电厂锅炉NOx的形成与控制

电厂锅炉NOx的形成与控制
电厂锅炉NOx的形成与控制

电厂锅炉NOx的形成与控制

滕生平

北京唐发电股份有限公司高井发电厂

内容摘要

简要叙述了电厂锅炉NOx的形成及控制技术。分析了NOx的形成条件,提出了降低NOx的技术措施,同时指出了低NOx燃烧技术对我国现有电厂锅炉所产生的影响及应采取的响应措施。对电厂锅炉降低NOx排放有指导意义。

关键词:电厂锅炉 Nox形成与控制

一、前言

煤燃烧后产生的污染物较多,其中引起酸雨的主要物质除二氧化硫外就是氮氧化物。氮氧化物排放到大气中对环境造成很大危害,通过呼吸进入人体内,刺激呼吸道和肺部,并对心、肝、肾等造成腐蚀损害,还会引起急性或慢性中毒,并有致癌作用。所以大气中氮氧化物的含量已逐渐引起了各国的关注,许多国家已制订了非常严格的氮氧化物排放法规。氮氧化物的主要来源之一是电站锅炉的燃烧产物,所以采取相应的措施来控制氮氧化物的形成及排放也变得非常重要。

煤燃烧过程中产生的氮氧化物主要是一氧化氮(NO)和二氧),这二种统称为氮氧化物(NOx),在煤燃烧过程中氮氧化氮(NO

2

化物的生成量和排放量与煤的燃烧方式,特别是燃烧温度和过量空气系数等燃烧条件有关。根据专家研究表明,在煤的燃烧过程中生成NOx的主要途径有三个:

1、热力型NOx,它是空气中的氮气在高温下氧化而生成的NOx。

2、快速型NOx,它是燃烧时空气中的氮和燃料中的碳氢离子团如HC等反应生成的NOx。

3、燃料型NOx,它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx。

这三种类型的NOx,其各自的生成量和煤的燃烧温度有关,在电厂锅炉中燃料型NOx 是最主要的,其占NOx总量的60~80%,热力型其次,快速型最少。

二、电厂锅炉中NOx的生成过程

热力型NOx的生成

热力型NOx是空气中的氧(O

2)和氮(N

2

)在燃料燃烧时所形成

的高温环境下生成的NO和NO

2

的总和,其总反应式为:

N 2+O

2

←→2NO NO+O

2

←→NO

2

当燃烧区域的温度低于1000K时,NO的生成量很小,而温

度在1300~1500℃时,NO的浓度大约为500~ 1000ppm,而且随着温度的升高,NOx的生成速度按指数规律增加。因此,温度对热力型NOx的生成具有决定作用。

根据热力型NOx的生成过程,要控制其生成,就需要降低锅炉炉膛中燃烧温度,并避免产生局部高温区,以降低热力型NOx 的生成。

快速型NOx的生成

快速型NOx主要是指燃料中的碳氢化合物在燃料浓度较高区域燃烧时所产生的烃与燃烧空气中的N

2

分子发生反应,形成的CN、HCN,继续氧化而生成的NOx。因此,快速型NOx主要产生于碳氢化合物含量较高、氧浓度较低的富燃料区,多发生在内燃机的燃烧过程。而在燃煤锅炉中,其生成量很小。

燃料型NOx的生成燃料型NOx是燃料中的氮化合物在燃烧过程中氧化反应而生成的NOx,称为燃料型NOx。燃煤电厂锅炉中产生的NOx中大约75~ 90%是燃料型NOx,因此燃料型NOx是燃煤电厂锅炉产生的NOx的主要途径。研究燃料型NOx的生成和破坏机理,对于控制燃烧过程中NOx的生成和排放,具有重要的意义。

燃料型NOx的生成和破坏过程不仅和煤种特性、燃料中的氮化合物受热分解后在挥发份和焦炭中的比例、成分和分布有关,而且其反应过程还和燃烧条件(如温度和氧)及各种成分的浓度等密切相关。研究它的生成机理,大约有以下规律:

在燃料进入炉膛被加热后,燃料中的氮有机化合物首先被热

分解成氰(HCN)、氨(NH

4

)和CN等中间产物,它们随挥发份一起

从燃料中析出,它们被称为挥发份N。挥发份N析出后仍残留在燃料中的氮化合物,被称为焦炭N。随着炉膛温度的升高及煤粉细度的减小(煤粉变细),挥发份N的比例增大,焦炭N的比例减

小。挥发份N中的主要氮化合物是HCN和NH

3

,它们遇到氧后,HCN首先氧化成NCO,NCO在氧化性环境中会进一步氧化成NO,如在还原性环境中,NCO则会生成NH,NH在氧化性环境中进一步氧化成NO,同时又能与生成的NO进行还原反应,使NO还原

成N

2

,成为NO的还原剂。主要反应式如下:

在氧化性环境中,HCN直接氧化成NO:

HCN+O←→NCO+H NCO+O←→NO+CO NCO+OH←→NO+CO+H

在还原性环境中,NCO生成NH:

NCO+H←→NH+CO

如NH在还原性环境中:

NH+H←→N+H

2NH+NO←→N

2

+OH

如NH在氧化性环境中:

NH+O

2←→NO+OH NH+OH←→NO+H

2

NH

3

氧化生成NO:

NH

3+OH←→NH

2

+H

2

O NH

3

+O←→NH

2

+OH NH

2

+O←→NO+H

2

以上反应生成的NOx燃烧过程中如遇到烃(CHm)或碳(C)时,

NO将会被还原成氮分子N

2

,这一过程被称为NO的再燃烧或燃料分级燃烧。根据这一原理,将进入锅炉炉膛的煤粉分层分级引入燃烧的技术,可以有效的控制NOx的生成排放。

在一般情况下,燃料型NOx的主要来源是挥发份N,其占总量的60 80%,其余为焦炭N所形成。在氧化性环境中生成的NOx

遇到还原性气氛时,会还原成N

2

,因此,锅炉燃烧最初形成的NOx,并不等于其排放浓度,而随着燃烧条件的改变,生成的NOx 可能被还原,或称被破坏。煤中的N在燃烧过程中转化为NOx的量与煤的挥发份及燃烧过量空气系数有关,在过量空气系数大于1的氧化性气氛中,煤的挥发份越高,NOx的生成量越多,若过量空气系数小于1,高挥发份燃煤的NOx生成量较低,其主要原因是高挥发份燃料迅速燃烧,使燃烧区域氧量降低,不利于NOx 的生成。

根据以上三种NOx的生成原因及过程可知,对电厂锅炉,只要控制了燃料型NOx 的生成,就可控制总NOx的排放量。根据其形成特点,在燃料燃烧的高温区域建立富燃料区(低氧燃烧)及在形成的NO区域喷入燃料破坏NOx的生成,就可降低锅炉NOx 的排放量,因此发展了低氧燃烧、分级配风及分级燃烧等低NOx 燃烧技术。

三、低Nox燃烧技术

由NOx的形成条件可知,对NOx的形成起决定作用的是燃烧区域的温度和过量空气量。因此,低NOx燃烧技术就是通过控制燃烧区域的温度和空气量,以达到阻止Nox生成及降低其排放的目的。对低NOx燃烧技术的要求是,在降低NOx的同时,使锅炉燃烧稳定,且飞灰含碳量不能超标。目前常用的低NOx燃烧技术有如下几种:

1、燃烧优化

燃烧优化是通过调整锅炉燃烧配风,控制NOx排放的一种实用方法。它采取的措施是通过控制燃烧空气量、保持每只燃烧器的风粉(煤粉)比相对平衡及进行燃烧调整,使燃料型NOx的生成降到最低,从而达到控制NOx排放的目的。

煤种不同,燃烧所需的理论空气量亦不同。因此,在运行调整中,必须根据煤种的变化,随时进行燃烧配风调整,控制一次风粉比不超过1.8:1。调整各燃烧器的配风,保证各燃烧器下粉的均匀性,其偏差不大于5% 10%。二次

