新型单室无质子膜微生物燃料电池性能研究

新型单室无质子膜微生物燃料电池性能研究
新型单室无质子膜微生物燃料电池性能研究

微生物燃料电池的意义

1.研究目的 微生物燃料电池是一种利用微生物作为催化剂,将燃料中的化学能直接转化为电能的生物反应器。 本文通过一定室型MFC反应器,选择最优的电极材料,并对电极间距,电极面积进行参数调整,进一步对反应器构型,循环流速,膜结构和反应条件进行优化,提高微生物燃料电池的输出功率。 2.研究意义 微生物燃料电池(Microbial fuel cell, MFC)是基于传统的燃料电池(Fuel cell, FC)与微生物相结合发展起来的由阴阳两极及外电路构成的装置。在MFC系统内,微生物通过新陈代谢氧化有机物后将电子胞外传递给阳极,电子再通过外电路到达阴极从而产生电能。从MFC的构成来看,阳极作为产电微生物附着的载体,不仅影响产电微生物的附着量,而且影响电子从微生物向阳极的传递,对提高MFC产电性能有至关重要的影响。因此,从提高MFC的产电能力出发,选择具有潜力的阳极材料开展研究,解析阳极材质和表面特性对微生物产电特性的影响,对提高MFC的产电能力具有十分重要的意义。在MFC中,高性能的阳极要易于产电微生物附着生长,易于电子从微生物体内向阳极传递,同时要求阳极内部电阻小、导电性强、电势稳定、生物相容性和化学稳定性好。目前有多种材料可以作为阳极,但是各种材料之间的差异,性对电池性能的影响并没有得到深入的研究。以及各种阳极特 阳极厚度对填料型微生物燃料电池产电性能的影响(清华,钟登杰,小论文) 作为一种新型的清洁能源生产技术,MFC在产电的同时还能处理废水、去除硫化氢、产氢和修复地下水。与传统的废水处理工艺相比,MFC产泥量少、不产生甲烷,从而节省污泥和气体处理费用。但MFC的产电功率密度低,与氢氧燃料电池相比,差3~4个数量级。为了提高MFC的产电功率和处理废水的效率,目前的研究主要集中在产电微生物筛选和MFC结构优化两个方面。对于优化MFC结构,可以通过优化阳极、阴极和质子膜材料,提出新型的MFC结构和运行方式等来实现。 微生物燃料电池处理有机废水过程中的产电特性研究(哈工,尤世界,博士论文) MFC是一个新生事物,该项技术具有废水处理和电能回收的双重功能,它的出现是对传统有机废水处理技术和观念的重大革新,目前正在引起世界范围内的广泛关注,日渐成为环境科学与工程和电化学领域一个新的研究热点。尤其是在能源供需矛盾日益突出,环境污染日益严重的今天,MFC更显示出其它技术无法比拟的优越性。MFC技术一旦实现产业化,将会使废水处理技术发生一次新的革命,产生不可估量的社会、环境和经济效益。但是由于受到技术和经济方面等众多因素的限制,MFC离实际工程应用的距离还很遥远,相关研究刚刚起步,目前正处于可行性探索和基础研究阶段。本课题正是在这一背景下提出的。由于功率密度低,材料造价昂贵,反应器型式的不确定,有关MFC的研究目前主要停留在实验室的规模和水平上,很难实现商业化应用。因此,为了进一步提高MFC的产电功率密度,降低系统的基础和运行费用,研发适合废水处理工艺特点的MFC结构型式,为进一步的研究提供切实可行的依据与支撑,促进该项技术早日应用于有机废水处理的工程实践,需要在现有研究水平的基础上充分把握MFC研究中多学科交叉的特点,开展MFC的电化学特性和有机物降解特性的基础研究;弄清阳极特性对MFC性能的影响及阴极电子受体在MFC功率密度提高中起到的重 1

微生物燃料电池应用现状及发展前景

微生物燃料电池应用现状及发展前景 佚名 【摘要】简述了微生物燃料电池(MFCs) 的基本结构及运行原理,介绍了微生物燃料电池(MFCs )的技术发展现状与研究热点,并指出了未来燃料电池的发展趋势。 【关键字】微生物燃料电池,生物传感器,水处理 Abstract The microbial fuel cell ( MFCs ) of the basic structure and operation principle, describes microbial fuel cell ( MFCs ) technology development and research, and points out the future of fuel cell the development trend of. Keywords microbial fuel cells, biological sensors, water treatment 1 引言 微生物燃料电池(Microbial Fuel Cells,MFCs),是一种以微生物为阳极催化剂,将有机物中的化学能直接转化为电能的装置。1911年,英国植物学家Potter便发现细菌培养液可产生电流,这是关于微生物燃料电池的最早报道。近年来,MFC技术因其诸多优点及应用范围的扩大,引起了世界各国研究者的高度关注。 毋庸置疑,微生物燃料电池(Microbial fuel cells,MFCs)是一种新兴的高效的生物质能利用方式,它利用细菌分解生物质产生生物电能,具有无污染、能量转化效率高、适用范围广泛等优点。因此MFCs逐渐成为现今社会的研究热点之一。 2 微生物燃料电池的工作原理

