圆的参数方程

圆的参数方程
圆的参数方程

远东二中导学稿★ 高二数学选修4-4 ★ 总计第5期 §2.2. 圆的参数方程

主备: 李建章 审核: 审批: 班级: 学习小组: 学生姓名:

【学习目标】

1.分析圆的几何性质,能够选择适当的参数写出圆的参数方程;

2.掌握参数方程与普通方程的互化,并通过实例进行比较.

【学习重点】能写出圆的参数方程.

【学习难点】圆的参数方程的几何意义.

【自主预习】:

1.旧知回顾:

(1)写出直线的参数方程_____________________________________.

(2)回顾圆的相关知识:

2.应知应会:

圆222r )b y ()a x (=-+-的参数方程可表示为 ________.

【探究活动】

探究活动一:

例1.已知直线???==ααsin cos t y t x 与圆?

??=+=θθsin 2cos 24y x 相切,求直线的倾斜角α.

探究活动二:

例2.一个圆的参数方程???==α

αsin cos t y t x (α为参数),一条直线的方程为043=-y x ,

并判断这条直线与圆的位置关系.

探究活动三:

例3.已知参数方程?

??+=+=θθsin cos 00a y y a x x , (1)指出当哪个变量作为参数时,方程表示直线?哪个变量作为参数时,方程表示圆?

(2)分别说出0x ,0y ,a ,θ,x ,y 的几何意义.

【达标测评】:

1.已知曲线1C :???==θθsin ,cos y x (θ为参数),曲线2C :???????=-=t y t x 2

2,222(t 为参数). (1)指出1C ,2C 各是什么曲线,并说明1C 与2C 公共点的个数;

2.一个圆的圆心为A(2,3),半径是5,写出它以圆心角为参数的参数方程.

【课堂小结】

【今日作业】课本第39页习题2-2A组:6、8题.

椭圆的参数方程(教案)

学习好资料欢迎下载 8.2椭圆的几何性质(5) ——椭圆的参数方程(教案) 齐鲁石化五中翟慎佳2002.10.25 一.目的要求: 1?了解椭圆参数方程,了解系数a b、「含义。 2. 进一点完善对椭圆的认识,并使学生熟悉的掌握坐标法。 3. 培养理解能力、知识应用能力。 二.教学目标: 1. 知识目标:学习椭圆的参数方程。了解它的建立过程,理解它与普通方 程的相互联系;对椭圆有一个较全面的了解。 2. 能力目标:巩固坐标法,能对简单方程进行两种形式的互化;能运用参 数方程解决相关问题。 3. 德育目标:通过对椭圆多角度、多层次的认识,经历从感性认识到理性 认识的上升过程,培养学生辩证唯物主义观点。 三.重点难点: 1. 重点:由方程研究曲线的方法;椭圆参数方程及其应用。 2. 难点:椭圆参数方程的推导及应用。 四.教学方法: 引导启发,计算机辅助,讲练结合。 五.教学过程: (一)引言(意义) 人们对事物的认识是不断加深、层层推进的,对椭圆的认识也遵循这一规律。 本节课学习椭圆的参数方程及其简单应用,进一步完善对椭圆认识。(二)预备知识(复习相关) 1. 求曲线方程常用哪几种方法? 答:直接法,待定系数法,转换法〈代入法〉,参数法。 2. 举例:含参数的方程与参数方程

2 “ x = 2t 例如:y =kx+1 (k 参数)含参方程'而I 十1 (t 参数) 3 ?直线及圆的参数方程?各系数意义? (三)推导椭圆参数方程 1. 提出问题(教科书例5) 例题.如图,以原点为圆心,分别以 a b (a>b>0)为半径作两个圆。 点B 是大圆半径OA 与小圆的交点,过点 A 作AN _0x ,垂足为N ,过 点B 作BM _AN ,垂足为M 。求当半径0A 绕点0旋转时点M 的轨迹 的参数方程。 2. 分析问题 本题是由给定条件求轨迹的问 题,但动点较多,不易把握。故采用 间接法 --- 参数法。 引导学生阅读题目,回答问题: (1) 动点M 是怎样产生的? M 与A 、B 的坐标有何联系? (2) 如何设出恰当参数? 设/ AOX=:为参数较恰当。 3. 解决问题(板演) 解:设点M 的坐标(x,y ),是以Ox 为始边,OA 为终边的正角, 取为参数,那么 x=ON=|OA|cos 「, y=NM=|OB|sin 「即 4. 更进一步(板演:化普通方程) -=cos? 分别将方程组①的两个方程变形,得t a 两式平方后相加, '=si n? 是参数方程。 J 5 *實 x = a cos? y =bsin ①引为点M 的轨迹参数方程,「为参数。