风的配给须与各燃烧器的燃料量相匹配,对停运的燃烧器,在不烧火嘴的情况下,尽量关小该燃烧器的各次配风,使燃料处于低氧燃烧,以降低NOx的生成量。

2、空气分级燃烧技术

空气分级燃烧技术是目前应用较为广泛的低NOx燃烧技术,它的主要原理是将燃料的燃烧过程分段进行。该技术是将燃烧用风分为一、二次风,减少煤粉燃烧区域的空气量(一次风),提高燃烧区域的煤粉浓度,推迟一、二次风混合时间,这样煤粉进入炉膛时就形成了一个富燃料区,使燃料在富燃料区进行缺氧燃烧,以降低燃料型NOx的生成。缺氧燃烧产生的烟气再与二次风混合,使燃料完全燃烧。

该技术主要是通过减少燃烧高温区域的空气量,以降低NOx

的生成技术。它的关键是风的分配,一般情况下,一次风占总风量的25 35%。对于部分锅炉,风量分配不当,会增加锅炉的燃烧损失,同时造成受热面的结渣腐蚀。因此,该技术较多应用于新锅炉的设计及燃烧器的改造中。

3、燃料分级燃烧技术

该技术是将锅炉的燃烧分为两个区域进行,将85%左右的燃料送入第一级燃烧区进行富氧燃烧,生成大量的NOx,在第二级燃烧区送入15%的燃料,进行缺氧燃烧,将第一区生成的NOx进行还原,同时抑制NOx的生成,可降低NOx的排放。

4、烟气再循环技术

该技术是将锅炉尾部的低温烟气直接送入炉膛或与一次风、二次风混合后送入炉内,降低了燃烧区域的温度,同时降低了燃烧区域的氧的浓度,所以降低了NOx的生成量。该技术的关键是烟气再循环率的选择和煤种的变化。

四、低NOx燃烧器

根据低NOx燃烧技术发展的低NOx燃烧器有很多种,应用最广泛的是空气

分级燃烧技术。这里以巴布科克-日立公司的HTNR型燃烧器为例,介绍NOx的形成及破坏机理。

图1中示意了在煤粉火焰中进行火焰内NOx还原的概念。挥发份NO 以极快的反应速度随着火焰锋面的生成而生成。然而在富燃料的条件下,伴随着氧量的快速消耗,大量的燃烧中间产物---碳氢化合物(碳氢化合物基团)也生成了,这些碳氢化合物基团与NO反应生成NH基团和其他一些含N的燃烧中间产物,并最终将NO分解成N2。这一系列反应在几十个毫秒的时间内就完成了。

图1 火焰内NOx还原机理

旋流燃烧器能独立控制火焰结构,HTNR燃烧器充分利用了这点来促进火焰内的NOx还原过程。这从以下三点可以看出HTNR 燃烧器是如何利用这一点来提高NOx的还原效果的:

?使用火焰稳定环来促进煤粉的快速着火;

?在燃烧器喷口处使用导向板使外二次风偏离煤粉火炬;

?使用高效旋流器促进NOx 的还原。

第一点就能使煤粉颗粒中的含N化合物快速挥发出来,由反应速度较慢的固态转变成易于通过反应进行处理的气态,有利于NOx的还原。同时由于挥发份的快速着火,使火焰温度能维持较高的水平,防止出现不必要的燃烧推迟,缩短了这一阶段的炉内停留时间,对焦碳颗粒的燃尽很有好处。

第二点能有效地保证还原性火焰的形状。其另一个作用是能确保燃烧初期的高温还原性火焰不过早与外二次风接触。

第三点对促进火焰后期空气与反应物的混合是非常重要的。高性能的外二次风旋转射流所形成的独立的旋转火焰能使得火焰内NOx还原的各种反应得以充分进行。因此,就没必要在燃烧器喉口周围安装另外的空气喷口。图2示意了HTNR燃烧器中燃烧及NOx还原的基本过程。

图2 HTNR燃烧器煤粉燃烧及NOx还原过程图

五、低NOx燃烧技术对电厂锅炉运行的影响

通过燃烧调整,降低NOx 的排放,对于老电厂来讲,主要是防止负面影响。进行燃烧器改造,安装了低NOx燃烧器后,锅炉飞灰含碳量增加、水冷壁腐蚀及炉内结渣等现象将会出现,使电厂运行效率降低,而且对火焰的稳定性、燃烧效率、过热蒸汽温度的控制等均带来影响,因为这些问题均与过量空气系数有关。

因此,在锅炉的运行中,在确保锅炉受热面不腐蚀结渣及飞灰含碳量不增加的前提下,应尽量减少过剩空气量,同时有效分配各燃烧器的风煤比,并保证其均匀性,否则,可导致局部飞灰含碳量增高,降低锅炉效率。根据情况,可适当降低煤粉细度,来减少NOx而导致的飞灰含碳量增加。

六、结论

随着国家新的大气排放标准的颁布实施,对电站锅炉的NOx 排放已提出要求,低NOx燃烧技术将会得到推广应用,并进一步得到完善。为满足环保要求,采用切实可行的措施及改造方案,降低锅炉的NOx排放。如锅炉的燃烧优化调整、空气分级燃烧、燃料分级燃烧、烟气再循环及低NOx燃烧器等。不同的锅炉、不同的燃烧方式及煤种特性,可选用不同的低NOx 燃烧技术,从燃烧方面达不到标准要求的,须安装脱硝装置,以降低NOx的排放。

附:参考文献

1.毛健雄,毛健全,赵树民等著,《煤的清洁燃烧》,科学出版社,

1998年。

作者简介

滕生平,男,1966年9月生。1989年7月毕业与西安交通大学,现任高井发电厂设备部锅炉高级主管,工程师。

通讯地址:石景山区北京大唐发电股份有限公司

邮编:100041

电话:68861177-2057

『返回主页』

锅炉NOx控制影响及分析

锅炉NOx控制影响及分析 我公司3×240t/h循环流化床锅炉SNCR烟气脱硝工程由江苏亿金环保科技有限公司设计、施工。目前,工程已接近尾声。通过初步的试运行和1#炉的168试运行,发现脱硝效果并不理想。喷入还原剂用量在设计值(249L/H)时,脱硝效率仅50%左右,出口排放NOx浓度在130mg/Nm3左右,只有当锅炉负荷低时,才勉强维持在100mg/Nm3左右。按照当前的锅炉运行状态,如要必须达到环保要求的100 mg/Nm3以下的目标值,需要喷入约3倍用量的氨水。 通过多方咨询及查阅资料,锅炉炉膛出口温度偏低是影响脱硝效率的主要原因之一。下面对循环流化床锅炉中的NOx生成机制进行说明,分析影响NOx浓度的因素,探讨控制NOx排放量的措施,提高脱硝效率,为循环流化床锅炉的达标运行提供参考。 1 NOx的生成机制 煤燃烧过程中产生的氮氧化物主要是一氧化氮(NO)和二氧化氮(NO2),这两者统称为NOx,此外还有少量的氧化二氮(N2O)产生。和SO2的生成机理不同,在煤燃烧过程中氮氧化物的生成量和排放量与煤燃烧方式、特别是燃烧温度和过量空气系数等燃烧条件关系密切。 在煤燃烧过程中,生成的NOx途径有三个: (1)热力型NOx(Thermal NOx),它是空气中的氮气在高温下氧化而生成的。(2)燃料型NOx(Fuel NOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx。 (3)快速型NOx(Prompt NOx),它是燃烧时空气中的氮和燃料中的炭氢离子团如CH等反应生成的NOx。 其中燃煤锅炉的NOx主要是燃料型的,它占总生成量约80%以上。热力型NOx 的生成与燃烧温度的关系很大,在温度大于1000℃时,热力型NOx的生成量可占到总量的20%;快速型NOx在煤燃烧过程中的生成量很小,可忽略不计。 2 NOx排放量影响因素分析 2.1燃料特性的影响

