烟丝在流动密闭阀内的输送特性

烟丝在流动密闭阀内的输送特性
烟丝在流动密闭阀内的输送特性

溢流阀设计与计算

一、Y-63 溢流阀的工作原理与应用 溢流阀是利用溢流作用来调节油路压力的。当油路压力升高到某一规定值,溢流阀便打开,将压力溢流去一部分,使压力保持在规定的值。 溢流阀按结构形式可以分为直动式与先导式两类。 Y-63是先导式溢流阀。该型号溢流阀的主阀芯是圆柱滑阀式,加工装配比较方便。但与锥阀式主阀芯的溢流阀相比,由于主阀芯两端的受压面积相等,使阀的灵敏度较低;为了减少主阀的泄漏量,阀口处有一封油段h ,使动作反应较慢。所以画法式主阀芯的溢流阀动态性能差,一般用于中低液压系统。 主要用途: 1,用于保持液压系统压了恒定,称为定压阀 2,用于液压系统过载,称为安全阀 3,用作卸荷阀 4,实现远程调压 5,实现高低压多级控制 溢流阀工作原理:在油路没有达到溢流阀调定的压力时,导阀、主阀在各自的弹簧作用下处于关闭状态,各腔压力相等。当油路压力升到接近调定的压力时,导阀被推开,便有小量油液通过节流孔、导阀阀口、主阀阀芯的中心孔从油口流出。这样,由于节流孔中有油液通过,便自啊主阀芯活塞上下腔产生压力差,给主阀芯造成一个向上的推力。但此力不够克服主阀弹簧的预压缩力,因此主阀还不能打开。当油路压力继续升高,导阀开口量加大,通过节流口的流量加大,主阀芯上下腔压力差增大,便可克服主阀弹簧力和阀芯摩擦力,使主阀芯打开。压力油便通过主阀阀口,从出油口溢流。 二、设计 Y-63溢流阀,设计要求如下: 1.额定压力 a p g MP =3.6 2.额定流量 min 63L Q g = 3.调压范围 ()a p MP =3.6~2.31 4.启闭特性

开启压力 []a p Q MP =61 闭合压力 []Mp p Q 51'= 溢 流 量 []min 63.0L Q = 5.卸荷压力 []Mp p X 04.01≤ 6.内泄流量 []min 0015.0L q nx ≤ 一、主要结构尺寸的初步确定 (1)进油口直径d 由额定流量和允许流速来决定 v Q d g π4= s m 7-s m 6 v Q g 允许流速额定流量 得14.93mm d =故取 15.00mm d = (2) 主阀芯直径 1d 经验取 ()d 82.0~5.0d 1= mm mm 24.12d 47.71≤≤ 取mm 00.11d 1= (3)主阀芯与阀套的配合长度L 由公式()05.1~6.0D L = (4) 主阀芯活塞直径0D 经验取()10d 2.31.6D ~= 取mm 00.22D 0= (5) 节流孔直径0d ,长度0l 按经验取()000d 197l 2mm 0.8d ~~== 取8mm l 1.00mm d 00==(静态特性计算对选定的0d 和0l 进行适当的调整) (6) 导阀芯的半锥角α 按经验取020=α (7) 导阀座的孔径2d 和6d d d 1d 0l 0D α 2 d 6 d 1D 1S h

多功能水利控制阀特性

产品名称: JD745X(760)BFDS101X多功能水泵控制阀 产品类别:多功能水力控制阀 产品规格: JD745X(760)BFDS101X 产品口径: 50-1000 产品压力: 0.6-2.5Mpa 浏览次数: 1850 录入时间: 2008-10-25 本页关键词:多功能水泵控制阀、多功能水力控制阀 产品详情 一、多功能水泵控制阀简介 多功能水泵控制阀是一种新型水力控制阀门,一阀可替代电动蝶(闸)阀、止回阀和水锤消除器三种装置。它能自动实现开泵时的缓开,停泵时的速闭与缓闭,无需任何电气控制与其它动力和人力,也无需油压装置。 二、多功能水泵控制阀的主要优点 (1)无需操作控制。利用水泵启停时阀门前后的水压差作为控制动力,具有随水泵的启闭而自动启闭的功能。 (2)阀门启闭动作过程能有效地因防止水锤压力波升高而产生的事故。据现场使用情况调查和实测,停泵水锤压力峰值均在工作压力的1.3倍以内。 (3)无需现场调试,适用工况范围广。 (4)基本无需维修。由于一阀替代三阀,维护维修工作量大大减少。 (5)阻力损失小。采用流线型、宽阀体设计,阻力损失比国外同类产品降低50%以上,如DN200产品在v=2m/s的经济流速工况时,多功能水泵控制阀损失为0.7m,而国外同类产品为1.5m。 三、多功能水泵控制阀结构及工作原理 1)、水泵启动前,阀门出口端压力作用在主阀板上,阀门处于关闭位置,同时膜片控制器的上腔连通压力水,下腔则与阀门进口端的低压相通。 2)、水泵启动后,阀门进口压力逐渐升高,同时压力水通过阀门进口端的连接管缓慢进入膜片控制器下腔,实现主阀板的缓慢开启,开启速度可通过控制阀进行调节。 3)、水泵停机,阀门进口的压力降低,当接近零流量时,主阀板在自身重力作用下迅速关闭。因阀门进口端压力降低,阀门出口端的压力水通过连接管进入膜片控制器上腔,下腔水通过阀门进口端的连接管压回至阀门进口端,缓闭阀板缓慢关闭,慢关时间可通过控制阀进行调节。主阀板的速闭和缓闭阀板的缓闭符合两阶段关闭规律,能有效地消除水锤。 三、多功能水泵控制阀在安全供水中的应用:(几个技术问题)