2019-2020学年高中数学 2.2圆的参数方程及应用教案 北师大版选修4-4.doc

2019-2020学年高中数学 2.2圆的参数方程及应用教案 北师大版选 修4-4 一、教学目标: 知识与技能:分析圆的几何性质,选择适当的参数写出它的参数方程。利用圆的几何性质求最值(数形结合) 过程与方法:能选取适当的参数,求圆的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:能选取适当的参数,求圆的参数方程 教学难点:选择圆的参数方程求最值问题. 三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、圆的参数方程探求 1、学生阅读课本P32,根据图形求出圆的参数方程,教师准对问题讲评。 )(sin cos 为参数θθ θ?? ?==r y r x 这就是圆心在原点、半径为r 的圆的参数方程。 说明:(1)参数θ的几何意义是OM 与x 轴正方向的夹角。(2)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。(3)在建立曲线的参数方程时,要注明参数及参数的取值范围。 思考交流:你能回答课本第33页的思考交流题吗? 3、若如图取

???==θθ sin 5cos 5:1y x C (θ为参数)和???+=+=0 0245 sin 345cos 4:t y t x C (t 为参数) (1)、判断这两条曲线的形状;(2)、求这两条曲线的交点坐标。学生练习,教师准对问题讲评。 (二)、最值问题:利用圆的几何性质和圆的参数方程求最值(数形结合) 例2、1、已知点P (x ,y )是圆x2+y2- 6x- 4y+12=0上动点,求(1) x2+y2 的最值, (2)x+y 的最值, (3)P 到直线x+y- 1=0的距离d 的最值。 解:圆x2+y2- 6x- 4y+12=0即(x- 3)2+(y- 2)2=1,用参数方程表示为 由于点P 在圆上,所以可设P (3+cos θ,2+sin θ), (1) x2+y2 = (3+cos θ)2+(2+sin θ)2 =14+4 sin θ +6cos θ sin(θ +ψ). (其中tan ψ =3/2) ∴ x2+y2 的最大值为 。 (2) x+y= 3+cos θ+ 2+sin θ ( θ + 4 π )∴ x+y 的最大值为 ,最 小值为 。 (3)2 | )4 sin(24|2 | 1sin 2cos 3|π θθθ++= -+++= d 显然当1)4 sin(±=+ π θ时,d 取最大值,最小值,分别为1+ 1-2、 过点(2,1)的直线中,被圆x 2 +y 2 -2x+4y=0截得的弦:为最长的直线方程是_________;为 最短的直线方程是__________; 3、若实数x ,y 满足x 2 +y 2 -2x +4y =0,则x -2y 的最大值为 。 (三)、课堂练习:学生练习:1、2 (四)、小结:1、本课我们分析圆的几何性质,选择适当的参数求出圆的参数方程。2、参数取的不同,可以得到圆的不同形式的参数方程。从中体会参数的意义。3、利用参数方程求最值。要求大家掌握方法和步骤。 (五)、作业:课本P39页A 组6、7、8 B 组5 1、方程04524222=-+--+t ty tx y x (t 为参数)所表示的一族圆的圆心轨迹是(D ) 3cos 2sin x y θ θ =+?? =+?

椭圆的参数方程及其应用

椭圆的参数方程及其应用 大纲对椭圆的参数方程的要求是达到理解的程度,如果适当地引进一点简单的参数方程知识,可以起到拓宽视野,简化平面解析几何的运算的功效。本文主要介绍椭圆的参数方程及其应用,希望能够给读者一些启迪。 一般都是这样定义的: 椭圆1b )y y (a )x x (2 2 0220=-+-的参数方程是???α +=α+=sin b y y cos a x x 00(α是参数,0b 0a >>,)。 特别地,以点(00y x ,)为圆心,半径是r 的椭圆的参数方程是? ??α+=α +=sin r y y cos r x x 00(α是参数,r>0)。 一、求椭圆的内接多边形的周长及面积 y x 2 2(20π <α<), 22b a 4+, 例2 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2 1MB AM =,试求动点M 的轨迹方程。 解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。 则,α=+ ?+α=++=cos 82110 21cos 12211x 21x x B A 3sin 42 119 21sin 6211y 21y y B A +α=+ ?+α=++=, 动点M 的轨迹的参数方程是? ??+α=α =3sin 4y cos 8x (α是参数), 消去参数得116 )3y (64x 2 2=-+。 三、求函数的最值