微生物燃料电池设计Word

摘要 微生物燃料电池(Microbialfuelcell,MFC)能够在处理污水的同时将污水中蕴含的化学能转化为电能,是一种低能耗的水处理技术,近年来成为环境领域的研究热点。目前制约 MFC 实际应用的主要因素是成本过高和产电性能偏低。由于电极成本在 MFC 总成本中所占比例最大,同时电极性能也是决定 MFC 性能的关键,因此降低电极成本和优化电极性能对于 MFC 的实用化具有重要意义。本文以推进 MFC 实用化为目标,筛选用于阳极和生物阴极的廉价填料型电极材料,通过电极材料特性和构型的优化提高其产电性能,并将其应用于放大的 MFC 装置。本研究选择廉价的半焦和活性炭与传统的石墨和碳毡电极材料进行产电性能对比。用于阳极时,活性炭产电性能最好,半焦较差。导电性过低是限制半焦阳极性能的主要因素。并分析了不同阳极材料表面的产电微生物、产电过程、产电机理和产电能力的区别。本文可为MFC阳极材料优化、产电微生物的富集、MFC构型改造等组合提供思路,其中着重讨论的不同阳极材料对微生物燃料电池的产电性能影响的相关内容,可为筛选廉价、产电效率高的阳极材料,推动微生物燃料电池实用化提供参考。 关键词:微生物燃料电池;产电微生物;阳极材料;产电性能;成本;大型化

Abstract Microbial fuel cell (MFC) is a low energy-consuming water treatment technology which can purify wastewater and simultaneouslyconvert its chemical energy.Inrecentyears, ithasbe comeonehottopicint the environment field. The practical application of MFC shasbeen limited. Due to high costsand lowyield sofpower generation.The electrode is the largest contribu. Tortotota lcost of MFC and the key componentinde ciding the MFC performance. Thuselectrode costreduction and electrode performance optimization both have great. Significance onpractical application of MFC. To push forward the practical application of MFC, inthisdissertation low costpackedelectrode materialsforanodeandbio-cathodewere selected,and the performance of electrode wasimprovedby optimizing electrode characteristics and configuration. Then the optimized electrode wasused in a largescale MFC. Inexpensivesemicoke and activated carbon were used aselectrode materials and compared with conventional materials graphite and carbon felt. When used in anode, activated carbon performed best, but semicoke had poor power generation performance. The extremely low conductivity of semicoke is the main limitation for the low performance of semicoke anode.to analyze different anode material on the surface of the electricigens, electricity production process, electricity generation and electricity generation capacity difference, as MFC anode materials optimization, microbial enrichment, MFC configuration transformation and the combination of ideas, discussed the different anode materials on microbial fuel cell power generation performance influence, from the screening report of production of high efficiency of anode materials, to promote the development of related research in microbial fuel cell. Key words

微生物燃料电池设计3027407

微生物燃料电池设计3027407

摘要 微生物燃料电池(Microbialfuelcell,MFC)能够在处理污水的同时将污水中蕴含的化学能转化为电能,是一种低能耗的水处理技术,近年来成为环境领域的研究热点。目前制约MFC 实际应用的主要因素是成本过高和产电性能偏低。由于电极成本在MFC 总成本中所占比例最大,同时电极性能也是决定MFC 性能的关键,因此降低电极成本和优化电极性能对于MFC 的实用化具有重要意义。本文以推进MFC 实用化为目标,筛选用于阳极和生物阴极的廉价填料型电极材料,通过电极材料特性和构型的优化提高其产电性能,并将其应用于放大的MFC 装置。本研究选择廉价的半焦和活性炭与传统的石墨和碳毡电极材料进行产电性能对比。用于阳极时,活性炭产电性能最好,半焦较差。导电性过低是限制半焦阳极性能的主要因素。并分析了不同阳极材料表面的产电微生物、产电过程、产电机理和产电能力的区别。本文可为MFC阳极材料优化、产电微生物的富集、MFC构型改造等组合提供思路,其中着重讨论的不同阳极材料对微生物燃料电池的产电性能影响的相关内容,可为筛选廉价、产电效率高的阳极材料,推动微生物燃料电池实用化提供参考。 关键词:微生物燃料电池;产电微生物;阳极材料;产电性能;成本;大型化

Microbial fuel cell (MFC) is a low energy-consuming water treatment technology which can purify wastewater and simultaneouslyconvert its chemical energy.Inrecentyears, ithasbe comeonehottopicint the environment field. The practical application of MFC shasbeen limited. Due to high costsand lowyield sofpower generation.The electrode is the largest contribu. Tortotota lcost of MFC and the key componentinde ciding the MFC performance. Thuselectrode costreduction and electrode performance optimization both have great. Significance onpractical application of MFC. To push forward the practical application of MFC, inthisdissertation low costpackedelectrode materialsforanodeandbio-cathodewere selected,and the performance of electrode wasimprovedby optimizing electrode characteristics and configuration. Then the optimized electrode wasused in a largescale MFC.