调节阀的特性及选择

调节阀的特性及选择 调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。 电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。 本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。 1.调节阀工作原理 从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为 ()()212 212 42 P P D P P A Q -=-= ρ ζ πρζ 式中:Q——流体流经阀的流量,m 3 /s ; P1、P2——进口端和出口端的压力,MPa ; A——阀所连接管道的截面面积,m 2 ; D——阀的公称通径,mm ; ρ——流体的密度,kg/m 3 ; ζ——阀的阻力系数。 可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。阀开得越大,ζ将越小,则通过的流量将越大。 2.调节阀的流量特性 调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即 ?? ? ??=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。 一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。因此,流量特性有理想流量特性和工作流量特性之分。 2.1 调节阀的理想流量特性 调节阀在阀前后压差不变的情况下的流量特性为调节阀的理想流量特性。调节阀的理想流量特性仅由阀芯的形状所决定,典型的理想流量特性有直线流量特性、等百分比(或称对数)流量特性、抛物线流量特性和快开流量特性,如图5-6所示。

调节阀流量特性介绍

调节阀流量特性介绍 1. 流量特性 调节阀的流量特性是指被调介质流过调节阀的相对流量与调节阀的相对开度之间的关系。其数学表达式为 式中:Qmax-- 调节阀全开时流量 L---- 调节阀某一开度的行程 Lmax-- 调节阀全开时行程 调节阀的流量特性包括理想流量特性和工作流量特性。理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,有直线、等百分比、抛物线及快开4种特性(表1) 流量特性性质特点 直线调节阀的相对流量与相对开 度呈直线关系,即单位相对 行程变化引起的相对流量变 化是一个常数 ①小开度时,流量变化大,而大开度时流量变化小 ②小负荷时,调节性能过于灵敏而产生振荡, 大负荷时调节迟缓而不及时 ③适应能力较差 等百分比单位相对行程的变化引起的 相对流量变化与此点的相对 流量成正比 ①单位行程变化引起流量变化的百分率是相等的 ②在全行程范围内工作都较平稳,尤其在大开度时, 放大倍数也大。工作更为灵敏有效 ③ 应用广泛,适应性强 抛物线特性介于直线特性和等百分 比特性之间,使用上常以等 百分比特性代之 ①特性介于直线特性与等百分比特性之间 ②调节性能较理想但阀瓣加工较困难 快开在阀行程较小时,流量就有 比较大的增加,很快达最大 ①在小开度时流量已很大,随着行程的增大,流量很 快达到最大 ②一般用于双位调节和程序控制

在实际系统中,阀门两侧的压力降并不是恒定的,使其发生变化的原因主要有两个方面。一方面,由于泵的特性,当系统流量减小时由泵产生的系统压力增加。另一方面,当流量减小时,盘管上的阻力也减小,导致较大的泵压加于阀门。因此调节阀进出口的压差通常是变化的,在这种情况下,调节阀相对流量与相对开度之间的关系。称为工作流量特性[1]。具体可分为串联管道时的工作流量特性和并联管道时的工作流量特性。(1)串联管道时的工作流量特性 调节阀与管道串联时,因调节阀开度的变化会引起流量的变化,由流体力学理论可知,管道的阻力损失与流量成平方关系。调节阀一旦动作,流量则改变,系统阻力也相应改变,因此调节阀压降也相应变化。串联管道时的工作流量特性与压降分配比有关。阀上压降越小,调节阀全开流量相应减小,使理想的直线特性畸变为快开特性,理想的等百分比特性畸变为直线特性。在实际使用中,当调节阀选得过大或生产处于非满负荷状态时,调节阀则工作在小开度,有时为了使调节阀有一定的开度,而将阀门开度调小以增加管道阻力,使流过调节阀的流量降低,实际上就是使压降分配比值下降,使流量特性畸变,恶化了调节质量。 (2)并联管道时的工作流量特性 调节阀与管道并联时,一般由阀支路和旁通管支路组成,调节阀安装在阀支路管路上。调节阀在并联管道上,在系统阻力一定时,调节阀全开流量与总管最大流量之比随着并联管道的旁路阀逐步打开而减少。此时,尽管调节阀本身的流量特性无变化,但系统的可调范围大大缩小,调节阀在工作过程中所能控制的流量变化范围也大大减小,甚至起不到调节作用。要使调节阀有较好的调节性能,一般认为旁路流量最多不超过总流量的20%。 2. 调节阀的选择 2.1 流量特性选择

实验二 溢流阀的特性测试

实验二溢流阀的静态性能实验 一、实验目的 1、深入理解溢流阀稳定工况的静态特性。根据实验结果对被测阀的静态特性作适当分析。 2、通过实验,学会溢流阀静态性能的测试方法,学会使用本实验所用的仪器和设备。 二、实验装置与实验条件 1.实验装置与回路: 实验装置:YZ-01型液压传动综合教学实验台。 实验回路: 注:油源的流量应大于被试阀的试验流量;允许在给定的基本回