例3 设点P (x ,y )在椭圆19y 16x 2 2=+,试求点P 到直线05y x =-+的距离d 的最大值和最小值。 解:点P (x ,y )在椭圆19 y 16x 2 2=+上,设点P (ααsin 3cos 4,)(α是参数且)20[π∈α,), 则55 53arcsin sin 534|5sin 4cos 3|d 22-??? ? ? +α= +-α+α=。 当5 3 arcsin 2-π=α时,距离d 有最小值0,此时椭圆19y 16x 22=+与直线05y x =-+相切;当5 3arcsin 23-π=α时,距离d 有最大值2。 P , π),A (a ,0)。 解得1cos =α(舍去),或2 22 b a b cos -=α。 因为1cos 1<α<-,所以1b a b 1222<-<-。可转化为1e e 112 2<-<-,解得21e 2 > ,于是1e 22<<。故离心率e 的取值范围是? ?? ? ??122,。 [截距法]解线性规划问题 由于线性规划的目标函数:z ax by b =+≠()0可变形为y a b x z b =- +,则z b 为直线y a b x z b =-+的纵截距,那么我们在用线性规划求最值时便可以得到如下结论: (1)当b >0时,直线y a b x z b =- +所经过可行域上的点使其纵截距最大时,便是z 取得最大值的点;反之,使纵截距取得最小值的点,就是z 取得最小值的点。 (2)当b <0时,与b >0时情形正好相反,直线y a b x z b =- +所经过可行域上的点使其纵截距最大时,是z 取得最小值的点;使纵截距取得最小值的点,便是z 取得最大值的点。

圆的参数方程及应用

对于圆的普通方程222()()x a y b R -+-=来说,圆的方程还有另外一种表达 形式cos sin x a R y b R θθ=+??=+?(θ为参数) ,在解决有些问题时,合理的选择圆方程的表达形式,能给解决问题带来方便,本文浅谈圆的参数方程再解题中的应用。 一、求最值 例1 已知点(x ,y )在圆221x y +=上,求2223x xy y ++的最大值和最小值。 【解】圆2 2 1x y +=的参数方程为:cos sin x y θθ=??=? 。 则2223x xy y ++=22cos 2sin cos 3sin θθθθ++ = 1cos 21cos 2sin 2322θθθ+-++? 2sin 2cos 2θθ=+-=22sin(2)4π θ+-,则38k πθπ=+(k ∈Z )时,2223x xy y ++的最大值为:22+;8 k π θπ=-(k ∈Z ) 时,2223x xy y ++的最小值为22-。 【点评】解某些与圆的方程有关的条件制问题,可应用圆的参数方程转化为三角函数问题的方法解决。 二、求轨迹 例2 在圆224x y +=上有定点A (2,0),及两个动点B 、C ,且A 、B 、C 按逆时针方向排列, ∠BAC=3π ,求△ABC 的重心G (x ,y )的轨迹 方程。 【解】由∠BAC= 3 π,得∠BOC=23π,设∠ABO=θ(403π θ<<),则B(2cos θ,2sin θ),C(2cos(θ+23π),2sin(θ+23 π )),由重心坐标公式并化简,得: 22cos()333 2sin()33x y πθπθ? =++??? ?=+?? ,由5333πππθ<+<,知0≤x <1, C x y O A B 图1

圆的参数方程习题

圆的参数方程习题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

圆的参数方程习题 1.设圆M的方程为(x-3)2+(y-2)2=2,直线l的方程为x+y-3=0,点P的坐标为(2,1),那么 [ ] A.点P在直线l上,但不在圆M上 B.点P在圆M上,但不在直线l上 C.点P在圆M上,又在直线l上 D.点P既不在圆M上,又不在直线l上 2.两圆x2+y2=4和x2+y2-6x-8y-24=0的位置关系是 [ ] A.内切 B.外切 C.相交 D.内含 3.(1)化圆的普通方程x2+y2-6x+2y+1=0为参数方程

迹方程,并说明轨迹是什么样的曲线.

8.求两圆x2+y2=9与(x-6)2+y2=1的内公切线的方程. 9.已知方程x2+y2-2axcosθ-2aysinθ=0(a>0,a是常数,θ是参数) (1)证明:不论θ是何值,方程均表示圆. (2)求圆心的轨迹方程. 10.已知两圆x2+y2=9和(x-3)2+y2=27,求大圆被小圆截得的劣弧的长度.

圆的参数方程习题答案 1.C 2.A 8.圆O:x2+y2=9,圆O′:(x-6)2+y2=1 O点(0,0),r=3;O′点(6,0),r′=1 设P点为(x 0,y ) 9.(1)x2+y2-2axcosθ-2aysinθ=0

即(x -acosθ)2+(y -asinθ)2=a 2 . ∴不论Q 是何值,方程总表示圆心在(acos θ,asin θ)半径为a 的圆. ∴圆心的轨迹方程为x 2+y 2=a 2 的交点为A ,B ,A 、B 对应的参数为θ1,θ2,则θ1,θ2是方