以葡萄糖为燃料的上流式单室微生物燃料电池

大庆石油学院学报JOURNAI.OFDAQlNGPETROI.EUMINSTITUTE第34卷第1期2010年2月V01.34NO.1Feb.2010 以葡萄糖为燃料的上流式单室微生物燃料电池 赵立新1,邹立军2,王宣1,朱宁正3 (1.大庆石油学院机械科学与工程学院,黑龙江大庆163318;2.中国石油管道丹东输油气分公司,辽宁丹东 118001}3.哈尔滨工程大学材料科学与化学工程学院,黑龙江哈尔滨150001) 擅要:以活性碳颗粒为阳极,空气电极为阴极。构建上流式单室微生物燃料电池。考察电解质质量浓度、葡萄糖质量浓度、水力停留时间对微生物燃料电池(MFc)性能的影响.结果表明:电解质KCI质量浓度由10g/i。增加到25g/L 时,MFC的内阻由19fl降低到3n,最大输出功率密度由5827mW/m3增加到18021mW/m3.当KCI质帚浓度为25 g/L时,葡萄糖质量浓度从100mg/l。增加到1000mg/I。时,MFC的最大输出功率密度由10.308w/m3提高到19.371 W/m3;反应体系的水力停留时间对MFC的产电性能也有影响. 关键词:微生物燃料电池;上流式;输出功率f活性炭颗粒 中图分类号:TM911.45文献标识码:A文章编号:1000—1891(2010)01—0076一04 微生物燃料电池(MFC)以阳极上(或阳极室内)的微生物为催化剂,在微生物的催化作用下,降解有机物同时产生电子,并将电子传递到阳极上,再通过外电路负载传到阴极,从而产生电流,将化学能转化为电能,在降解有机物的同时获得电能,是缓解当前能源危机和解决环境问题的有效途径,再加之其燃料来源广、能量利用率高,污泥产量少、处理成本低等优点,近年来受到极大关注Ll_2]. 目前,MFC的输出功率较低,难以实际应用.影响MFC性能的因素包括微生物种类、基质、细胞内部和外部的阻力,电极材料、反应器结构等口叫],其中反应器结构是重要因素之一.GhangrekarMM等研究阳极面积的影响。结果表明,提高阳极面积有利于MFC产电[5].HeZ等设计以铁氰化钾为阴极电子受体的双室上流式连续流MFC,有效地提高输出功率[6].该设计采用上流式连续流操作,相对大多数的间歇运行MFC可以获得稳定的能量输出,同时上流式反应器可以起到混匀菌液的作用,不用设置搅拌设备,但以铁氰化钾为阴极电子受体,需不断更换,不利于实际应用.LiuH等采用无质子交换膜单室直接空气阴极生物燃料电池(ACMFC),降低电池的内阻,使MFC的最大输出功率由6.6w/m3提高到12.5W/m3[7].ACMFC的阴极直接暴露在空气中代替曝气,减少通气及设备,降低运行费用;空气作阴极电子受体,产物为水,无二次污染;ACMFC结构简单、去除质子交换膜(PEM),降低成本,利于实际应用.这些结构改进研究可以提高输出功率,但将改进措施应用于MFC的结构设计的研究较少. 拟以活性炭颗粒为阳极(增大阳极面积),气体扩散电极为阴极,葡萄糖为基质构建一种上流式无隔膜直接空气阴极单室微生物燃料电池,采用连续流操作,考察电解质质量浓度、葡萄糖质量浓度、水力停留时间对电池产电性能的影响,为该技术的实际应用提供参考. 1实验材料与方法 1.1实验装置 MFC反应器实验装置为一内径为3cm的圆柱形有机玻璃容器,壁厚为3mm。高为30cm,有效容积为140mL,柱壁上密布直径2mm的小孔,其实验装置及实验流程见图1.玻璃柱两端设进水口和出水口, 收稿日期:2009—05—11;审稿人:崔宝臣;编辑:任志平 基金项目:大庆市科技攻关项目(SGG2008—029) 作者简介:赵立新(1972一).男.博士后。教授。主要从事水处理技术等方面的研究. ?76? 万方数据

