对4#瓦进行检查,结果发现4#瓦处发电机转子轴颈磨损严重,下瓦口 与轴颈接触面处挤有数块金属脱落物,上瓦有较严重的划痕,下瓦磨损严重,磨 蚀区已失去金属光泽,表面巴氏合金磨损严重,于是发电机转入大修,委托济南 宏宝高压电机大修厂进行维修。维修后试运行,发电机组振动值偏高,对发电机 做转子交流阻抗试验,根据试验数值,怀疑发电机存在匝间短路故障。 当前发电机转子绕组在实际运行过程中,其出现匝间短路的主要表现有:发 电机组本身无功率不断下降;轴系振动逐渐加大;轴电压不断升高等等。上述所 讲的几种现象都是转子出现匝间短路的典型特征。因此我们在实际的检测以及诊 断过程中,可以根据这些特征来做出正确的判断以及评价。 为了以后更好的点检发电机组运行状态,及时发现并处理匝间故障现象,定 时对发电机轴电压进行检测,增加轴振监测点,并对匝间短路故障进行检测和诊 断的方法作以下研究。 一、对匝间短路故障进行检测和诊断的方法 应该说,现阶段发电机转子绕组在运行过程中出现匝间短路问题,依据机组 运行时转速与温度等内容,可以将其划分成为非稳定性短路以及稳定性短路。按 照机组本身的停运状态,检测方法可以将其分为静态检测以及动态检测。 在对匝间短路进行诊断和检测时,会涉及到两个重要点,一个就是对于出现 匝间短路转子机组的早期发现;另一个就是对于匝间短路故障的正确定位。而在 真正诊断过程中,能够及早发现转子匝间短路的诊断方法主要有RSO重复脉冲法 以及相应的探测线圈波形测量法。 1、RSO重复脉冲检测法 该检测方法能够实现对转子绕组运行中出现的匝间短路以及断线还有绕组接 地故障进行有效检测,并能确定出故障的准确位置。这种检测技术所遵循的工作 机理就是通过使用专业的双脉冲信号设备对运行中的发电转子两级,同步施以一 段高频率的冲击脉冲波,并利用双线示波器将两组发生响应的特性曲线记录下来,借以实现对其波形响应时间的有效测定,然后通过专业的计算分析或者是将所得 到的检测结果同设备出厂时所自带的标准波形进行认真比对,就能够准确的判断 出转子绕组匝间在运行过程中有没有出现短路状况,以及出现短路状况的具体位 置等等。图1所示即为一台发电机组在检修时所记录的RSO波形。记录中两条响 应曲线相同时,所得出的差值为一条直线,这就说明匝间在运行中没有出现短路 现象。相反,则说明在发电机组运行中出现匝间短路现象。 2、气隙探测线圈波形法 (1)发电机内部气隙探测线圈的具体设置

相关文档
最新文档