路中增设调节压力、流量的或保证试验系统安全工作的元件。 1、测量点的位置 测量压力点的位置:进口测压点应设置被试阀的上游,距被试阀的距离为5d(d 为管道通径);出口测压点应设置在被试阀的10d 处。 注:测量仪表连接时要排除连接管道内的空气。 测温点的位置:设置在油箱的一侧,直接浸泡在液压油中。 2、实验用液压油的清洁度等级:固体颗粒污染等级代号不得高于 19/16。 三、实验内容及步骤 a、调压范围的测定 先导式溢流阀的调定压力是由导阀弹簧的压紧力决定的,改 变弹簧的压缩量就可以改变溢流阀的调定压力。 具体步骤:如图所示将被试阀2关闭,溢流阀1完全打开。 启动泵,运行半分钟后,调节溢流阀1,使泵出口压力升至7Mpa。 将被试阀2完全打开,泵的压力降至最低值。调节被试阀2的 手柄,从全开至全关,再全关至全开,观察压力的变化理否平 稳,并测量压力的变化范围是否符合规定的调节范围。 b、稳态压力—流量特性试验 溢流阀的稳态特性包括开启和闭合两个过程。本实验中用数据采集系统进行数据采集,若没有数据采集系统则用记录描 点法。

开启过程:关闭溢流阀1,将被试阀2调定在所需压力值(比如5Mpa),打开溢流阀1,使通过被试阀2的流量为零,逐渐关 闭溢流阀1并记录相对应的压力,流量。并通过对压力和溢流 量的比值的分析,可以绘制特性曲线图(如图所示)。开启实验 作完后,再将溢流阀1逐渐打开,分别记录下各压力处的流量。 即得到闭合数据。 卸压—建压特性试验 卸压—建压试验是动态试验,周期短,肉眼只能观察到现象,而数据记录有一定的困难,所以由数据采集系统来完成相 对容易些。具体操作如下: 关闭阀1,将被试阀2调定在所需试验压力下(比如5Mpa),将电磁阀3通电,系统处于卸荷状态,然后将电磁阀3断电。 卸荷控制阀换向阀切换时,数据采数系统记录测试被试阀从所 控制的压力卸到最低压力值所需的时间和重新建立控制压力值 的时间。电磁阀3的切换时间不得在于被试阀的响应时间的 10%,最大不超过10ms。 当溢流阀是先导控制型式时,可以用一个卸荷控制阀换向阀切换先导级油路,使被试阀卸荷,逐点测出各流量时被试阀 的最低工作压力。 (一)特性曲线

阀门基础知识性能及其有关标准

阀门基础知识性能及其有关标准 一、阀门分类 1.通用分类法 这种分类方法既按原理、作用又按结构划分,是目前国际、国内最常用的分类方法。一般分闸阀、截止阀、节流阀、仪表阀、柱塞阀、隔膜阀、旋塞阀、球阀、蝶阀、止回阀、减压阀安全阀、疏水阀、调节阀、底阀、过滤器、排污阀等。 2.按用途和作用分类 调节阀类——主要用于调节介质的流量、压力等。包括调节阀、节流阀、减压阀等。 止回阀类——用于阻止介质倒流。包括各种结构的止回阀。 分流阀类——用于分离、分配或混合介质。包括各种结构的分配阀和疏水阀等。安全阀类——用于介质超压时的安全保护。包括各种类型的安全阀。 截断阀类——主要用于截断或接通介质流。包括闸阀、截止阀、隔膜阀、球阀、旋塞阀、碟阀、柱塞阀、球塞阀、针型仪表阀等。 3.按压力分类 真空阀——工作压力低于标准大气压的阀门。 低压阀——公称压力PN 小于1.6MPa的阀门。 中压阀——公称压力PN 2.5-6.4MPa的阀门。 高压阀——公称压力PN10.0-80.0MPa的阀门。 超高压阀——公称压力PN大于100MPa的阀门。 4.按介质温度分类 高温阀——t 大于450℃的阀门。 中温阀—120℃小于 t 小于450℃的阀门。 常温阀——40℃小于 t 小于120℃的阀门。 低温阀——100℃小于 t 小于-40℃的阀门。 超低温阀——t 小于-100℃的阀门。 5.按阀体材料分类 金属阀体衬里阀门—:衬铅阀门、衬塑料阀门、衬搪瓷阀门。 非金属材料阀门——如:陶瓷阀门、玻璃钢阀门、塑料阀门。 金属材料阀门——如:铜合金阀门、铝合金阀门、铅合金阀门、钛合金阀门、蒙乃尔合金阀门、铸铁阀门、碳钢阀门、铸钢阀门、低合金钢阀门、高合金钢阀门。 二、阀门的主要技术性能

调节阀流量特性测试

过程控制系统实验报告实验项目: 调节阀流量特性测试学号: 1404210114 姓名: 邱雄 专业:自动化 班级: 3 2017年11月28日

一、实验目得 1、掌握阀门及对象特性测试得方法。 2、了解S值变化对阀门特性得影响。 3、根据对象特点合理选择特性测试方法。 二、实验内容 1.测定不同S值下得调节阀流量特性。 2.测定二阶液位对象得阶跃响应特性。 三、实验系统得P&ID图(管道仪表流程图)、方块图P&ID图: 图(1)

方块图: 四、实验步骤 1、接通监控操作站、数据采集站电源预热相关设备。 2、启动监控操作系统设置“采集模式”。选中“采集模式”中得“模拟采 集”。 3、进入调节阀流量测试界面。 4、进入压力调节器操作面板。设置调节器为反作用,比例、积分、微分参 数得参考值分别为50%、4秒、0秒,点击选项“自动”进入自动调节。设定“给 定值”为90%,使泵得出口压力(调节器操作面板得测量值)为90%。 6、测试UV-101气动调节阀流量特性。在前面已经打开了相应得球阀, 并设置为350。分别记录设定值由0、30、60、75、80、83、86、89、92、 95、98、100%增加时与由100、98、95…0%减少时对应得流量(FT-101)。 7、改变S值再测试其流量特性。保持UV-101全开,调节球阀M10开度, 使流量(FT-101)为原来(MV全开时)得50%,即减小S值。重复第6步。 五、实验数据及结果 测试UV-101气动阀得流量特性数据如下: UV-1 83 8992 95 98 100