微生物燃料电池简介

微生物燃料电池简介 摘要:微生物燃料电池是一种新型的能源装置,具有污废弃物处理与同步产电的优点,应用范围广,具有巨大的潜在应用价值,本文对其做了一个简要的介绍。 关键词:微生物燃料电池污水处理产电 前言:微生物燃料电池(MFC)是一种通过微生物代谢生物质将化学能直接转变为电能的装置,兼具处理废水与产电的功能,从而大大降低污水处理成本。早在1911年英国植物学家Potte就发现利用酵母菌和大肠杆菌可以产生电流[1];但是一直未受到人们的关注。直到20世纪80年代美国科学家设计了一种利用宇航员的排泄物和活细菌作为电极活性物质的细菌电池,这种电池可为宇宙飞船提供电能,但其发电效率较低;到2004年,废水首次被用作MFC的燃料来发电,并获得了146±8mW m-2的功率密度。此后大量研究表明多种类型的废水都可以用于MFC中,MFC在废水处理方面的研究获得了较大进展。在近20年的研究中,MFC的规模在逐步扩大。目前,实验室所用MFC的大小从几微升到几升之间。产电功率得到了明显提升,产电功率已达到2.8kW m-3。近年来,对MFC 的研究逐渐引起了国内外研究学者的关注。 一、MFC的工作原理 一个典型的MFC 共由四部分组成:阳极、阴极、电解池和外电路。它以阳极室中的微生物作为催化剂,以阳极液中的有机物质作为燃料,利用微生物降解生物质,从而产生电子,产生的电子到达阳极,由阳极转移到外电路,最后通过外电路传递到阴极。微生物在降解有机物质产生电子的同时还产生质子,产生的质子通过两极室之间的质子交换膜到达阴极。在阴极催化剂的作用下,质子、电子和氧化剂发生反应生成还原剂。从而完成电池内的电流传递过程,产生电能。当外电路接入负载时,MFC 产生的电能足够多时,MFC 便能够支持负载工作。 二、MFC的分类 根据分类标准的不同,MFC的分类方法有所不同。 (一)根据不同类型的微生物,MFC可分为沉积物型、异养型和光能异养型三种类型。 (二)依据电池中电子不同的传输方式,MFC可分为介体MFC和无介体MFC。 (三)根据电子不同的传递方式可将MFC分为直接MFC和间接MFC。 (四)根据反应器外观上的不同可分为:双极室MFC和单室MFC。

微生物燃料电池电极材料的研究进展.

微生物燃料电池电极材料的研究进展 作者:*** 北京化工大学化学工程学院,北京 *联系人,E-mail:********@https://www.360docs.net/doc/0011080623.html, 摘要微生物燃料电池(Microbial Fuel Cell,MFC)是将有机物转化为电能的装置,而电极材料对微生物燃料电池的产电性能起着重要作用。本文简单介绍了微生物燃料电池的发展历史及工作原理,详细说明了各种微生物燃料电池电极材料的结构特点、产电性能及应用情况。最后,对微生物燃料电池的应用前景做出展望。 关键词:微生物燃料电池,电极材料,产电性能 微生物燃料电池是一种利用微生物将废水中的有机物转化为电能的装置。早在1911年,英国杜伦大学植物学家M.C.Potter首先发现微生物具有产电功能,提出了微生物燃料电池这一概念。但是由于当时微生物燃料电池发展地十分缓慢。直到20世纪80年代,伦敦皇家学院的M.J.Allen和H.Peter Bennetto对最初的微生物燃料电池做出来一系列变革性的改进,最终形成了沿用至今的微生物燃料电池基本模型。到了20世纪90年代,燃料电池产生新的突破,韩国科学技术研究院的研究员B-H.kim发现某些物种的细菌具有电化学活性,这意味着微生物燃料电池将不用介质就能将电子转移到阳极。发展至今,微生物燃料电池越发受到科研工作者的重视,因为与其他有机产能技术相比,在操作和功能上,微生物燃料电池都具有明显的优势,比如说它既能保证能量转化的高效率,而且工作条件温和,因为产物大多数为Co2等无害气体,所以又不需要进行废气处理。但是微生物燃料电池由于产电量小,产电性能不够高等因素影响其进行大规模产业化,当我们能做到微生物燃料电池大规模产业化时,对能源短缺的形势会带来意想不到的福音。本文对微生物燃料电池电极材料进行了综述,尽量全面的介绍最新的有关燃料电池电极材料的研究。 1微生物燃料电池的基本工作原理 微生物燃料电池依据氧化还原反应原理。如图1所示,在阳极室,有机燃料被氧化失去电子并且产生质子,电子直接或间接到达阳极材料,然后通过外电路到达阴极形成电流,而质子通过质子交换膜到达阴极室,然后氧化剂在阴极的电子被还原。虽然只是简单的氧化还原反应,在其间存在较为复杂的电子转移问题,根据电子转移方式不同可把微生物燃料电池分为直接微生物燃料电池和间接微生物燃料电池。直接微生物燃料电池燃料在电极上氧化,电子从燃料分子直接到电极上,此时,生物催化剂催化在电极表面的反应,而间接微生物燃料电池是有机燃料在电解质溶液或者其他地方被氧化,通过一些介质的传递作用才使电子运输到电极上,这些有电子传递作用的介质叫做介体,在微生物燃料电池的研究中具有重要意义。