燃气热水锅炉控制方案要求

燃气热水锅炉控制 方案要求

基于PLC的锅炉供热控制系统及节能管理平台的设计需求 一、需求目的: 一个锅炉监控系统应主要包含以下几个部分: (1)各种设备状态和系统状态的采集; (2)锅炉和各种执行机构的控制。 设备状态的采集主要是锅炉输出的状态点,循环泵和补水泵给出的状态点,以及水箱等设备的状态点。锅炉的状态点主要包括锅炉的运行状态点、水箱的液位状态点、锅炉故障状态点、锅炉出水温度、锅炉回水温度、锅炉排烟温度;循环泵、补水泵以及电动调节阀等辅助其工作的变频设备的状态点。 系统状态的采集主要分为一次侧和二次侧。一次侧是锅炉到换热器之间的水循环系统,二次侧是到末端的水循环系统主要是指换热器循环系统。一次侧采集的状态包括一次侧供水温度、一次侧回水温度、一次侧供水压力、一次侧回水压力、烟温及燃烧机的工作状态及水箱水位、;二次侧采集的状态包括二次侧供水温度、二次侧回水温度、二次侧供水压力、二次侧回水压力;还有室外温度的采集,即可根据室外温度实现锅炉监控系统的自动控制。 锅炉和各种执行机构的控制主要是对锅炉本体的启停控制和

各种电动阀门的控制。将锅炉房内各个设备、仪器仪表、传感器、执行机构及通讯模块组成在线监控系统,经过完成对锅炉房和其它现场设备的数据采集和控制功能从而实现锅炉房的全自动控制,能够安全启停机组,达到无人值守。 供热管网经过控制系统的在线监测应实现以下目的: (1)监控各管网节点的实时数据,为系统管理和科学管理进行调度提供参数数据; (2)系统平衡功能计算,供热管网内的热水流动需要一定的水泵做功来完成,不合理的管网设计和建造将带来极大的能源浪费,经过对管网的相关部位的压力检测、增设压力调节阀,对管网的各部分压力进行合理的平衡分配(水平衡、热平衡等),能够大大地降低管网水泵的能源消耗; (3)异常报警,做到对管网异常及时准确响应; (4)能够监测各个主、支线管网,重要客户的实时用气量、对水、电、气实时采集,以便监管和控制。 二、燃气锅炉供热控制系统硬件部分: 1、PLC是整个控制系统的核心部件,采用西门子系列可编程逻辑控制器; 2、现场数据采集系统由温度传感器、压力传感器、燃气报警器、火焰监视器、水位传感器等组成;

火电厂锅炉温度控制系统设计

题目: 火电厂锅炉温度控制系统设计 初始条件:锅炉温度的控制效果直接影响着产品的质量,温度低于或高于要求时要么不能达到生产质量指标有时甚至会发生生产事故。采用双交叉燃烧控制以锅炉炉膛温度为主控参数、燃料和空气并列为副被控变量设计火电厂锅炉温度控制系统,以达到精度在5 ℃范围内。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、选择控制方案 2、绘制锅炉温度控制系统方案图 3、确定系统传感与变送器的选择、数据采集系统、控制电路等 4、说明系统工作原理 时间安排: 1月21日选题、理解课题任务要求 1月22日方案设计 1月23、24日参数计算撰写说明书 1月25日答辩

目录 1、绪论 (3) 2、锅炉的工艺流程及控制要求 (4) 2.1锅炉的工艺流程 (4) 2.2锅炉的控制要求 (5) 3、锅炉炉膛温度的动态特性分析 (5) 4、方案设计 (7) 4.1炉膛温度控制的理论数学模型 (7) 4.2炉膛温度控制方法的选择 (7) 4.3 系统单元元件的选择 (8) 4.3.1温度检测变送器的选择 (8) 4.3.2流量检测变送器的选择 (10) 4.3.3主、副控制器正反作用的选择 (12) 4.3.4主回路的PID调节器和副回路的PI调节器 (12) 4.3.5控制器仪表的选择 (12) 4.3.6控制阀的选择 (14) 5、控制系统的工作原理 (16) 6、设计心得 (17) 7、参考文献 (18)

1、绪论 工程控制是工业自动化的重要分支。几十年来,工业过程控制获得了惊人的发展,无论是在大规模的结构复杂的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及能源的节约都起着重要的作用。 生产过程是指物料经过若干加工步骤而成为产品的过程。该过程中通常会发生物理化学反应、生化反应、物质能量的转换与传递等等,或者说生产过程表现为物流过变化的过程,伴随物流变化的信息包括物流性质的信息和操作条件的信息。 生产过程的总目标,应该是在可能获得的原料和能源条件下,以最经济的途径,将原物料加工成预期的合格产品。为了打到目标,必须对生产过程进行监视和控制。因此,过程控制的任务是在了解生产过程的工艺流程和动静态特性的基础上,应用理论对系统进行分析与综合,以生产过程中物流变化信息量作为被控量,选用适宜的技术手段。实现生产过程的控制目标。 生产过程总目标具体表现为生产过程的安全性、稳定性和经济性。 (1)安全性在整个生产过程中,确保人身和设备的安全是最重要和最基本的要求。在过程控制系统中采用越限报警、事故报警和连锁保护等措施来保证生产过程的安全性。另外,在线故障预测与诊断、容错控制等可以进一步提高生产过程的安全性。 (2)稳定性指系统抑制外部干扰、保持生产过程运行稳定的能力。变化的工业运行环境、原料成分的变化、能源系统的波动等均有可能影响生产过程的稳定运行。在外部干扰下,过程控制系统应该使生产过程参数与状态产生的变化尽可能小,以消除或者减少外部干扰可能造成的不良影响。 (3)经济性在满足以上两个基本要求的基础上,低成本高效益是过程控制的另外一个重要目标。为了打到这个目标,不进需要对过程控制系统进行优化设计,还需要管控一体化,即一经济效益为目标的整体优化。 工业过程控制可以分为连续过程工业、离散过程工业和间隙过程工业。其中,连续过程工业占的比重最大,涉及石油、化工、冶金、电力、轻工、纺织、医药、建材、食品等工业部门,连续过程工业的发展对我国国民经济意义最大。过程控制主要指的就是连续过程工业的过程控制。 锅炉是工业生产中不可缺少的动力设备,它多产生的蒸汽不仅能够为蒸馏、化学反应、

(完整版)基于PLC的热电厂输煤控制系统毕业设计论文

杭州职业技术学院 继续教育学院 毕业设计(论文) (10 届) 基于PLC的热电厂输煤系统控制

系别电气10 专业电气自动化 班级电气10 姓名陈滔 指导教师卢望 2012年03 月20 日 基于PLC的热电厂输煤系统控制 学生姓名:陈滔学号:专业电气自动化 论文设计简介: 由于热电厂输煤系统运行条件恶劣,各类干扰信号较多,使得抗干扰问题成为输煤程控实际运行及调试中的一大难题,直接关系到整个输煤系统的安全运行。热电厂的输煤程控系统改造为背景,详细分析和设计了一套PLC控制主要是输煤系统的自动控制和手动控制部分,皮带机和各设备的联机控制由联机控制面板操作,提高系统可靠性的方法,提出了一些具体措施,从硬件和软件两个方面着手,研究了信号抗干扰方法和实施手段,并在热电厂程控改造工程中予以应用,工程实践表明:该系统运行可靠,抗干扰能力强,自动化程度高,为实现设备的状态检修奠定了必要的物质基础。 设计的内容: 1 PLC控制能够实现安全高效的工作; 2 满足输煤系统的各项技术要求; 3 具体内容包括改造输煤系统的流程,控制系统软件构成,PLC程序编写等。 设计希望解决的问题: 此项设计为了研究用PLC来设计整个输煤系统能有效的减少对人体的伤害及加强工作效率。 设计的内容 热电厂输煤系统分卸煤与上煤两大部分,料斗和1#-3#皮带负责把煤由铁路配煤场输送到发电房。煤在配煤场经碾碎去渣和铁硝后,由给煤机给煤经4A#-7A#到0#或4B#-7B#