空间曲线的参数化

一、 空间曲线的参数化 若积分曲线Γ的参数方程 ],[)(),(),(βα∈===t t z z t y y t x x Γ,:,则曲线积分的计算公式为 ??'=++β α)())(),(),(({d d d t x t z t y t x P z R y Q x P Γ }d )())(),(),(()())(),(),((t z t z t y t x R t y t z t y t x Q '+'+ ],[d )()()())()()((d )(222βαβ α ∈'+'+'=?? t t t z t y t x t ,z t ,y t x f s x,y,z f Γ , 曲线积分计算的关键是如何将积分曲线Γ参数化。下面将给出积分曲线参数化的某些常用方法。 1. 设积分曲线???==0 ),,(0),,(z y x G z y x F Γ:,从中消去某个自变量,例如z ,得到Γ在 xoy 平面的投影曲线,这些投影曲线常常是园或是椭圆,先将它们表示成参数方程),(),(t y y t x x ==然后将它们代入0),,(0),,(==z y x G z y x F 或中,解出)(t z z =由此得到Γ的参数方程:],[)(),(),(βα∈===t t z z t y y t x x ,。 例1将曲线???==++y x a z y x Γ2222:,(其中0>a )用参数方程表示。 解:从Γ的方程中消去y ,得到xoz 平面上的投影曲线2 222a z x =+,这是椭圆, 它的参数方程为]2,0[,sin ,cos 2 π∈== t t a z t a x ,将其代入Γ的方程,得到第七讲 曲线积分与曲面积分

椭圆的参数方程(含答案)

椭圆的参数方程 教学目标: 1.了解椭圆的参数方程及参数的意义,并能利用参数方程来求最值、轨迹问题; 2.通过椭圆参数方程的推导过程,培养学生数形结合思想,化归思想,以及分 析问题和解决问题的能力。 3.通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:椭圆的参数方程。 教学难点:椭圆参数方程中参数的理解. 教学方式:讲练结合,引导探究。 教学过程: 一、复习 焦点在x 轴上的椭圆的标准方程:22221(0)x y a b a b +=>> 焦点在y 轴上的椭圆的标准方程:22 221(0)y x a b a b +=>> 二、椭圆参数方程的推导 1. 焦点在x 轴上的椭圆的参数方程 因为22()()1x y a b +=,又22 cos sin 1??+= 设cos ,sin x y a b ??==,即a cos y bsin x ??=??=? ,这是中心在原点O,焦点在x 轴上的椭圆的参数方程。 2.参数?的几何意义 问题、如下图,以原点O 为圆心,分别以a ,b (a >b >0)为半径 作两个圆。设A 为大圆上的任意一点,连接OA,与小圆交于点B 。 过点A 作AN ⊥ox ,垂足为N ,过点B 作BM ⊥AN ,垂足为M ,求当 半径OA 绕点O 旋转时点M 的轨迹参数方程. 解:设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(x, y)。 那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点A,B 均在角? 的终边上,由三角函数的定义有 ||cos cos x OA a ??==, ||sin cos y OB b ??==。 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是 a cos y bsin x ??=??=? 这是中心在原点O,焦点在x 轴上的椭圆的参数方程。 () ?为参数

北师大版高三数学选修4-4教案:2.2圆的参数方程及应用

第二课时 圆的参数方程及应用 一、教学目标: 知识与技能:分析圆的几何性质,选择适当的参数写出它的参数方程。利用圆的几何性质求最值(数形结合) 过程与方法:能选取适当的参数,求圆的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:能选取适当的参数,求圆的参数方程 教学难点:选择圆的参数方程求最值问题. 三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、圆的参数方程探求 1、学生阅读课本P32,根据图形求出圆的参数方程,教师准对问题讲评。 )(sin cos 为参数θθ θ?? ?==r y r x 这就是圆心在原点、半径为r 的圆的参数方程。 说明:(1)参数θ的几何意义是OM 与x 轴正方向的夹角。(2)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。(3)在建立曲线的参数方程时,要注明参数及参数的取值范围。 思考交流:你能回答课本第33页的思考交流题吗? 3、若如图取

(1)、判断这两条曲线的形状;(2)、求这两条曲线的交点坐标。学生练习,教师准对问题讲评。 (二)、最值问题:利用圆的几何性质和圆的参数方程求最值(数形结合) 例2、1、已知点P (x ,y )是圆x2+y2- 6x- 4y+12=0上动点,求(1) x2+y2 的最值, (2)x+y 的最值, (3)P 到直线x+y- 1=0的距离d 的最值。 解:圆x2+y2- 6x- 4y+12=0即(x- 3)2+(y- 2)2=1,用参数方程表示为 由于点P 在圆上,所以可设P (3+cos θ,2+sin θ), (1) x2+y2 = (3+cos θ)2+(2+sin θ)2 =14+4 sin θ +6cos θ θ +ψ). (其中tan ψ =3/2) ∴ x2+y2 的最大值为 。 (2) x+y= 3+cos θ+ 2+sin θ ( θ + 4 π )∴ x+y 的最大值为 ,最 小值为 。 (3)2 | )4 sin(24|2 | 1sin 2cos 3|π θθθ++= -+++= d 显然当1)4 sin(±=+ π θ时,d 取最大值,最小值,分别为1+ 1-2、 过点(2,1)的直线中,被圆x 2 +y 2 -2x+4y=0截得的弦:为最长的直线方程是_________;为 最短的直线方程是__________; 3、若实数x ,y 满足x 2+y 2-2x +4y =0,则x -2y 的最大值为 。 (三)、课堂练习:学生练习:1、2 (四)、小结:1、本课我们分析圆的几何性质,选择适当的参数求出圆的参数方程。2、参数取的不同,可以得到圆的不同形式的参数方程。从中体会参数的意义。3、利用参数方程求最值。要求大家掌握方法和步骤。 (五)、作业:课本P39页A 组6、7、8 B 组5 1、方程04524222=-+--+t ty tx y x (t 为参数)所表示的一族圆的圆心轨迹是(D ) A .一个定点 B .一个椭圆 C .一条抛物线 D .一条直线 2、已知)(sin cos 2为参数θθ θ ?? ?=+=y x ,则22)4()5(++-y x 的最大值是6。 3cos 2sin x y θ θ =+?? =+?