F T-101 93、09 69、85 42、98 28、75 24、81 21、21 15、47 12、43 9、57 7、01 5、04 表(1) U V-1 89 83 80 75 60 30 0 FT-101 5、04 5、12 5、30 5、36 5、4 10、51 12、97 17、87 31、67 59、65 93、06 表(2) 图(1) 调节球阀M10开度,使流量(FT -101)为原来(MV 全开时)得50%,调节阀 开度此时为43。所得数据如下: UV-1 83 89 92 95 98 100 F T-101 49、71 45、12 34、56 25、71 22、01 20、02 14、66 12、50 9、81 7、12 5、04 表(3)

伺服阀的特性及性能参数

第三节 伺服阀的特性及性能参数 一.伺服阀规格的标称电波伺服阀的规格用额定电流I n 额定压力n p 和额定流量n Q 来标称。 额定电流系产生额定流量所需的任一极性的输入电流,它与压力或力矩马达两个线圈的连接形式(单接、串联、并联或差动连接)有关。额定压力系产生额定流量的供油压力。 额定流量有两种定义方法: 1)以额定空载流量0Q 作为额定流量,即以额定电流、额定压力下,负载压力为零时的空载流量来标称额定流量 ρ ρ s n xi d s vm d p I WK C p Wx C Q 220==式中ρ 2xi d WK C K =xi K -----以I 为输入、v x 为输出的伺服阀增益,m/A。 2)以规定负载压下的负载流量L Q 作为额定流量,即以额定电流、额 定压力和规定阀上压降v p 下的负载流量来标称额定流量 v n L s n L s vm d L p KI p p KI p p Wx C Q =?=?=)()(2ρ 式中L s v p p p ?=…………阀上总压降,Pa。 为了得到最低的输出功率,常取32s L p p =。由于高压伺服阀多为21=s p Mpa,中压伺服阀为6=s p MPa(或6.3MPa),于是7=v p 或2MPa。所以许多伺服阀常以v p 为7或2MPa 时的负载流量来标称额定流量。 对于四通阀来说,单个阀口的压降p ?为阀上压降的一半,因此也有一些中压伺服阀以规定阀口压降p ?=1MPa 时的负载流量来标称额

定流量。 可见,不能笼统地谈额定流量,一定要明确是哪种定义及条件下的额定流量。选用或代用伺服阀时尤其要注意这一点。 〔实例〕某引进设备的钢带自动跑偏控制系统,实际油源压力 4.5MPa,采用阀口引进p ?=1MPa 时负载流量L Q =20L/min 的伺服阀。 现要改用额定压力3.6=s p MPa 的国产伺服阀,问代用阀的额定控制流量应多大? 注意,系统实际油源压力为4.5MPa,因为伺服阀的实际使用压力可以等于,也可以低于其额定压力。由题意知,原系统阀上总压降22=?=p p v MPa,不管代用什么阀,新阀的负载流量应等于原阀的负载流量,所以,如果新阀的额定压力为4.5MPa,则由式(4-15)比式(4-16)得新阀的空载流量应为 2 5.4200==v s L p p Q Q 现在所选代用阀额定压力为 6.3MPa,为了降压到4.5MPa 下使用时仍具有所需的流量,显然应选用额定空载流量更大一些的代用阀,即应取 5.355.43.625.4205.43.60'0===Q Q L/min 二.伺服阀的静态及动态特性 (一)伺服阀的静态特性 伺服阀的功率均为滑阀,而力(矩)马达及前置级为比例控制元件,因此伺服阀的一台特性基本上同滑阀的静态特性。以零开口流量型伺服阀为例,综述如下:

流量与阀门开度的关系

阀门的流量特性 不同的流量特性会有不同的阀门开度; ①快开流量特性,起初变化大,后面比较平缓; ②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度达到 50%,阀门的流量也达到50%; ③等百流量特性,跟快开式的相反,是起初变化小,后面比较大。 阀门开度与流量、压力的关系,没有确定的计算公式。它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。 调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系 :Q/Qmax=f(L/Lmax) 调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系: Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。 调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。 阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin, 则直线流量特性的流量与开度的关系为: Q/Qmax=(1/R)[1+(R-1)L/Lmax] 开度一半时,Q/Qmax=51.7% 等百分比流量特性:Q/Qmax=R^(L/Lmax-1) 开度一半时,Q/Qmax=18.3% 快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2)

开度一半时,Q/Qmax=75.8% 流量特性主要有直线、等百分比(对数)、抛物线及快开四种 ①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。 ②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。 ③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。 ④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性。 隔膜阀的流量特性接近快开特性, 蝶阀的流量特性接近等百分比特性, 闸阀的流量特性为直线特性, 球阀的流量特性在启闭阶段为直线,在中间开度的时候为等百分比特性。

溢流阀压力流量特性

1.常用液压阀一方向阀、压力阀、流量阀的类型 【答】 (1)方向阀方向阀的作用概括地说就是控制液压系统中液流方向的,但对不同类型的阀其具体作用有所差别。方向阀的种类很多,常用方向阀按结构分类如下:单向阀:l普通单向阀 2 液控单向阀普通单向阀换向阀:1 转阀式换向阀 液控单向阀 2 滑阀式换向阀:手动式换向阀、机动式换向阀、电动式换向阀、液动式换向阀、电液动换向阀。