人工湿地微生物燃料电池综述

人工湿地微生物燃料电池综述 发表时间:2018-12-17T15:55:01.253Z 来源:《基层建设》2018年第29期作者:刘家兴卢欢王昊姜登岭 [导读] 摘要:国内外对人工湿地(CW)和微生物燃料电池(MFC)的研究已经处于相对平稳的状态,在两个领域都取得了特别好的成就。 华北理工大学河北唐山 063000 摘要:国内外对人工湿地(CW)和微生物燃料电池(MFC)的研究已经处于相对平稳的状态,在两个领域都取得了特别好的成就。在此基础上,将二者耦合起来的人工湿地微生物燃料电池(CW-MFC),由于其污水处理效果好、可产电、可持续性和环境友好型的特点,近些年关注度越来越高。本文就国内外对CW-MFC的研究进展做一个综述。 关键词:人工湿地;微生物燃料电池;耦合;污水处理;产电 1、引言 现今水质越来越差,人们在保护水资源的同时也在积极探寻污水处理水质更优、效率更高的方法。CW污水处理系统建造费用低,运行简便,湿地基质中的微生物在降解污水中的有机物同时能够产生电子,使之具备产电潜力[1]。MFC利用微生物分解有机物产生的化学能转化成电能的新型生物电化学系统。研究人员将二者结合,不止增强了废水的去污效果,而且具有产电的功能,由于其减少甲烷等气体的排放,可以有效的遏制温室效应。因此,CW-MFC具有很大的发展前景,受到了越来越多的关注。 2、CW-MFC概述 CW-MFC是新兴的一种污水处理系统,其性能优于其他MFC,污水处理量大大增多,且维护方便。由于处于起步阶段,许多技术、系统配置、运行和电力生产都面临着很大的问题。 CW-MFC工作原理是植物利用太阳能进行光合作用将二氧化碳转化为有机物,产生的有机物到达根系附近的阳极区,为MFC中的产电微生物源源不断的提供基质。[2,3]植物在阴极区的根系,形成植物-微生物-电极材料的复合生物阴极电极,利用植物根部泌氧为阴极提供还原反应电子受体。[4]CW-MFC系统中拥有人工湿地系统中天然的氧化还原电位梯度,且微生物燃料电池与人工湿地中都有利用微生物,二者有很好的相容性,因此能够很好的耦合,这样不但可以提高系统的整体污水处理效果,同时还拥有微生物燃料电池的产电性能。[5]影响人工湿地微生物燃料电池的因素有很多,像种植的植物种类,基质,水力停留时间(HRT),微生物种类,电阻,外电路等各种辅助材料等。 CW-MFC研究进展 前面对CW-MFC进行了简单的介绍,下面就参阅的有限文献对人工湿地微生物燃料电池系统(CW-MFC)做一个综述。 印度的Asheesh Kumar Yadav等第一次将CW和MFC结合。实验结果表明96h可以达到93.15%的染料去除效果,COD去除率75%。最大的功率密度和电流密度分别为15.73 mW? m?2和69.75mA ?m?2。由此得出除了可再生能源发电外,对废水处理非常有益。 Shentan Liu等建立一个无膜的单室,种植空心菜,接种厌氧污泥,再设置一个无植物的对照组,对化学需氧量(COD)和总氮(TN)的去除效率进行了研究。结果显示空白对照组TN平均去除率为54.4%,COD的平均去除率为92.1%;种植空心菜的TN平均去除率为90.8%,COD的平均去除率为94.8%。种植空心菜的最大功率密度12.42mW/m2比空白对照组5.13mW/m2高142%。 Yaqian Zhao等用PVC柱建造CW-MFC模型(3.7L),系统1以成批方式操作,系统2在系统1的基础上增加一个空气扩散装置将气体向上送到阴极。实验表明通入空气对CW-MFC发电有很大的作用。 Dan Wu等人设计了一个半工业人工湿地无膜微生物燃料电池系统,最大的水力停留时间功率密度为9.6 mW / m 2和最大电流密度是55 mA / m 2。在间歇流量模式下,COD去除率为91.2%,总氮、铵态氮和总磷的清除率在95% ~ 99%之间,而CW-MFC产生的电量为99%。 Zhou Fang等研究阴极直径对CW-MFC电极性能的影响。并对其在阴极上的影响进行了研究。研究表明生物发电、ABRX3脱色、化学需氧量(COD)去除性能先升高后随阴极直径的增大而减小。阳极性能受阴极的影响。阴极直径为25cm的CW-MFC表现出最佳电极性能,最高电压和功率密度分别为560 mV和0.88 W/ m3。最高的ABRX3脱色和COD去除分别为271.53 mg/ L和312.17 mg/L。[10] Junfeng Wang等就电极材料(CFF、SSM、GR、FN)进行了实验,实验结果表明,CW-MFC的生物能量输出随基质浓度的增加而增加。另外,四种不同的材料在阳极电极周围形成了显著不同的微生物群落分布。值得注意的是,这一发现表明CW-MFC利用FN阳极电极可以明显改善脱氯单胞菌的相对丰度。Junfeng Wang等还探究了灯心草、香蒲、水葱三种大型水生植物对CW-MFC产电菌产电的影响,从本研究可以得出,利用香蒲和水葱作为大植物可以显著促进CW-MFC的生物发电。有植物的与未种植的CW-MFC相比植物吸收和增强微生物的作用分别促进了COD、NO 3 - N和NH 3 - N的去除率分别为5.8%、7.2%和23.9%。在根际土壤中发现的微生物(噬纤维菌、梭状芽孢杆菌、脱氯单胞菌等)具有分解难降解污染物的能力。Junfeng Wang等还研究了基质材料尺寸和水生植物对CW-MFC生物发电、污染物清除和细菌群落分布的影响。得出有植物CW-MFC填料尺寸较大的电化学活性细菌的相对丰度显著提升(β-变形菌),这可能会导致在CW-MFC生物电产生的增加(8.91mW/m2),在有植物的cw-mfc中,发现了COD(86.7%)和NO3-N(87.1%)的最高去除效率,这与微生物的多样性有很大的关系。 Villase?or Camacho等研究废水含盐量浓度对CW-MFC性能的影响。根据COD和VSS测量,抑制微生物在阳极区最早出现的近似盐度3 g L?1(批量实验证实)。盐度9.51 g L?1的水平湿地植物仍然没有明显损害。 Xu Lei等将MFC集成到脱水明矾污泥(DAS)为基础的垂直流人工湿地,探究不同面积比例粉末活性炭(PAC)应用于阳极对CW-MFC系统性能的影响。试验表明,PAC的夹杂物提高COD,TN和RP的去除效率,这项工作提供了另一个潜在的PAC在CW -MFC的使用与更高的废水处理效率和能量回收。 Pratiksha Srivastava等对CW-MFC系统的曝气和径向氧损失的性能进行评价。本研究探讨了利用美人蕉植物的径向氧损失(ROL)和间歇曝气(IA)的低成本阴极发展的可能性。本研究证明对CW- MFC阴极反应的过量曝气对生物发电没有显著影响,但提高了CW- MFC的污水处理性能。 结论 前面对一部分研究者各个方面的研究做了简单的介绍。研究人员通过有无植物、植物种类、电极材料、氧气的有无、水流的形式、基质尺寸、有无分隔材料、温度、含盐度、pH等对CW-MFC的影响进行实验,得出了一系列结论,成果很显著,为以后的研究提供更多的资