空间曲线方程不同形式间的转化技巧

空间曲线方程不同形式间的转化技巧 李晶晶 摘要:空间曲线的参数方程和一般方程是空间曲线方程的两种非常重要的形式, 它们表示同一条曲线,因此可以相互转化.两种形式相互转化的方法有很多,本文主 要介绍了常用的几种.在转化的过程中要保证方程的等价性和同解性. 关键词:一般方程;参数方程;互化;等价性;同解性 Transformation Techniques for Different Forms of Inter-space Curve Equation Li Jingjing (20102112052, Class 4 Grade 2010, Mathematics & Applied Mathematics ,School of Mathematics & Statistics) Abstract:Space curve parameter equation and general equation are two very important form of the equation of space curve.They represent the same curve, so they can be transformed into each other.There are many methods for the conversion between these two kinds of forms.This paper mainly introduces several methods commonly used.During the transformation process to ensure that equation equivalence and the same solution. Key words: The general equation; parameter equation; interaction; equivalence; the same solution 1引言 空间解析几何的首要问题是空间曲线的方程的求解.空间曲线方程主要包含两种形式,即一般方程(普通方程)与参数方程.空间曲线的一般方程反映的是空间曲线上点的坐标x,y,z之间的直接关系.空间曲线的参数方程是通过参数反应坐标变量之间的间接关系.在求空间曲线的弧长以及空间曲线上的第一类与第二类曲线积分等方面都用到了空间曲线的参数方程.由于任何一种曲线方程的求解方法都不能适用于所有方程的求解,因此如何完成空间曲线方程不同形式的互化便成了一个基本问题.[1] 空间曲线的方程是建立在平面曲线方程的基础之上的,研究空间曲线方程不同形式之间的转化依赖于平面曲线不同形式之间的转化.我们首先回顾之前所学的平面曲线方程的形式以及不同形式间的相互转化.

椭圆的参数方程及其应用

椭圆的参数方程及其应用 大纲对椭圆的参数方程的要求是达到理解的程度,如果适当地引进一点简单的参数方程知识,可以起到拓宽视野,简化平面解析几何的运算的功效。本文主要介绍椭圆的参数方程及其应用,希望能够给读者一些启迪。 一般都是这样定义的: 椭圆1b )y y (a )x x (22022 0=-+-的参数方程是? ??α+=α+=sin b y y cos a x x 00(α是参数,0b 0a >>,)。 特别地,以点(00y x ,)为圆心,半径是r 的椭圆的参数方程是? ??α+=α+=sin r y y cos r x x 00(α是参数,r>0)。 一、求椭圆的内接多边形的周长及面积 例1 求椭圆)0b a (1b y a x 22 22>>=+的内接矩形的面积及周长的最大值。 解:如图,设椭圆1b y a x 22 22=+的内接矩形在第一象限的顶点是A (ααsin b cos a ,)(2 0π<α<),矩形的面积和周长分别是S 、L 。 ab 22sin ab 2sin b cos a 4|EA ||FA |4S ≤α=α?α=?=, 当且仅当4 a π=时,22m a x b a 4sin b 4cos a 4|)EA ||FA (|4L ab 2S +≤α+α=+==,,22max b a 4L +=,此时α存在。 二、求轨迹

例2 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2 1MB AM =,试求动点M 的轨迹方程。 解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。 则,α=+?+α=++=cos 82 11021cos 12211x 21x x B A 3sin 42 11921sin 6211y 21y y B A +α=+?+α=++=, 动点M 的轨迹的参数方程是? ??+α=α=3sin 4y cos 8x (α是参数), 消去参数得116 )3y (64x 2 2=-+。 三、求函数的最值 例3 设点P (x ,y )在椭圆19 y 16x 2 2=+,试求点P 到直线05y x =-+的距离d 的最大值和最小值。 解:点P (x ,y )在椭圆19 y 16x 2 2=+上,设点P (ααsin 3cos 4,)(α是参数且)20[π∈α,), 则5553arcsin sin 53 4|5sin 4cos 3|d 22-??? ??+α=+-α+α=。 当5 3arcsin 2-π=α时,距离d 有最小值0,此时椭圆19y 16x 22=+与直线05y x =-+相切;当5 3arcsin 23-π=α时,距离d 有最大值2。 四、求解有关离心率等入手比较困难的问题