手动式换向阀 电液动换向阀 (2)压力控制阀 溢流阀:直动式、先导式溢流阀

直动式溢流阀 先导式溢流阀减压阀:直动式、先导式减压阀 顺序阀:直动式、先导式顺序阀 压力继电器 (3)流量控制阀 节流阀调速阀 …………. 2.换向阀的控制方式,换向阀的通和位

【答】换向阀的控制方式有手动式、机动式、电动式、液动式、电液动式五种。换向阀的通是指阀体上的通油口数,有几个通泊口就叫几通阀。换向阀的位是指换向阀阀芯与阀体的相互位置变化时,所能得到的通泊口连接形式的数目,有几种连接形式就叫做几位阀。如一换向阀有4个通油口,3种连接形式,且是电动的,则该阀全称为三位四通电磁(电动)换向阀。 3.选用换向调时应考虑哪些问题及应如何考虑 【答】选择换向阀时应根据系统的动作循环和性能要求,结合不同元件的具体特点,适用场合来选取。①根据系统的性能要求,选择滑阀的中位机能及位数和通数。②考虑换向阀的操纵要求。如人工操纵的用手动式、脚踏式;自动操纵的用机动式、电动式、液动式、电液动式;远距离操纵的用电动式、电液式;要求操纵平稳的用机动式或主阀芯移动速度可调的电液式;可靠性要求较高的用机动式。③根据通过该阀的最大流量和最高工作压力来选取(查表)。最大工作压力和流量一般应在所选定阀的围之,最高流量不得超过所选阀额定流量的120%,否则压力损失过大,引起发热和噪声。若没有合适的,压力和流量大一些也可用,只是经济性差一些。④除注意最高工作压力外,还要注意最小控制压力是否满足要求(对于液动阀和电液动换向阀)。⑤选择元件的联接方式一一管式(螺纹联接)、板式和法兰式,要根据流量、压力及元件安装机构的形式来确定。⑥流量超过63L/min时,不能选用电磁阀,否则电磁力太小,推不动阀芯。此时可选用其他控制形式的换向阀,如液动、电液动换向阀。 4.直动式溢流阀与先导式溢流阀的流量一压力特性曲线,曲线的比较分析 【答】溢流阀的特性曲线溢流阀的开启压力o当阀入口压力小于PK1时,阀处于关闭状态,其过流量为零;当阀入口压力大于k1时,阀开启、溢流,直动式溢流阀便处于工作状态(溢流 的同时定压)。图中pb是先导式溢流阀的导阀开启 压力,曲线上的拐点m所对应的压力pm是其主阀的 开启压力。当压力小于民。时, 导阀关闭,阀的流量为零;当压力大于pb(小于此 2)时,导阀开启,此时通过阀的流量只是先导阀的 泄漏量,故很小,曲线上pbm段即为导阀的工作段;当阀入口压力大于此2时,主阀打开,开始溢流,先导式溢流阀便进入工作状态。在工作状态下,元论是直动式还是先导式溢流阀,其溢流量都是随人口压力增加而增加,当压力增加到丸z时,阀芯上升到最高位置,阀口最大,通过溢流阀的流量也最大一为其额定流量毡,这时入

调节阀流量特性测试

过程控制系统实验报告 实验项目:调节阀流量特性测试 学号:1404210114 姓名:邱雄 专业:自动化 班级: 3 2017年11月28 日

一、实验目的 1.掌握阀门及对象特性测试的方法。 2.了解S值变化对阀门特性的影响。 3.根据对象特点合理选择特性测试方法。 二、实验内容 1.测定不同S值下的调节阀流量特性。 2.测定二阶液位对象的阶跃响应特性。 三、实验系统的P&ID图(管道仪表流程图)、方块图P&ID图: 图(1)

方块图: 四、实验步骤 1.接通监控操作站、数据采集站电源预热相关设备。 2.启动监控操作系统设置“采集模式”。选中“采集模式”中的“模拟采集”。 3.进入调节阀流量测试界面。 4.进入压力调节器操作面板。设置调节器为反作用,比例、积分、微分参数的参考值分别为50%、4秒、0秒,点击选项“自动”进入自动调节。设定“给定值”为90%,使泵的出口压力(调节器操作面板的测量值)为90%。 6.测试UV-101气动调节阀流量特性。在前面已经打开了相应的球阀,并设置为350。分别记录设定值由0、30、60、75、80、83、86、89、92、95、98、100%增加时和由100、98、95…0%减少时对应的流量(FT-101)。 7.改变S值再测试其流量特性。保持UV-101全开,调节球阀M10开度,使流量(FT-101)为原来(MV全开时)的50%,即减小S值。重复第6步。 五、实验数据及结果 测试UV-101气动阀的流量特性数据如下: 表(1) 表(2)

图(1) 调节球阀M10开度,使流量(FT-101)为原来(MV全开时)的50%,调节阀开度此时为43。所得数据如下: 表(3) 图(2)