微生物燃料电池毕业设计论文

微生物燃料电池毕业论文 目录 A BSTRACT .................................................. 错误!未定义书签。第一章.文献综述 (1) 1.1能源发展与环境问题 (1) 1.2微生物燃料电池 (1) 1.2.1 微生物燃料电池的工作原理 (1) 1.3微藻型微生物燃料电池 (2) 1.3.1 微藻阳极底物型MFC (3) 1.3.2微藻生物阳极型MFC (3) 1.3.3微藻生物阴极型MFC (5) 1.4微生物燃料电池的应用前景 (5) 1.5本课题研究容,目的及意义 (6) 1.5.1本课题研究目的及意义 (6) 1.5.2 本课题的主要研究容 (6) 第二章实验材料与方法 (7) 2.1实验材料 (7) 2.1.1主要试剂及仪器 (7) 2.1.2实验装置 (8) 2.2实验方法 (9) 2.2.1 MFC的接种及启动运行 (9) 2.2.2 MFC运行条件 (11) 2.2.3 测定指标及方法 (12) 2.2.4 实验材料处理方法 (12) 2.2.5实验容 (12) 第三章结果与讨论 (14)

3.1各周期输出电压的情况 (14) 3.2各周期阴极藻的生长情况 (15) 3.3各周期阳极人工废水的COD处理情况 (16) 3.4各周期阴极溶氧的变化情况 (17) 第四章结论与展望 (20) 4.1结论 (20) 4.2展望 (21) 参考文献 (22)