直线的参数方程及其应用举例

直线的参数方程及应用 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,方向为直线L 的正方向)过点P 作y P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 02)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α αsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线?+=0t x x ④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是不是一 对应关系? 我们把直线l 看作是实数轴, 以直线l 向上的方向为正方向,以定点 这样参数t 便和这条实数轴上的点P 一一对应关系. 问题3:P 1、P 2为直线l 则P 1P 2=?,∣P 1P 2∣=? P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣ x x

(完整版)圆的参数方程及应用

圆的参数方程及应用 对于圆的普通方程222()()x a y b R -+-=来说,圆的方程还有另外一种表达 形式cos sin x a R y b R θθ=+??=+?(θ为参数) ,在解决有些问题时,合理的选择圆方程的表达形式,能给解决问题带来方便,本文浅谈圆的参数方程再解题中的应用。 一、求最值 例1 已知点(x ,y )在圆221x y +=上,求2223x xy y ++的最大值和最小值。 【解】圆221x y +=的参数方程为:cos sin x y θθ=??=?。 则2223x xy y ++=22cos 2sin cos 3sin θθθθ++ = 1cos 21cos 2sin 2322θθθ+-++?2sin 2cos2θθ=+-=22sin(2)4π θ+-,则38k πθπ=+(k ∈Z )时,2223x xy y ++的最大值为:22+;8 k π θπ=-(k ∈Z ) 时,2223x xy y ++的最小值为22-。 【点评】解某些与圆的方程有关的条件制问题,可应用圆的参数方程转化为三角函数问题的方法解决。 二、求轨迹 例2 在圆2 2 4x y +=上有定点A (2,0),及 两个动点B 、C ,且A 、B 、C 按逆时针方向排列, ∠BAC= 3 π ,求△ABC 的重心G (x ,y )的轨迹方程。 【解】由∠BAC=3 π ,得∠BOC=23π,设∠ABO=θ(403πθ<<),则B(2cos θ,2sin θ),C(2cos(θ+23π),2sin(θ+23π )),由重心坐标公式并化简,得: C x y O A B 图1

圆的参数方程练习题有答案教学教材

圆的参数方程 1.已知曲线C 的参数方程为? ????x =2cos θ y =3sin θ,(θ为参数,0≤θ<2π)判断点A (2,0), B ? ???-3,3 2是否在曲线C 上?若在曲线上,求出点对应的参数的值. 解:将点A (2,0)的坐标代入?????x =2cos θy =3sin θ,得? ????cos θ=1,sin θ=0. 由于0≤θ<2π, 解得θ=0,所以点A (2,0)在曲线C 上,对应θ=0. 将点B ????-3,32的坐标代入? ????x =2cos θy =3sin θ, 得?????-3=2cos θ, 32 =3sin θ, 即???cos θ=-32,sin θ=1 2. 由于0≤θ<2π, 解得θ=5π 6 , 所以点B ????-3,32在曲线C 上,对应θ=5π 6 . 2.已知曲线C 的参数方程是? ????x =2t y =3t 2 -1,(t 为参数). (1)判断点M 1(0,-1)和M 2(4,10)与曲线C 的位置关系; (2)已知点M (2,a )在曲线C 上,求a 的值. [思路点拨] (1)将点的坐标代入参数方程,判断参数是否存在. (2)将点的坐标代入参数方程,解方程组. [解] (1)把点M 1(0,-1)的坐标代入参数方程? ????x =2t ,y =3t 2-1,得?????0=2t -1=3t 2 -1,∴t =0. 即点M 1(0,-1)在曲线C 上. 把点M 2(4,10)的坐标代入参数方程? ????x =2t ,y =3t 2-1,得?????4=2t 10=3t 2-1,方程组无解. 即点M 2(4,10)不在曲线C 上. (2)∵点M (2,a )在曲线C 上, ∴? ??? ?2=2t ,a =3t 2 -1. ∴t =1,a =3×12-1=2. 即a 的值为2. 3.已知曲线C 的参数方程为? ????x =t 2 +1 y =2t ,(t 为参数). ①判断点A (1,0),B (5,4),E (3,2)与曲线C 的位置关系; ②若点F (10,a )在曲线C 上,求实数a 的值. 解:①把点A (1,0)的坐标代入方程组,解得t =0, 所以点A (1,0)在曲线上. 把点B (5,4)的坐标代入方程组,解得t =2, 所以点B (5,4)也在曲线上. 把点E (3,2)的坐标代入方程组,得到???? ?3=t 2+1,2=2t ,即???t =±2,t =1. 故t 不存在,所以点E 不在曲线上. ②令10=t 2+1,解得t =±3,故a =2t =±6. 4.(1)曲线C :? ????x =t y =t -2,(t 为参数)与y 轴的交点坐标是____________. 解析:令x =0,即t =0得y =-2,∴曲线C 与y 轴交点坐标是(0,-2). 答案:(0,-2)