到0#送进锅炉,共12条皮带。 在我的此次设计中,综合考虑设计的实用性和其性价比,我采用了一台PLC控制整个系统,有卸煤部分和上煤部分两个独立的部分;PLC与PC机不通信。PLC控制主要是输煤系统的自动控制和手动控制部分,皮带机和各设备的联机控制由联机控制面板操作。 研究的方法和技术路线 1.查阅资料,选定设计方案 2.确定设计方案 3.PLC的选择 4.比较得出结论 5.撰写设计论文 目录 摘要 (Ⅰ) Abstrac (Ⅱ) 第1章绪论 (1) 1.1基于PLC的输煤控制系统的意义 (1) 第2章可编程序控制器的概况 (2) 2.1 PLC的概念及发展 (2) 2.1.1可编程序控制的历史 (2) 2.2 可编程序控制器的硬件及工作原理 (3) 2.2.1 可编程序控制器的基本结构 (3) 2.2.2 可编程序控制器的物理结构 (4) 第3章系统的硬件设计 (5) 3.1 PLC机型的选择 (5) 3.1.1 系统机型的选择 (5) 3.2 电动机的机型 (6) 3.3 电机主电路的设计 (8) 第4章系统的软件设计 (9) 4.1系统软件控制 (9)

1月25日氮氧化物超标原因分析

大唐保定热电厂 #10、11机组氮氧化物超标分析报告 分析人员:宋京辉汤辉苟雪峰赵勇毛春芳 报告编写:毛春芳 报告日期: 2013年01月28日 一、事件经过 17点14分至20点30分 #10炉氮氧化物出口浓度最高810毫克/立方米,#11炉氮氧化物出口浓度最高150毫克/立方米。运行值班人员立即进行调整,降低两炉锅炉氧量,#10炉最低降至1.7%左右、#11炉最低降至3.0%左右,已无调整余量。调整各层二次风配比,值长令降低工业、采暖负荷未取得明显效果,联系中调降两机组电负荷,因晚高峰未获批准。出现超标现象后,值长及时联系燃料将配煤比例改为1:1.8:1,经配煤调整后,于20:30机组NOx指标逐渐恢复正常。 二、原因分析 由于#10炉没有低氮燃烧器和脱硝装臵,目前采取的措施是增加烟煤掺烧比例,提高煤质挥发分创建还原区,来降低氮氧化物排放,#11炉低氮燃烧器设计煤种为50%的烟煤掺配50%的贫瘦煤。氮氧化物指标超标的主要原因是入炉煤烟煤比例下降导致。

筒仓存煤情况:#1筒仓存煤为古交,#2筒仓煤种为口泉、定州,#3筒仓煤种为老厂倒运过来的汽运。化验结果:#1筒仓古交煤挥发分13%,#2筒仓口泉挥发分为27%—31%左右。#3筒仓汽运混煤,煤种较杂。 #1仓古交煤导致制粉出力低,只能少量掺配,考虑到#3筒仓混煤挥发分不明,出于安全考虑,1月25日白班第一次上煤比例按1:1:1配比,通过燃烧情况和飞灰化验结果分析(飞灰达到7%),汽运煤种含有白煤(无烟煤)成分较多。第二次上煤比例调整为1:1.5:1配比, 17点14分氮氧化物升高后,再次将配煤比例调整为1:1.8:1。 1、来煤结构影响,汽运煤煤质变化较大,无法满足掺烧煤质要求。汽运煤中含有白煤是引起氮氧化物超标的主要原因。 2、发电二部在环保指标超标后,虽然进行了燃烧调整,但未能采取有效措施,将氮氧化物降低到合格范围内,导致了环保指标不同时段超标。 三、暴露问题 1、来煤结构不合理,尤其是古交煤磨制困难,无法多掺配,其次#3筒仓汽运煤煤质杂,只能凭经验和燃烧情况进行掺配。 2、发电二部在环保指标超标时,没有将环保指标作为优先指标处理,在降低热负荷无效的情况下,未能进一步降

发电厂燃煤锅炉燃烧PLC控制系统设计说明

发电厂燃煤锅炉燃烧控制系统设计 摘要 在热电厂中,以单位机组为控制对象有:锅炉汽包水位控制、燃烧过程控制以及过热蒸汽温度,过热蒸汽温度控制又包括过热蒸汽温度控制和再热蒸汽温度控制。其中,热电厂锅炉的燃烧控制对整个发电过程的安全性与经济性起着重要的作用,所以对它高效率的控制是现在热电厂的一个重要任务。 本文以一台工业控制机作为上位机,以西门子S7-300可编程控制机为下位机,系统通过变频器控制电机的启动,运行和调速。上位机监控采用WinCC设计,主要完成系统操作界面设计,实现系统启停控制,参数设定,报警联动,历史数据查询等功能。下位机控制程序采用西门子公司的STEP7编程软件设计,主要完成模拟量信号的处理,温度和压力信号的PID控制等功能,并接受上位机的控制指令以完成风机启停控制,参数设定,循环泵的控制和其余电动机的控制。 关键词:热电厂;锅炉燃烧;单片机;控制 Coal-fired power boilers burning single chip control system design Abstract Thermal power plant boiler combustion control plays an important role in security and economy of the entire power generation process, the control of its high efficiency thermal power plant is an important task. In this paper, the analysis and study of the entire combustion system,

燃气热水锅炉控制方案要求

基于PLC的锅炉供热控制系统及节能管理平台的设计需求一、需求目的: 一个锅炉监控系统应主要包含以下几个部分: (1)各种设备状态和系统状态的采集; (2)锅炉和各种执行机构的控制。 设备状态的采集主要是锅炉输出的状态点,循环泵和补水泵给出的状态点,以及水箱等设备的状态点。锅炉的状态点主要包括锅炉的运行状态点、水箱的液位状态点、锅炉故障状态点、锅炉出水温度、锅炉回水温度、锅炉排烟温度;循环泵、补水泵以及电动调节阀等辅助其工作的变频设备的状态点。 系统状态的采集主要分为一次侧和二次侧。一次侧是锅炉到换热器之间的水循环系统,二次侧是到末端的水循环系统主要是指换热器循环系统。一次侧采集的状态包括一次侧供水温度、一次侧回水温度、一次侧供水压力、一次侧回水压力、烟温及燃烧机的工作状态及水箱水位、;二次侧采集的状态包括二次侧供水温度、二次侧回水温度、二次侧供水压力、二次侧回水压力;还有室外温度的采集,即可根据室外温度实现锅炉监控系统的自动控制。 锅炉和各种执行机构的控制主要是对锅炉本体的启停控制和各种电动阀门的控制。将锅炉房内各个设备、仪器仪表、传感器、执行机构及通讯模块组成在线监控系统,通过完成对锅炉房和其它现场设备的数据采集和控制功能从而实现锅炉房的全自动控制,能够安全启停机组,达到无人值守。 供热管网通过控制系统的在线监测应实现以下目的: (1)监控各管网节点的实时数据,为系统管理和科学管理进行调度提供参数数据;(2)系统平衡功能计算,供热管网内的热水流动需要一定的水泵做功来完成,不合理的管网设计和建造将带来极大的能源浪费,通过对管网的相关部位的压力检测、增设压力调节阀,对管网的各部分压力进行合理的平衡分配(水平衡、热平