第一章.文献综述 1.1能源发展与环境问题 能源是人类赖以生存的物质基础,它与社会经济的发展和人类的生活息息相关,开发和利用能源资源始终贯穿于社会文明发展的整个过程。20世纪50年代以后石油危机的爆发,对世界经济造成了巨大影响,国际舆论开始关注起世界“能源危机”问题。世界能源危机是人为造成的能源短缺。联合国环境署的报告表明,整个地球的环境正在全面恶化,环境问题是一个全球性问题。社会发展至今天,人类己经强烈地意识到和感受到生存环境所受的威胁,也热切地期盼着生活空间质量的改善。目前国际社会关注的全球性环境问题主要包括:臭氧层破坏、温室效应和气候变暖、大气污染和酸雨、生物多样性减少、放射性物质污染、海洋污染和海洋生态系统的破坏等,尤其是全球气候变化、酸雨和大气污染、海洋污染和海洋生态系统的破坏等重大环境问题,日益受到世界各国的普遍关注。而这些问题的产生,均与能源的开采、加工或利用有着密切的关系[1]。随着经济的不断发展,能源和环境问题日益突出。如果能源和环境问题得不到有效解决,不仅人类社会可持续发展的目标难以实现,而且人类的生存环境和生活质量也会受到严重影响。因此,世界各国在能源的战略和政策上更加强调能源与环境的关系,更加注意环境保护的重要性[2]。 1.2 微生物燃料电池 微生物燃料电池(MFC)是利用酶或者微生物作为阳极催化剂,通过其代谢作用将有机物氧化产生电能的装置,它属于生物质能利用技术中的生物化学转化技术,将生物质转化为电能。将微生物燃料电池应用到废水处理领域,在处理有机废水的同时获得电能,是缓解当前能源危机和解决环境问题的有效途径,也是环境能源领域的热点研究课题之一。 1.2.1 微生物燃料电池的工作原理 微生物燃料电池利用微生物作为反应主体,利用微生物的代谢产物作为物理电极的活性物质,引起物理电极的电位偏移,增加了电位差,从而获得电能,即将燃料的化学能直接转变为电能。以有质子交换膜的双室微生物燃料电池为例(如图1),它的工作原理[3,4]是:在阳极区,微生物将有机底物氧化,这个过程要伴随电子和质子(NADH)的释放;释放的电子在微生物作用下通过电子传递介质转移到电极上;电子通过导线转移到阴极区,释放出来的质子透过质子交换膜也到达阴极区;在阴极区,电子、质子和氧气反应生成水。随着阳极区有机物的不断氧化和阴极反应的持续进行,在外电路获得持续的电流。以葡萄糖为例,其反应式如下:

微生物燃料电池

微生物燃料电池 1.引言 能源紧张和环境污染是可持续发展面临的重大挑战。经济发展的同时,能源消耗也在急剧增长,而现有的化石能源消耗则带来了环境质量的不断恶化。寻找新型能源,实现经济、社会和环境的可持续发展是当今社会的主要研究问题。清洁能源的发展则成为解决问题的关键。与此同时,不断发展的生物燃料电池成为了人们关注的焦点。 微生物燃料电池的兴起为可再生能源的生产和废弃物的处理开辟了新途径。首先,微生物电池的燃料来源比较多样化,如多种有机无机材料,甚至能够直接利用废液、废物作为原料产生电能,净化环境。其次,微生物燃料电池能够实现无污染、零排放、无需能量输入,满足环境友好型电池的需求。此外,微生物燃料电池的能量转化效率非常高,可以发展成长效、低廉的能量系统;加上其操作条件是在常温常压的温和条件下工作,实现了电池的低维护成本和高安全性[1]。 微生物燃料电池的发展历史中,经历了几次重大进步。1911年Potter用酵母和大肠杆菌进行实验,首次实现了微生物产电,从此开启了微生物燃料电池发展的道路[2]。20世纪80年代,细菌发电取得重大进步,随后微生物燃料电池的输出功率也有了较大的提高,其作为小功率电源使用的实际应用也进一步成为可能。2002年以后,微生物燃料电池的研究更是进入了飞速发展阶段,研究人员不仅发明了无需电子传递中间体的燃料电池,也在降低内阻、功率输出、优化结构和降低成本等方面都取得了重大进步。近年来,微生物燃料电池的应用领域也更加宽泛。 2.微生物燃料电池的原理 微生物燃料电池是一种利用微生物进行能量转换,把呼吸作用产生的电子传递到电极上的装置,能够通过产电菌代谢可生物降解的有机物,并将代谢产生的电子传递到外电路输出电能。原理如图1所示[3]。微生物燃料电池中,氧化底物的细菌通常在厌氧条件下将电子通过电子传递中介体或者细菌自身的纳米导线传递给阳极,电子通过连接阴阳两极的导线传递给阴极,而质子通过隔开两极的质子交换膜(Proton exchange membrane, PEM)到达阴极,在含铂的阴极催化下与电路传回的电子和O2反应生成水[4]。