(完整版)圆的参数方程及应用.docx

圆的参数方程及应用 对于圆的普通方程 (x a)2 ( y b)2 R 2 来说,圆的方程还有另外一种表达 x a Rcos 形式 ( 为参数),在解决有些问题时,合理的选择圆方程的表达 y b Rsin 形式,能给解决问题带来方便,本文浅谈圆的参数方程再解题中的应用。 一、求最值 例 1 已知点( x ,y )在圆 x 2 y 2 1上,求 x 2 2xy 3y 2 的最大值和最小值。 【解】圆 x 2 y 2 1的参数方程为: x cos 。 y sin 则 x 2 2xy 3 y 2 = cos 2 2sin cos 3sin 2 = 1 cos2 sin 2 3 1 cos2 2 sin 2 cos2 = 2 2 sin(2 2 2 k 3 (k ∈Z )时, x 2 2xy 3 y 2 的最大值为: 2 2 ; k 8 时, x 2 2xy 3y 2 的最小值为 2 2 。 【点评】解某些与圆的方程有关的条件制问 y 题,可应用圆的参数方程转化为三角函数问题的 ) ,则 4 ( k ∈Z ) 8 方法解决。 B 二、求轨迹 O A x C 例 2 在圆 x 2 y 2 4 上有定点 A (2,0),及 图 1 两个动点 B 、C ,且 A 、B 、C 按逆时针方向排列, ∠BAC= ,求△ABC 的重心 G (x , y )的轨迹方程。 3 ,得∠BOC= 2 4 ),则 B(2cos θ,2sin 【解】由∠BAC= ,设∠ABO= θ( 0 3 3 3 θ), C(2cos(θ+ 2 ),2sin(θ+ 2 )),由重心坐标公式并化简,得: 3 3

圆的参数方程及应用教案.doc.doc

课题:圆的参数方程及应用 教学目标: 知识与技能:分析圆的几何性质,选择适当的参数写出它的参数方程。利用圆的几何性质求最值(数形结合) 过程与方法:能选取适当的参数,求圆的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重难点:教学重点:能选取适当的参数,求圆的参数方程 教学难点:选择圆的参数方程求最值问题. 教学方法:启发、诱导发现教学. 课时数:1课时 教学过程: 一、复习引入 1、曲线的参数方程的定义、求法步骤 x y O r M M0

4 2 -2 -4 -5 5 c 1 A P C 2、圆的方程. 3、(一)、圆的参数方程探求 1、学生阅读课本P32,根据图形求出圆的参数方程,教师准对问题讲评。 )(sin cos 为参数θθ θ?? ?==r y r x 这就是圆心在原点、半径为r 的圆的参数方程。 说明:(1)参数θ的几何意义是OM 与x 轴正方向的夹角。(2)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。(3)在建立曲线的参数方程时,要注明参数及参数的取值范围。 思考交流:你能回答课本第33页的思考交流题吗? 3、若如图取

空间曲线参数方程(第五讲)

第五讲 空间曲线参数方程 一、求空间曲线(,,)0(,)0 F x y z G x y =ìG í=?:的参数方程 方法1;若把(,)0G x y =看做xoy 平面上的曲线方程,其参数方程已知,再将他们代入方程(,,)0F x y z =中,解出z ,就可以得到空间曲线G 的参数方程. 例1.设空间曲线2222 222x y z a x y b ì++=G í+=?:,()0a b 3>,求其参数方程. 解:空间曲线是球面2222x y z a ++=与圆柱222x y b +=的交线,由圆周222x y b +=的参数方程得到 cos sin x b t y b t =ìí=?,(02)t p ££ 将222x y b +=代入球面方程得到222z a b =-, 于是交线方程为 cos sin x b t y b t z =ì?=í?=?. 方法2:把变量x ,y 之一看作参数,如另x t =,由(,)0G x y =解出y ,再将它们代入方程(,,)0F x y z =,解出z 即可得到空间曲线G 的参数方程. 例2.设空间曲线2222259 x y z x y ì++=G í+=?:,求其参数方程. 解:空间曲线是球面2225x y z ++=与平面429x y +=的交线,它是空间平面429x y +=上的一个圆周. 以t 为参数,令x t =,则由平面方程得到 922y t =-, 将x ,y 代入球面方程得 22229615(2)18524 z t t t t =---=--, 即 z =U n R e i s t e r e d

由26118504t t --3,得到 18181010 t +££, 因此空间曲线参数方程为922x t y t z ì?=??=-í??=?? . 例3.设空间曲线2229x y z y z ì++=G í=? :,求其参数方程. 解:将y z =代入方程222 9x y z ++=中,得 2229x z += 该椭圆参数方程为 x t =,3sin z t =,(02)t p ££ 于是空间曲线的参数方程为 3sin x t y t z t ì=???=í??=??, (02)t p ££. 例4. 设空间曲线222(1)(1)40x y z z ì+++-=G í=?:,求其参数方程. 解:因为0z =,则22(1)3x y ++=, 令1x t =- ,y t =,于是得参数方程为 10x t y t z ì=-+??=í?=?? (02)t p ££, 例5.设空间曲线22290 x y z x y z ì++=G í++=?:,求其参数方程. U n R e g i s t e r e d