火力发电厂锅炉自动控制系统

火力发电厂锅炉给水自动控制系统 工业锅炉的汽包水位是运行中的一个重要参数,维持汽包水位是保持汽轮机和锅炉安全运行的重要条件,锅炉汽包水位过高会造成汽包出口蒸汽中水分过多,使过热器受热面结垢而导致过热器烧坏,同时还会使过热汽温急剧变化,直接影响机组运行的经济性和安全性;汽包水位过低则可能导致锅炉水循环工况破坏,造成水冷壁管供水不足而烧坏。 1.串级三冲量给水控制 如今的汽包水位自动控制基本上都是通过分散控制系统(DCS)来实现的,而控制策略基本上已串级三冲量给水控制为主,单回路调节已不能适应大型锅炉汽包水位的控制,如今已很少采用,串级三冲量给水控制由于引入了蒸汽流量和给水流量信号,对快速消除,平衡水位有着明显的效果,因此被广泛采用。 1.1 串级三冲量给水控制系统工作原理 如图 4.1 所示,串级三冲量给水控制系统由主调节器PI1(控制器1)和副调节器PI2(控制器2)串联构成。主调节器接受水位信号H f为主控信号,其输出去控制副调节器。副调节器接受主调节器信号I H外,还接受给水量信号I W和蒸汽流量信号I D。副调节器的作用主要是通过内回路进行蒸汽流量D 和给水流量W 的比值调节,并快速消除水侧和汽侧的扰动。主调节器主要是通过副调节器对水位进行校正,使水位保持在给定值。 串级三冲量给水控制系统有以下特点:两个调节器任务不同,参数整定相对独立。主调节器的任务是校正水位,副调节器的任务是迅速消除给水和蒸汽流量扰动,保持给水和蒸汽量平衡。给各整定值的整定带来很大的便利条件。在负荷变化时,可根据对象在内外扰动下虚假水位的严重程度来适当调整给水流量和蒸汽流量的作用强度,更好的消除虚假水位的影响,改善蒸汽负荷扰动下水位控制的品质。给水流量和蒸汽流量的作用强度之间是相互独立的,这也使整定工作更加方便自由。

输煤控制系统

目录 第1章概述 (1) 1.1 输煤控制系统概述 (1) 1.2 输煤控制系统设计目的及意义 (1) 1.3 输煤控制系统的运行工艺何其组成部分 (2) 1.4 组态王软件简介 (2) 第2章输煤控制系统工艺介绍 (4) 2.1 输煤控制系统的仪表的选择 (4) 2.2 传感器的选型 (4) 2.3 控制方案分析 (4) 第3章基于组态王的输煤控制系统设计 (6) 3.1 创建组态画面 (6) 3.2 定义变量 (7) 3.3 原煤系统流程图 (8) 3.4 主控界面 (8) 3.5 趋势界面 (9) 第4章结论与体会 (11) 参考文献 (12)

第1章概述 1.1 输煤控制系统概述 作为能源的输送,煤炭的输送是一个很重要的问题。以燃煤电厂的进料为例。燃煤电厂的燃料进厂后,先后经过翻卸,给煤机械,皮带多段转运、破碎、筛分、犁煤等各种备煤设备进入原煤仓。在整个输送工艺过程中,伴随产生一次尘化气流。转段落差、破碎设备鼓风量,落煤管与水平夹角、皮带速度等参数值越高,尘化强度就越大。尘源周边的空气被诱导、扰动而形成二次气流。二次气流将一次尘化气流向四周空气扩散、蔓延;充斥在作业现场。,它们会长时间悬浮在空气中而不能沉降,甚至造成二次扬尘。根据煤尘的特点,它对环境的污染和对人体的危害是不言而喻的。输煤自动控制系统可以有效的减少对人体的危害。输煤控制系统是由给料器、选料器、破碎机及送煤机等组成的。其原理如图1-1所示。 图1-1 输煤控制系统原理图 1.2 输煤控制系统设计目的及意义 传统的发电厂输煤系统是一种基于继电接触器和人工手动方式的半自动化 系统。由于输煤系统现场环境十分恶劣,不仅极大损害了工人的身体健康,而且由于输煤系统范围大,经常有皮带跑偏、皮带撕裂及落煤管堵塞…等等麻烦,大大降低了发电厂的生产效率。随着发电厂规模的扩大,对煤量的需求大大提高,传统的输煤系统已无法满足发电厂的需要。在充分考虑输煤系统的作用和运行可靠性基础上,设计了一条两路多段互为备用的输煤系统,从结构上保证了输煤系统的运行可靠性。根据输煤系统范围大、运行方式多,提出了基于美国AB公司PLC和工业控制网网络的输煤控制系统实现方案,该方案不仅降低了开发的工作量,而且降低了维护的工作量,同时也以后的升级提供了条件。输煤系统的控制属于自动化的过程控制领域,且有大时延对象特征,本文对与过程控制系统相关的控制技术及控制系统。在PLC中应用子程序的方式,不仅便于实现多种运行方式,而且大大提高了程序的可维护性和可靠性。经过实验室输煤系统的运行,表明了该输煤控制系统运行的正确性、实用性。

基于电厂锅炉燃烧模糊控制器的设计

摘要 火力发电是当今电力生产中重要生产形式之一。在现代电力企业中,由于安全性、节耗性、提高劳动生产率等多方面要求,计算机控制系统如今广泛应用于电站控制。但在实际运行中,经常受到内部和外部的干扰,锅炉燃烧是一个多输入多输出的被控对象,而且变量间相互耦合严重,并具有多参数,非线性,不确定时滞和时变的特点,传统的PID 控制效果往往不够理想。必须采用先进控制算法。本文首先分析了火电厂锅炉燃烧控制系统的动态特性,确定了被控对像的传递函数。然后对锅炉燃烧系统单模糊控制器进行总体设计。主要输入量的模糊化,模糊控制规则的形成,输出量的模糊化。最后通过应用MATLAB中的SIMULINK对系统进行仿真,对比模糊控制与常规PID控制的控制性能。通过仿真结果对比得出:模糊控制器的控制性能总体优于常规PID控制器,它不仅具有良好的动态特性,还具有良好的环境适应能力。 关键词:火电厂;燃烧控制系统;模糊控制;SIMULINK仿真

第一章绪论

1.1 研究背景和课题来源及意义 1.1.1 研究背景 电能是现代社会的必需品,若没有电能人类的生活生产将面临巨大的困难。电能作为最清洁的能源,其使用方法简单,运送方便,容易转换。电力工业的发展水平实际上是工农业发展、人民生活水平和科技与国防现代化的重要标志。常见的电力生产有如水力发电,核能发电,火力发电,太阳能发电、风能发和地热能发电等方法。目前电能主要由火力发电厂、水力发电厂和核能发电厂产生。在我国,火力发电是生产电力的主要方式,截止到2009年12 月底,全国发电量为36506 亿千瓦时,其中火力发电量为29814.22 亿千瓦时,占总发电量的 81.67%,表1-1 是最近几年我国火力发电情况统计表 煤是火力发电的主要燃料,中国每年消耗的煤炭用于发电占全国煤炭产量约一半的工业用煤总量,比例高达80%,为了节约资源,保护环境,应为了提高煤炭的燃烧效率。锅炉设备是火力发电过程中最重要的设备,其工作直接影响到整个电厂的运行状态。只有在中国工业锅炉实际运行效率大约有65%,与国外先进水平相比,低15-20%,通过节能改造,每年可节省大量的煤,影响锅炉效率的因素是多方面的,一方面由于燃煤发电的来源和煤种复杂多变,对燃烧系统的直接摄动;另一方面,由于设备老化和单位变换,得到变工况X围大,使电站锅炉运行