溢流阀性能试验报告

溢流阀性能实验 (实验类型:验证) XXX XXX XXX 班级:第组共人 姓名: 1.实验目的:了解主溢流阀主要性能指标,学会测定溢流阀静态特性的基本方法,绘制溢流阀启闭特性曲线。 静态特性――指溢流阀在稳态情况下,其各参数之间的关系。 动态特性――指溢流阀被控参数在发生瞬态变化的情况下,其各参数之间的关系。2.实验内容: 测试静态特性 (1)调压范围:溢流阀能正常工作的压力区间,指调压弹簧在规定的范围内调节时,系统压力能平稳的上升或下降,并且压力无突跳或迟滞现象。 (2)压力稳定性:溢流阀在某一定压力值下工作时,不应有尖叫和噪声,而且压力波动越小越好。 (3)启闭特性:包括开启特性和闭合特性曲线。 开启特性是指阀从关闭状态逐渐开启,流经阀的流量和对应的阀前压力之间的关系。 开启压力比――阀在开启过程中,当流经阀的流量为该阀全开启时实际流量的1℅时,所对应的阀前压力与调定压力之比值。 闭合特性是指阀从全开启状态逐渐关闭,流经阀的流量和对应的阀前压力之间的关系。 关闭压力比――阀在关闭过程中,当流经阀的流量为该阀全开启时实际流量的1℅时,所对应的阀前压力与调定压力之比值。 3.实验装置的液压系统原理(按标准符号、比例绘制系统图) 原理关键词:逐级加压慢慢开启(或关闭)测定流量 要点:围绕关键词,结合原理图进行说明。 4.使用仪器、元件明细表

5.实验步骤(按实验过程自己写) 实验数据记录表 6.实验报告 (1)报告分析部分只写文字,不要写计算过程(计算过程放在数据计算处理部分)。 (2)计算过程要写清除,并加适当文字说明。 (3)用坐标纸绘制溢流阀启闭特性曲线(横坐标为压力,纵坐标为流量),并分析实验结果。 (4)被试溢流阀的开启压力、关闭压力的大小与书上描述的有何不同,为什么。 (5)根据实验过程中出现的一些问题,提出意见和建议。

气动阀有哪些特性与优势说明

气动阀有哪些特性与优势说明 气动阀和调节阀是不能分开的只有气动阀和调节阀相互的结合才能更有效的为我们的生活带来更大的效益和帮助,气动阀不断的在我们的生活中普遍,调节阀也在不断的改善所以下边我们就来给大家介绍一下有关气动阀和调节阀的相关的知识内容。 1、阀门定位器 阀门定位器是气动执行器的主要附件,它与气动执行器配套使用,用来提高阀门的位置精度,克服阀杆摩擦和介质不平衡的影响,从而保证阀门按照调节器来的信号实现正确定位。 2、电磁阀 当系统需要实现程序控制或两位控制时,需要配用电磁阀,选用电磁阀时,除要考虑交、直流电源及电压、频率外,必须注意电磁阀与调节阀作用型式的关系,红外碳硫分析仪可配用“常开型”和“常闭型”。如果要求加大电磁阀的容量,来缩短动作时间,可以并列使用两台电磁阀或把电磁阀作为先导阀与大容量气动继动器组合使用。 3、气动继动器 是一种功率放大器,它能将气压信号送到较远的地方,消除由于信号管线加长所带来的滞后,主要用于现场变送器与中央控制室的调节仪表之间,或在调节器与现场调节阀之间,还有一种作用就是放大或缩小信号。 4、转换器 转换器分为气-电转换器和电-气转换器,其功能是实现气、电信号之间一定关系相互转换,主要用于在用电讯号操纵气动执行机构时将4-20mA电讯号转换成20-100Pa气讯号,反之在用气讯号操纵电动执行机构时(比较少见)或者为了集中监控,与计算机连网时则将20 -100Kpa气讯号转换为4-20mA电讯号。 5、阀位传送器 当调节阀远离控制室时为了不到现场就能准确了解阀的开关位置,就要配备阀位传送器。即将阀开度的机构位移量,按一定规律转换成电讯号送到控制室,此讯号可以是反映阀门任何开度的连续信号,也可以认为是阀门定位器的逆动作 6、行程开关(回讯器) 行程开关(回讯器)反映阀门开关两个极限位置,并同时送出指示讯号的装置,控制室可以根据此讯号,判断阀门的开关状态以便采取相应措施。 气动调节阀动作分气开型和气关型两种。气开型(Air to Open) 是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。故有时气开型阀门又称故障关闭型(Fail to Close FC)。气关型(Air to Close)动作方向正好与气开型相反。当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。故有时又称为故障开启型(Fail to Open FO)。气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式实现。 气开气关的选择是根据工艺生产的安全角度出发来考虑。当气源切断时,调节阀是处于关闭位置安全还是开启位置安全?举例来说,红外碳硫分析仪一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。如果气源中断,燃料阀全开,会使加热过量发生危险。又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于开启位置更安全些,宜选用气关式(即FO)调节阀。 阀门定位器

溢流阀的静态特性测试-力士乐教学内容

溢流阀的静态特性测 试-力士乐

溢流阀的静态特性测试 一、实验目的 深入了解溢流阀稳定工作时的静态特性。学会溢流阀静态特性中的调压范围、启闭特性的测试方法。并能对被试溢流阀的静态特性作适当的分析。 二、实验原理 通过对溢流阀开启、闭合过程的溢流量的测量,了解溢流阀开启和闭合过程的特性并确定开启和闭合压力。原理见图3-1。 三、实验仪器 力士乐液压教学实验台、秒表 四、实验内容 1.调压范围及压力稳定性 1)调压范围:应能达到规定的调压范围(0.5--6.3MPa),压力上升与下降时应平稳,不得有尖叫声。 2)调压范围最高值时压力振摆:压力振摆应不超过规定值( 0.2MPa)。 3)调压范围最高值时压力偏离值:三分钟后应不超过规定值(0.2MPa)。 2.启闭特性 1)开启压力:调节系统压力逐渐升高,当通过被试阀的溢流量为额定流量1%时的系统压力值称为被试阀的开启压力。 2)闭合压力:调节系统压力逐渐逐渐降低,当通过被试阀的溢流量为额定流量1%时的系统压力值称为被试阀的闭合压力。图3-2为启闭特性曲线 五、实验步骤 松开溢流阀11,关闭节流阀10,换向阀13失电。 1.启闭特性 调节溢流阀11,使系统压力达到4.5MPa。二位二通电磁换向阀13得电。调节被试阀14的实验压力为3.5MPa,用秒表配合量筒测量在试验压力下的全流量。 闭合过程:慢慢逐渐松节流阀10手柄,观察压力表P12-2,使被试阀14的进口压力分别为3.5、3.4、3.3、3.2、3.1…MPa每一压力对应测一流量值,直到被试阀无流量(全流量的1%)溢出为止。 开启过程:调节节流阀10,使系统逐渐升压,当被试阀有流量溢出时开始测量压力与流量,逐渐升压,直到被试阀14流量到全流量为止。 松开溢流阀11,14手柄,停泵。 注意事项 1).调节被试阀进口压力时,开启过程,压力应一直逐渐上升,不允许上升 后又下降再向上调;闭合过程,压力应一直逐渐下降,不允许下降后又 上升再下降,否则,压力时高时低,实验数据无法反映启闭特性。