..圆的参数方程及应用(教学设计)

2.1.2 圆的参数方程及应用(教学设计) 教学目标: 知识与技能:分析圆的几何性质,选择适当的参数写出它的参数方程。利用圆的几何性质求最值(数形结合) 过程与方法:能选取适当的参数,求圆的参数方程。 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:能选取适当的参数,求圆的参数方程 教学难点:选择圆的参数方程求最值问题. 教学过程: 一、复习回顾: 1、曲线的参数方程 一般地,在平面直角坐标系中,如果曲线C 上任一点P 的坐标x 和y 都可以表示为某个变量t 的函数:?? ?==) ()(t g y t f x 反过来,对于t 的每个允许值,由函数式:?? ?==)() (t g y t f x 所确定的点),(y x P 都在曲线C 上,那么方程? ? ?==)() (t g y t f x 叫做曲线C 的参数方程,变量t 是参变数,简称参数。 2、参数方程的求法: (1)建立直角坐标系,设曲线上任一点P 坐标为),(y x ; (2)选取适当的参数; (3)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式; (4)证明这个参数方程就是所由于的曲线的方程。 二、师生互动,新课讲解: (一)、圆的参数方程探求 1、根据图形求出圆的参数方程) 圆2 22r y x =+参数方程? ??==θθsin cos r y r x (θ为参数) 说明: (1)参数θ的几何意义是OM 与x 轴正方向的夹角。 (2)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。(3)在建立曲线的参数方程时,要注明参数及参数的取值范围。 (2)圆2 2020)()(r y y x x =-+-参数方程为:?? ?+=+=θ θ sin cos 00r y y r x x (θ为参数) 例1:已知圆方程x 2+y 2+2x -6y +9=0,将它化为参数方程。 x y O r M M 0

2016_2017学年高中数学第二章参数方程2_3参数方程的应用第2课时圆椭圆的参数方程的应用学案苏

圆、椭圆的参数方程的应用 1.能用曲线的参数方程去研究曲线的性质. 2.会用参数法解决圆锥曲线中的最值、定值等问题. [基础·初探] 1.圆的参数方程 圆的参数方程的常见形式为? ?? ?? x =a +r cos α, y =b +r sin α(α为参数).其中,参数α的几何 意义是以圆心A (a ,b )为顶点,且与x 轴同向的射线按逆时针方向旋转到圆上一点P 所在半径成的角. 2.椭圆的参数方程 椭圆的参数方程的常见形式为? ?? ?? x =a cos θ, y =b sin θ(θ为参数). [思考·探究] 1.椭圆的参数方程与圆的参数方程有什么区别和联系? 【提示】 椭圆x 2a 2+y 2b 2=1(a >b >0)和圆x 2+y 2=r 2 普通方程都是平方和等于1的形式, 故参数方程都运用了三角代换法,只是参数方程的常数不同. 2.椭圆的参数方程中参数φ的几何意义是什么? 【提示】 从几何变换的角度看,通过伸缩变换,令????? x ′=1a x ,y ′=1 b y , 椭圆x 2a 2+y 2b 2=1可以变成圆x ′2+y ′2 =1.

利用圆x ′2+y ′2 =1的参数方程 ????? x ′=cos φ,y ′=sin φ (φ是参数)可以得到椭圆x 2a 2+y 2 b 2=1的参数方程??? ?? x =a cos φ,y =b sin φ (φ是参数).因此,参数φ的几何意义应是椭圆上任意一点M 所对应的圆的半径OA (或OB )的旋转角(称为离心角),而不是OM 的旋转角,如图. [质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1:_____________________________________________________ 解惑:_____________________________________________________ 疑问2:_____________________________________________________ 解惑:_____________________________________________________ 疑问3:_____________________________________________________ 解惑:_____________________________________________________ 疑问4:_____________________________________________________ 解惑:_____________________________________________________ 圆的参数方程的应用 在圆x 2 +2x +y 2 =0上求一点,使它到直线2x +3y -5=0的距离最大. 【自主解答】 圆的方程x 2 +2x +y 2 =0可化为(x +1)2 +y 2 =1,所以设圆的参数方程为 ? ?? ?? x =-1+cos θ, y =sin θ. 设P (-1+cos θ,sin θ),则点P 到直线2x +3y -5=0的距离为 d = |2 -1+cos θ+3sin θ-5| 22+3 2 = |2cos θ+3sin θ-7| 13 = |13sin θ+α-7|13 (其中sin α=213 13, cos α=313 13 ). 当sin(θ+α)=-1,θ+α=3π 2 ,

相关文档
最新文档