关于锅炉氮氧化物控制的规定

关于锅炉氮氧化物控制的规定 为确保锅炉在运行当中,降低锅炉烟气氮氧化物,脱硝运行期间,喷氨量过大,与烟气中的SO3生成硫酸氢铵,造成空预器堵塞,现对锅炉脱硝调整规定如下: 1、锅炉脱硝运行期间,为调动锅炉操作人员对烟气氮氧化物指标控制的积极性,进行奖励与考核,奖励以每月每台炉四个班之间进行奖励。 2、锅炉脱硝装置运行期间氮氧化物控制在80-100mg/?之间,每月每台炉每班奖励500元。 3、锅炉氮氧化物分钟均值(5分钟)低于80 mg/?每班连续超标4次,小时均值超标一次,取消当班(8小时)奖金分配,扣除当天的奖金(22天计算每天的奖金),氮氧化物分钟均值(5分钟)低于80 mg/?每班超标4次以上考核100元,如连续在超过4次以上分钟均值累计相加考核,锅炉氮氧化物超过100mg/?以上由安环处按重新下发的指标控制进行考核。 4、每月统计的氮氧化物,指标在80-95mg/?之间,95mg/?为标杆值,氮氧化物在95-100mg/?之间,越接近100mg/?为最好,每月在每台炉四个班之间,评比第一名、第二名,第一名奖励200元,第二名奖励100元。

5、副值长、班长按每月4台炉氮氧化物的月平均值,评比出第一名、第二名、第三名进行奖励,第一名奖励400元(副职长、班长各200元)、第二名奖励300元(副职长、班长各150元)、第三名奖励100元(副职长、班长各50元),值系、班组有连续两天扣除当天奖金的(22天计算每天的奖金),连带扣除副值长,班长当天奖金(22天计算每天的奖金),对于值系未得名次的考核值系200元(副值长、班长各100元) 6、氮氧化物分钟均值,小时均值平均指标,氮氧化物分钟均值,小时均值超标指标统计由发电车间统计,上报生计处审核后进行奖金分配。 7、此规定下发后,前期下发的规定作废 中泰矿冶热电厂 生产技术处 2015年6月11日

基于声波测温的电站锅炉燃烧优化控制系统

基于声波测温的电站锅炉燃烧优化控制系统 项目建议书 华北电力大学

一目前电站锅炉燃烧系统存在的问题 1.1 共性问题 1.1.1 两对矛盾需要解决 ①锅炉效率()与污染排放(NOx)之间的矛盾 当我们追求高的锅炉效率的时候,势必要使煤粉在炉充分燃烧。要达到这一目的,则需要提高炉燃烧温度以及使用较高的过量空气系数,而这两方面都会增加污染的排放。反之,则锅炉效率较低。炉的高温燃烧还会带来水冷壁结渣等事故的发生。因此需要在两者之间做出最佳的折中选择。 ②锅炉排烟热损失()和机械未完全燃烧热损失()之间的矛盾 对于锅炉效率影响最大的两项热损失—排烟热损失()和机械未完全燃烧热损失()—而言,也存在类似的矛盾。提高炉燃烧温度以及使用较高的过量空气系数,可以降低机械未完全燃烧热损失(),但是排烟热损失()则会随之增加。因此也需要在两者之间做出最佳的折中选择。 1.1.2 四个优化问题需要解决 ①锅炉效率()与污染排放(NOx)的联合优化 通过寻找最佳的二次风门和燃尽风门组合,建立良好的炉燃烧空气动力场,可以达到锅炉效率()与污染排放(NOx)的共赢。 ②锅炉排烟热损失()和机械未完全燃烧热损失()的联合优化 通过寻找最佳的烟气含氧量(O2)设定值,可以达到锅炉排烟热损失()和机械未完全燃烧热损失()的共赢。 ③汽温控制方案的优化 联合调节燃烧器和喷水,尽量使用燃烧器摆角等方式来调节汽温而减少减温水的使用量,可以较大幅度的提高机组热效率。 ④防止炉结渣的优化 这可以通过以下方法实现:一是寻找最佳的煤粉和二次风门、燃尽风门的组合,调整均衡燃烧,防治火焰偏斜;二是调节炉膛出口温度目标值;三是组织合理的吹灰优化。 1.1.3 炉膛三个参数的测量需要解决

输煤系统的PLC控制设计

毕业设计论文 输煤系统的PLC控制设 计

第一章PLC简介 1.1 PLC的基本知识 可编程控制器(Programmable Controller)是计算机家族中的一员,是为工业控制应用而设计制造的。早期的可编程控制器称作可编程逻辑控制器(Programmable Logic Controller),简称PLC,它主要用来代替继电器实现逻辑控制。随着技术的发展,这种装置的功能已经大大超过了逻辑控制的范围,因此,今天这种装置称作可编程控制器,简称PC。但是为了避免与个人计算机(Personal Computer)的简称混淆,所以将可编程控制器简称PLC。 PLC实质是一种专用于工业控制的计算机,其硬件结构基本上与微型计算机相同,基本构成为:电源、中央处理单元(CPU)、存储器、输入输出接口电路。 1.2 PLC的特点 PLC的特点PLC的主要特点:高可靠性、丰富的I/O接口模块、采用模块化结构、编程简单易学PLC的编程大多采用类似于继电器控制线路的梯形图形式、安装简单,维修方便。 PLC的功能 1、逻辑控制 2、定时控制 3、计数控制 4、步进(顺序)控制 5、PID控制 6、数据控制:PLC具有数据处理能力 7、通信和联网。

其它:PLC还有许多特殊功能模块,适用于各种特殊控制的要求,如:定位控制模块,CRT模块。 1.3 PLC的应用 S7-200系列在集散自动化系统中充分发挥其强大功能。使用范围可覆盖从替代继电器的简单控制到更复杂的自动化控制。应用领域极为广泛,覆盖所有与自动检测,自动化控制有关的工业及民用领域,包括各种机床、机械、电力设施、民用设施、环境保护设备等等。如:冲压机床、磨床、印刷机械、橡胶化工机械、中央空调、电梯控制、运动系统。 目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业。

关于氮氧化物超标的预防措施

关于氮氧化物超标的预防措施 一、氨区运行维护 1、监视环境温度变化对液氨储罐压力的影响,尤其是冬季液氨储罐压力偏低,应及时对液氨储罐充氮或利用备用液氨储罐给运行液氨储罐打压,以维持其压力稳定。夏季时,监视液氨储罐压力,防止其超压运行。 2、液氨供应泵应可靠投入,如出现机械密封漏氨等异常情况时,应及时联系检修人员处理,尽快恢复备用,并保证液氨供应泵处理正常。 3、根据机组负荷情况及双机运行或事故状态等情况,导致供氨量较大时,应根据实际情况投、停蒸发器运行,并保持蒸发器水浴水位高水位运行,保证蒸发器水浴温度时刻大于70℃。 4、尽量维持供氨母管压力在0.2MPa以上,如供氨母管压力偏低,可对液氨储罐充氮或利用备用液氨储罐给运行液氨储罐打压,以设法提高母管压力。 5、在事故状态或供氨量较大时,氨区监视画面设专人监视调整。 二、SCR区运行维护 1、加强SCR区声波吹灰器的维护,发现声波吹吹灰器有不响的,压缩空气管道漏气等情况时,应及时联系检修处理,防止因吹灰不良导致催化剂层积灰,影响脱硝效率。 2、加强SCR区监视,当SCR区A、B侧供氨调节门开度一致,但A、B侧供氨流量不同时,及时联系修检查处理调节门或校验热工测点是否准确。

3、加强SCR区催化剂层入口温度监视,防止因入口温度高导致保护动作,造成SCR区供氨中断,必要时可开大再热器烟气调节挡板,关小过热器烟气挡板,开启再热器事故喷水的方法降低SCR区入口温度。 4、加强SCR区稀释风机的监视维护,防止稀释风量低导致保护动作,导致SCR区供氨中断。 三、锅炉调整 1、按照运行部相关规定调整氧量,加强监视调整,防止氧量超规定运行。 2、根据机组负荷情况,尽量维持下层磨煤机运行。 3、在满足磨煤机安全运行,石子煤量排放次数不超规定的情况下,维持低一次风压运行。开大磨煤机热一次风调节门,维持磨煤机风量稳定,参考磨煤机出口温度不低于56℃。 4根据锅炉氧量,合理送入二次风。 5、提高吹灰质量,防止受热面积灰,保证受热面换热效率。 6、严禁锅炉超负荷运行。 7、加强入炉煤质检测,尽量燃用接近校核煤种发热量的原煤。 8、尽量调平各磨煤机的给煤量。 9、保证磨煤机维护质量,确保磨煤机出粉细度均匀一致。 四、机组启、停及事故状态下的异常处理。 1、在机组启动投入SCR区供氨运行时,应确保供氨母管压力稳定,锅炉燃烧稳定,SCR区A、B侧催化剂层入口温度满足后,投入SCR 区供氨运行。