单向阀的特性及应用

单向阀的特性及应用 彭熙伟1,陈建萍2,李金仓1 Property and Application of Check Valve Peng Xi wei1,Chen Jian ping2,Li Jin cang1 (1 北京理工大学自控系,北京 100081;2 中船重工707研究所,江西九江 332007) 摘 要:对单向阀的特性、分类进行了介绍,列举了单向阀在液压系统中多种功能的具体应用,并阐述了单向阀使用中的一些注意问题。 关键词:单向阀;方向控制阀;液压系统 中图分类号:TH137 文献标识码:B 文章编号:1000 4858(2004)01 0060 02 单向阀是液压系统方向控制阀中的一类,其主要作用是限制油液只能向一个方向流动,不能向反方向流动。单向阀结构和工作原理都比较简单,但却是液压系统中应用最多的元件之一,正确选择、合理应用单向阀不仅可以满足液压系统不同应用场合的多种功能要求,而且还可使液压系统设计简化。本文介绍单向阀在实际液压系统中的典型应用和使用注意事项。 1 单向阀的分类及特性 单向阀按其结构特点不同,一般分为普通单向阀和液控单向阀两类。普通单向阀的图形符号如图1a 上所示,其功能是只允许油液向一个方向流动(从A 到B),而不允许反向(从B到A)流动;液控单向阀的图形符号如图1a下所示,其功能是允许油液在一个方向流动(从A到B),而反向流动(从B到A)必须通过控制油(C)来实现。 对单向阀的性能要求主要有:当油液通过单向阀流动时阻力要小,也就是压力损失要小;而当油液反向流入时,阀口的密封性要好,无泄漏;工作时不应有振动、冲击和噪声。 2 单向阀的应用 1)保护液压泵 如图1b所示,单向阀3安装在液压泵1的出口,可防止系统压力突然升高(如蓄能器4释压等)反向传给液压泵,避免泵反转或损坏,起保护液压泵的作用。 2)防止油路干扰 如图1c所示的双泵供油系统,当系统压力低时,泵1和泵2输出的油汇合,共同向系统供油,满足系统大流量的需要;当系统压力高于卸荷阀5的设定压力时,低压泵2卸载,只有高压泵1向系统供油,此时,单向阀4把高压油路和低压油路隔开,不互相影响。 3) 保压 图1 单向阀应用 收稿日期:2003 07 03 作者简介:彭熙伟(1966 ),男,云南昆明市人,副教授,博士,主要从事电液伺服控制、比例伺服控制技术研究。 60液压与气动2004年第1期

阀口及阻尼的压力流量特性-1

1 阀口的流量压力特性 流体力学中流经节流小孔的流量公式: p A C q d ?=ρ 2 式中,d C --阀口流量系数,与雷诺数Re 有关,Re>260时,滑阀的流量系数为常数,若阀口为锐边时,d C =0.61~0.65;若阀口为圆边或有很小倒角时,d C =0.8~0.9. 复习:雷诺数Re 的计算式:运动粘度水力直径流速?= = υ h vD Re ,水力直径湿周 过流面积 4D ?=h 式中,A —阀口的过流面积,p ?--阀口前后的压差。 图(a )所示为滑阀,阀口过流面积 Dx A π= (当h=0时) 图(b )所示为锥阀(阀座无倒角),阀口过流面积 )s i n (s i n ααπ2211 1D x x D A - = 当1D x <<时,απsin x D A 1= 图(c )所示为锥阀(阀座有倒角),阀口过流面积 )s i n (s i n ααπ221m m D x x D A -=, 其中221/)(D D D m +=,当m D x <<时,απsin x D A m = 图(d )所示为球阀,阀口过流面积 ()2 02 1001221x h D h x x h D A ++?? ? ??+=π,其中,2 12 02??? ??-=D R h 当R x D x <<<<,/21时,R x h D A /01π= 锥阀(球阀)的流量系数d C ,当雷诺数较大时,流量数为定值,d C =0.77~0.82. 图1 滑阀、锥阀、球阀

2 液压阻尼和液阻桥路控制 各种液压控制阀的工作原理实际上都是从阀芯的力学平衡条件出发,通过控制阀芯的位置来改变流动阻尼而进行控制,以达到调节压力或流量的目的。 2.1 液压阻尼的概念 阀口的流量压力特性可表示为 p By q ?= 式中,B 为液导率,例如滑阀的ρπ/2D C B d =,锥阀的ραπ/sin 2D C B d =; y 为阀口开度,称By 为液导,液导用字母G 表示,即G=By 参照电学中的欧姆定律R V I =,让流量q 对应电流I 、压差p ?对应电压V ,液阻对应电阻, 则阀口的流量压力特性表示为: R p By p q ?= ?= /1 式中,R 为液阻,By R 1 = ,(液阻R 与液导G 互为倒数),显然液阻R 随阀口开度y 的增大而减小,随y 的减小而增大,即液阻反比于阀口开度。 2.2 正开口四边滑阀控制油缸的液阻全桥分析 图2.1 正开口四边滑阀控制油缸的液阻全桥表示 图2.1(a )所示为正开口四边滑阀控制双出杆油缸,设阀中位时各边阀口的预开口为0y ,

2、控制阀流量特性解析

2、控制阀流量特性解 析 -CAL-FENGHAI.-(YICAI)-Company One1

控制阀流量特性解析 控制阀的流量特性是控制阀重要技术指标之一,流量特性的偏差大小直接影响自动控制系统的稳定性。使用单位希望所选用的控制阀具有标准的固有流量特性,而控制阀生产企业要想制造出完全符合标准的固有流量特性控制阀是非常困难的,因直线流量特性相对简单,且应用较少,所以本文重点对等百分比流量特性进行讨论。 控制阀的流量特性是指介质流过阀门的相对流量与相对行程之间的关系,数学表达式为Q/Qmax = f(l/L),式中:Q/Qmax—相对流量。指控制阀在某一开度时的流量Q与全开流量Qmax之比; l/L—相对行程。指控制阀在某一开度时的阀芯行程l与全开行程L之比 一般来讲,改变控制阀的流通面积便可以控制流量。但实际上由于多种因素的影响,在节流面积发生变化的同时,还会产生阀前、阀后压力的变化,而压差的变化又将引起流量的变化,为了便于分析,先假定阀前、阀后压差不变,此时的流量特性称为理想流量特性。 理想流量特性主要有等百分比(也称对数)、直线两种常用特性,理想等百分比流量特性定义为:相对行程的

等值增量产生相对流量系数的等百分比增加的流量特性,数学表达式为Q/Qmax = R(l/L-1)。 理想直线流量特性定义为:相对行程的等值增量产生相对流量系数的等值增量的流量特性,数学表达式为 Q/Qmax=1/R[1+(R-1)l/L] 式中R—固有可调比,定义为在规定偏差内的最大流量系数与最小流量系数之比。 常见的控制阀固有可调比有30、50两种。 当可调比R=30和R=50时,直线、等百分比的流量特性在相对行程10%~100%时各流量值见表一 表一 由上表可以看出,直线流量特性在小开度时,流量相对变化大,调节作用强,容易产生超调,可引起震荡,在大开度时调节作用弱,及时性差。而等百分比流量特性小开度时流量小,流量变化也小,在大开度时流量大,流量变化

溢流阀的基本结构及其工作原理

溢流阀的基本结构及其工作原理在液压传动系统中,控制油液压力高低的液压阀称之为压力控制阀,简称压力阀。这类阀的共同点是利用作用在阀芯上的液压力和弹簧力相平衡的原理工作的。 一、溢流阀的基本结构及其工作原理 溢流阀的主要作用是对液压系统定压或进行安全保护。 (一)溢流阀的作用和性能要求 1.溢流阀的作用 在液压系统中用来维持定压是溢流阀的主要用途。它常用于节流调速系统中,和流量控制阀配合使用,调节进入系统的流量,并保持系统的压力基本恒定。用于过载保护的溢流阀一般称为安全阀。 2.液压系统对溢流阀的性能要求 (1)定压精度高 (2)灵敏度要高 (3)工作要平稳且无振动和噪声

(4)当阀关闭时密封要好,泄漏要小。 (二)溢流阀的结构和工作原理 常用的溢流阀按其结构形式和基本动作方式可归结为直动式和先导式两种。 1.直动式溢流阀 直动式溢流阀是依靠系统中的压力油直接作用在阀芯上与弹簧力等相平衡,以控制阀芯的启闭动作,溢流阀是利用被控压力作为信号来改变弹簧的压缩量,从而改变阀口的通流面积和系统的溢流量来达到定压目的的。当系统压力升高时,阀芯上升,阀口通流面积增加,溢流量增大,进而使系统压力下降。溢流阀内部通过阀芯的平衡和运动构成的这种负反馈作用是其定压作用的基本原理,也是所有定压阀的基本工作原理。

? 2.先导式溢流阀 图-19所示为先导式溢流阀的结构示意图,由于先导阀芯一般为锥阀,受压面积较小,所以用一个刚度不太大的弹簧即可调整较高的开启压力,用螺钉调节导阀弹簧的预紧力,就可调节溢流阀的溢流阀压力。 先导式溢流阀有一个远程控制口K,如果将K口用油管接到另一个远程调压阀(远程调压阀的结构和溢流阀的先导控制部分一样),调节远程调压阀的弹簧力,即可调节溢流阀主阀芯上端的液压力,从而对溢流阀的溢流压力实现远程调压。但是,远程调压阀所能调节的最高压力不得超过溢流阀本身导阀的调整压力。当远程控制口K通过二位二通阀接通油箱时,主阀芯上端的压力接近于零,主阀芯上移到最高位置.阀口开得很大。由于主阀弹簧较软,这时溢流阀p口处压力很低,系统的油在低压下通过溢流阀流回油箱,实现卸荷。 (三)溢流阀的性能 溢流阀的性能包括溢流阀的静态性能和动态性能。 1.静态性能

相关文档
最新文档