锅炉自动燃烧控制系统

锅炉自动燃烧控制系统 1、实时数据采集 能够对锅炉本体和辅助设备各种运行数据(包括总供回水温度、压力、流量、省煤器进出口水温度﹑压力烟气温度、除尘器进出口烟气温度压力、鼓引风压力、炉膛温度压力含氧量、煤层厚度、室外温度、鼓引风炉排电机频率速度电流状态、除渣除尘状态) 等信号通过总线进行动态采集,控制中心能够实时监控到锅炉本体﹑锅炉上煤﹑除渣等辅助设备的运行情况。 2、完整的报警机制 当锅炉调节系统发生异常情况时或报警时,上位机人机界面自动接受控制系统器发送报警信号,将报警状态及异常点在上位机上进行显示,并诊断提出相应问题大概原因,提供相应的处理办法提示,系统自动能把报警分为高中低三种报警级别,低级别的报警只做提示用,当发生低级别报警时不影响燃烧自动调节,中级别报警发生时需要做相应处理,高级别报警发生时系统能立即连锁停炉,并发出尖锐声光报警和相关提示信息,等待工程师处理后再次投入运行,所有报警系统会自动的写入永久数据库备份,供以后随时查询和故障诊断和决策处理。 报警内容有: 系统报警 包括DCS控制器自诊断硬件或致命软件命令错误

自动启动燃烧失败 通讯建立连接失败 数据报警 炉膛温度超高低报警 炉膛负压超高低报警 锅炉出口温度超高低报警 锅炉出口压力超高低报警锅炉回水温度﹑压力超高低报警 引风机风压高低报警 鼓风机风压高低报警 高级别报警 引风机变频器(电流﹑电压﹑故障)超速等报警 连锁控制保护报警 鼓风机变频器(电流﹑电压﹑故障)超速等报警 上煤系统综合保护报警 炉排机变频器(电流﹑电压﹑故障)超速等报警 除渣系统综合保护报警 3、循环水控制系统 循环水是锅炉系统与外界交互的接口,循环系统通过泵不断的把热水源源不断的输送给用户或热站,把经过热释放后的二次低温水循环到锅炉系统再加热。我们采用保持循环水进、出口温差恒定,通过改变循环流量来控制热负荷的方式,是一种新方式。

火电厂输煤电气控制系统研究与设计分析

火电厂输煤电气控制系统研究与设计分析 发表时间:2018-06-04T09:43:36.557Z 来源:《电力设备》2018年第1期作者:柴磊 [导读] 摘要:随着社会经济的发展,人们对电力的需要越来越大,传统的输煤系统已经无法满足现代发电厂的需要,因此人们逐渐加深对火电厂输煤电气控制系统的研究与设计,通过利用电气控制系统实现对输煤方式的控制,降低了火电厂的输煤成本,改善了员工工作的环境,从而促进了火电厂的可持续发展。 (陕西清水川能源股份有限公司陕西省榆林市府谷县 719499) 摘要:随着社会经济的发展,人们对电力的需要越来越大,传统的输煤系统已经无法满足现代发电厂的需要,因此人们逐渐加深对火电厂输煤电气控制系统的研究与设计,通过利用电气控制系统实现对输煤方式的控制,降低了火电厂的输煤成本,改善了员工工作的环境,从而促进了火电厂的可持续发展。 关键词:火电厂;输煤电气控制系统;研究;分析 1火电厂输煤系统概述 在火电厂中,整个输煤系统结构较为复杂,主要是借助皮带来实现原料的输送,相应电气控制系统下需要实现对整个输送环节构成设备的控制,如输送机、碎煤机以及卸料器等,在相应的控制保护系统下,以开关量信号为监测信号,基于相应控制要求下相应开关量为1000点左右。在输煤线路的设计上,通常采用双路皮带方式,可同时使用,也可将其中一个作为备用,同时借助二通挡板,能够实现交叉运行或是分路运行。在输煤的过程中,难以避免的会掺入金属等异物,进而给皮带以及碎煤机等带来了一定的损坏,因此需要借助磁铁分离器等进行去除处理,同时借助筛分机对来煤进行分离处理,进而降低对磨煤机的磨损。同时,在皮带上设置犁煤器来实现对原煤的分类处理以后运输到相应的煤仓中。 输煤系统的应用设备较多,而且设备的分布不集中,为了使各个设备之间可以有效的配合,保证输煤系统稳定高效的运行,我们需要遵循以下几点控制要求:首先在上煤操作时要注意对操作流程进行测试,然后才能进行下一步的操作。其次是在配煤阶段,我们要按照顺序进行配煤同时要根据各个煤仓煤量的不同,遵循优先配煤的原则实现配煤操作,保证配煤操作的合理性。 2输煤系统设备 按照在整个输煤系统中的地位和作用,这里我们把输煤系统设备分为主设备、预启动设备、辅助设备和保护开关设备几类。(1)主设备,为输煤工艺线上的关键设备,直接纳入整个系统的联锁中,设备故障会引起系统联锁停机。主要包括:给煤机、输煤皮带机、振动筛、碎煤机、缓冲滚筒、除铁器等。(2)预启动设备,这些设备一般先于主设备启动前动作,用于进行流程选择。主要包括:电动三通挡板、皮带头部伸缩装置、犁煤器、警铃等。(3)辅助设备,一般不纳入到流程联锁中,可以单独启停设备,故障不会造成联锁停机。主要包括:除尘器、皮带秤、实物校验系统、采样装置等。(4)保护开关设备,各种皮带保护开关,用于流程监控、设备联锁、报警等功能。主要包括:拉绳开关、跑偏开关、堵煤开关、速度检测器、撕裂检测器、料流检测器、煤仓料位开关、料位传感器等。 3火电厂输煤电气控制系统功能 基于输煤控制系统下,以自动化控制程度来实现集中控制,同时针对事故等紧急情况配置了相应的手动联锁、解锁装置,在相应的控制室内来实现对输煤设备的监控与管理。该系统所应具备的功能为: (1)上煤与配煤方式的选择。这一系统能够结合工艺特定来实现上煤配煤方式的提前设置,对于相应工作人员而言,可结合设备运行状况来选择相应的方式。(2)程控启停操作、手动单控操作。在启动前需要明确相应的启动设备,以此来定位相应的启动程序,并对运行过程中进行监管与控制,以控制开关来实现对设备停止运行的控制。(3)上煤控制功能。主要是由程控自动、手动以及就地手动这几种具体方式。(4)程序配煤、手动单独操作以及设备状态监视。其中,控制程序能够对配煤分路进行计量配煤,当存在设备因故障进行检修停运时,可借助“跳仓”功能来跳过,且犁煤器能够以自动控制形式来实现运行;同时,需要实现对皮带运行状态、仓煤位置以及犁煤器状态等的监管。(5)煤仓煤位测量与显示功能。在这一控制系统下,能够实现对整个运行作业工况信息的采集,同时以动态实时方式进行显示,通过记录存储来满足数据调用打印之需。(6)故障报警以及事故追忆功能。故障报警是在整个输煤系统运行的过程中,当发生故障问题会自动发出警报,在相应监控画面中显示出故障点。而各种故障警报信号以及故障跳闸信号等等,能够按照发生时序进行排列存储。 4输煤电气控制系统设计分析 4.1网络结构的设计 输煤电气控制系统属于自动化系统的范畴,因此我们在设计输煤电气控制系统时,首先要对网络结构进行设计。而输煤电气控制系统中的网络结构设计主要是对可编程逻辑遥控器现场总线结构的设计。在对可编程逻辑遥控器进行现场总线结构设计时,我们通常采用的是中心点同各个远程点相连接的现场总线方式。利用该种方式可以实现现场设备信息向室内控制器主站的传输,利用控制器可以精确的计算出逻辑输出结果,然后再向各个分站进行信息的传递。 4.2在上煤和配煤控制上的设计 基于上煤控制主要是以自动方式、手动方式以及就地方式组成的,因此,在具体设计的过程中,针对自动方式,需要借助上位机键盘的操作来实现,结合相应工艺要求,借助LCD的运用来选择程序并实现运行,在皮带启动前警铃发出20s的告警,启动后警报消失并进行运行,在运行过程中针对较大事故的发生需要立即联跳逆煤流方向的设备,其中碎煤机在自身发生事故外延时联跳,停运时处理碎煤机延时停机半个小时外,其余全线设备停运。而在手动方式上,主要是在上位机上借助PLC来实现设备联锁与解锁的手动处理;而就地方式下则是在相应的控制箱或是开关柜上进行操作,在设备检修调试以及控制室不起作用时,借助这一方式来实现及时有效处理。在程控配煤上,则需要结合锅炉加仓之需,借助键盘鼠标来实现指令的输入,以此来实现加仓配煤的自动化运行,以此来实现灵活控制。在实际设计中,需要遵循煤位优先加仓、时间循环加仓、自动跨越功能以及仓位、检修仓设定等原则。按照相应控制要求,实现自动配煤控制流程的完善设计。 4.3软件设计 对输煤电气控制系统中的软件设计主要是对主控制器的软件编程。这是整个输煤电气控制系统设计中最关键的一个环节。因为输煤电气控制系统的运行都是由对数字量的控制完成的,因此我们在对主控制器进行软件编程时要对多个设备进行连锁控制设计。因为系统中的各个设备的运行时间不同,设备的开启和停止都会出现一定的时间差,因此我们需要将定时器设置与该程序中,从而保持各个设备之间的

降低氮氧化物的运行调整措施

降低氮氧化物的运行措施 摘要:随着国家对火力发电行业在环保方面越来越高的要求,火电厂必须做到超低排放,火电厂锅炉燃烧产物烟气中的氮氧化物时其中最主要的排放指标之一,本文通过从运行角度分析如何降低氮氧化物,达到超低排放的要求。 关键词:锅炉;氮氧化物;运行 一、引言 氮氧化物是大气中主要的气态污染物之一,包括多种化合物,如氧化亚氮(N2O)、一氧化氮(NO)、二氧化氮(NO2)、三氧化二氮(N2O3)、四氧化二氮(N2O4)和五氧化二氮(N2O5)等。其中N2O3、N2O4、N2O5很不稳定,常温下很容易转化成NO和NO2。大气中含量较高的氮氧化物主要包括N2O、NO和NO2,其中NO和NO2是大气中主要的氮氧化物。 自然界中的NOx主要来自雷电,森林草原火灾,氧化大气中的氮和土壤中微生物的消化作用,这些氮氧化物在大气系统中均匀分散,并参加在环境中的氮循环。人类活动产生的氮氧化物主要来源于燃烧过程,可分为固定源和移动源,是造成大气污染的主要污染源之一。固定源指来自工业生产的燃料燃烧,还有部分来自硝酸生产、硝化过程、炸药生产和金属表面硝酸处理等过程的排放,移动源指交通运输燃料燃烧的排放。根据美国环保局(EPA)文献估计,人类产生的NOx有99%来自于燃烧,固定源和移动源各占一半。从燃烧系统排出的NOx有95%以上是NO,其余主要是NO2。 二、氮氧化物的生成机理有三种: (1)热力型(也称温度型),是指空气中的氮在超过1500℃的高温下发生氧化反应,温度越高,NOx的生成量越多。如果局部区域的火焰温度很高,将产生大量NOx,这部分NOx 占NOx总量的10%-20%,要减少温度型NOx,就要求燃烧处于较低的燃烧水平,同时要求燃烧中心各处的火焰温度分布均匀。 (2)燃料型,是指燃料中的氮受热分解和氧化生成NOx。主要指挥发分中的氮化合物生成NOx,其占NOx总量的80%-90%,这部分NOx在燃烧器出口处的火焰中心生成。由于大部分煤粒中的挥发分在30~50ms内析出,当煤粉气流的速度为10~15m/s时,挥发分析出的行程小于1m。要控制该区域中的Nox的生成量,就应控制燃料着火初期的过量空气系数,使煤粉在开始着火阶段处于缺氧状态,挥发分生成的一部分NOx被还原,这样实际生成的NOx数量可以明显减少。 (3)快速型(也称快速温度型),是指空气中的氮和碳氢燃料先在高温下反应生成中间产物N、NCH、CN等,然后快速与氧反应,生成NOx。这部分NOx占NOx总量的5%。 因此主要采取有效措施控制燃料型及热力型NOx的生成,从而达到降低NOx排放量。 三、降低NOx的通用措施 1、在燃用挥发分较高的烟煤时,燃料型 NO X含量较多,快速型 NO X极少。燃料型NO X是空气中的氧与煤中氮元素热解产物发生反应生成 NO X ,燃料中氮并非全部转变为 NO X,它存在一个转换率,降低此转换率控制 NO X 排放总量,可采取: (1)减少燃烧的过量空气系数; (2)控制燃料与空气的前期混合; (3)提高入炉的局部燃料浓度。 2、热力型 NOx :是燃烧时空气中的 N 2 和 O 2在高温下生成的 NO X,产生的主要条件是高的燃烧温度使氮分子游离增本化学活性;然后是高的氧浓度,要减少热力型 NO X

关于锅炉氮氧化合物升高原因分析及措施

关于锅炉烟气氮氧化物升高原因分析及 预控措施 一、NOx的形成与分类 氮氧化物:NO,NO2,N2O、N2O3,N2O4,N2O5等,但在燃烧过程中生成的氮氧化物,几乎全是NO和NO2。通常把这两种氮的氧化物称为NOx 1、热力型NOx(Thermal NOx),它是空气中的氮气在高温下(1000℃-1400℃以上)氧化而生成的NOx 2、快速型NOx(Prompt NOx),它是燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成的NOx 3、燃料型NOx(Fuel NOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx 二、NOx的升高的分析 1、煤粉燃烧中各种类型NOx的生成量和炉膛温度的关系

热力型NOx是燃烧时空气中的氮(N2)和氧(O2)在高温下生成的NO和NO2 O2十M←→2O十M O十N2←→NO十N N十O2←→NO十O 因此,高温下生成NO和NOx的总反应式为 N2十O2←→2NO NO十1/2O2←→NO2 2、煤粉炉的NOx排放值和燃烧方式及锅炉容量的关系

1)若燃料N全部转变为燃料NOx,则燃料中1%N燃烧生成NOx为1300ppm,实际上燃料N只是一部分转变为NOx,取转变率为25%,则燃料NOx为325ppm,即650mg/Nm3。 2)热力NOx一般占总NOx的20%~30%,现取25%,即为217 mg/Nm3。因此,总的NOx生成量为867 mg/m3。

3)若锅炉采用了低NOx燃烧器、顶部燃尽风等分级燃烧、以及提高煤粉细度和低α措施等,炉内脱硝率可达ηNOx≥50%,因此预计NOx排放浓度≤433mg/Nm3。 N2和O2生成NO的平衡常数Kp 当温度低于l000K时Kp值非常小,也就是NO的分压力(浓度)很小 温度和N2/O2(ppm)初始比对NO平衡浓度的影响 40N2/O2(ppm)是N2和O2之比为40:1的情况,这大致相当于过量空气系数为1.1时的烟气 NO氧化成NO2反应的平衡常数Kp

相关文档
最新文档