微生物燃料电池与外部电阻的关系.中文

生物能源技术 微生物燃料电池与外部电阻的关系 Krishna P. Katuri ;Keith Scott;Ian M. Head;Cristian Picioreanu;Tom P. Curtis 摘要 利用葡萄糖为养料实验的废水和生活污水的微生物燃料电池研究外部负载对阳极生物膜微生物群落的组合物的影响研究。在不同的外部负载下操作的每个MFC的阳极,变性梯度凝胶电泳(DGGE)的聚合酶链反应(PCR)和扩增16S rRNA基因片段显示阳极细菌有着了明显的差异。这些结果暗示着在一个MFC产电细菌富集在高电流密度下,即外部负载低,并能维持较好的电流和出水水质。在不同外部电阻下的不同的细菌群落的形成对电池电力性能没有太大的影响,正如预期的那样,目前这一代,外部负载直接影响COD去除率和生物产量。MFC 操作条件下的外部负载,MFC的生物产量明显小于在传统的厌氧消化(即控制)。 1.介绍 微生物燃料电池(MFC)技术是一个新兴的研究技术,其中来自从微生物代谢的电子 可分解有机物被转换为电力。目前应用的技术障碍,包括使用昂贵的组件(例如,镀铂阴极和质子交换膜)和细菌中的电子转移到阳极中低功率密度差造成的。近年来发电使用作为一个潜在来源的更新,微生物燃料电池备受关注能能源。此外除了发电,也可以处理废水。然而,为了使这种技术成为一种可行的能源电源或废水处理方法,将MFC的性能需要做进一步改善是必要的。大多数研究都集中在不同的MFC反应器结构,如何操作参数和不同类型的电极影响下的功率。许多潜在增长率的限制因素MFC的性能,质子通过质子交换膜的运输(PEM),在阴极的氧的供应量减少,这一研究现在已被记录。与一个经典的燃料电池相比,MFC电催化需要透过细菌的新陈代谢。外部电阻的效果对MFC行为已得到解决,一些研究主要集中在外部电阻之间的关系,电流和库仑收率。与MFC 运行下的COD去除率在打开电路系统利用一些外部电阻。曼尼古希等开发了一种程序,用于选择最佳的外部最大承受功率电阻。在他们的研究中,他们考虑下产生不同的外部的阳极电位电阻来确定条件下的最大可持续功率。aelterman等人研究了不同的三维电极发电效果,产电微生物燃料电池的化学和微生物群落结构在相对于所施加的负荷率和外部电阻。然而,外部电阻对COD的去除与微生物群落组成和变化对生物生长的影响的效果的都没有记录。最近里昂等人报道的以喂醋酸作为燃料的外部电阻上的MFC的性能效果。他们发现,外部电阻的差异与变化影响了在细菌群落结构

生物质燃料电池

杨航锋化学工程2111506055 生物质燃料电池 按燃料电池的原理,利用生物质能的装置。可分为间接型燃料电池和直接型燃料电池。 在间接型燃料电池中,由水的厌氧酵解或光解作用产生氢等电活性成分,然后在通常的氢-氧燃料电池的阳极上被氧化。 在直接型燃料电池中,有一种氧化还原蛋白质作为电子由基质直接转移到电极的中间物。如利用N,N,N',N'-四甲基-P-苯氨基二胺作为介质,由甲醇脱氢酶和甲酸脱氢酶所催化的甲醇的完全氧化作用,可用来产生电流。 生物燃料电池尚处于试验阶段,已可提供稳定的电流,但工业化应用尚未成熟。燃料电池(fuel cell):一种将储存在燃料和氧化剂中的化学能连续不断地转化成电能的电化学装置。 生物燃料电池(biofuelcell):利用酶或者微生物组织作为催化剂,将燃料的化学能转化为电能的发电装置。生物燃料电池可以分为直接使用酶的酶燃料电池和间接利用生物体内酶的微生物燃料电池 生物燃料电池能量转化效率高怛一、生物相容性好、原料来源广泛、可以用多种天然有机物作为燃料,是一种真正意义上的绿色电池。它在医疗、航天、环境治理等领域均有重要的使用价值,如糖尿病、帕金森氏病的检测、辅助治疗b’4 o以及生活垃圾、农作物废物、工业废液的处理等。同时生物原料贮量巨大、无污染、可再生,因此生物燃料电池产生的电能也是一个潜力极大的能量来源。它可以直接将动物和植物体内贮存的化学能转化为能够利用的电能。近年来随着对可再生能源和人体医疗技术发展的要求,生物燃料电池逐渐引起更广泛的关注。 1.酶生物燃料电池 在酶燃料电池中,酶可以与介体一起溶解在底物(燃料)中,也可以固定在

电极上。后者由于催化效率高、受环境限制小等优点而具有更广泛的用途。在早期的生物燃料电池系统中,更多地用气体扩散电极与酶阳极或阴极相匹配M’70,用两种不同酶电极的酶燃料电池较少。近年来,随着修饰酶电极技术的发展,大多数酶燃料电池研究工作均采用正、负电极均为酶电极的结构。此外,使用固定酶电极的酶燃料电池为了防止两电极间电极反应物与产物的相互干扰,一般将正、负电极用质子交换膜分隔为阴极区和阳极区,即两极室酶燃料电池,这与传统电池阴极/隔膜,阳极的结构相仿。1999年出现的无隔膜酶燃料电池,取消了隔膜、电池外壳和相应的密封结构,可更方便地制备微型、高比能量的酶生物燃料电池。 2.微生物燃料电池 微生物燃料电池(Microbial Fuel Cell,MFC)是一种利用微生物将有机物中的化学能直接转化成电能的装置。其基本工作原理是:在阳极室厌氧环境下,有机物在微生物作用下分解并释放出电子和质子,电子依靠合适的电子传递介体在生物组分和阳极之间进行有效传递,并通过外电路传递到阴极形成电流,而质子通过质子交换膜传递到阴极,氧化剂(一般为氧气)在阴极得到电子被还原与质子结合成水。 根据电子传递方式进行分类,微生物燃料电池可分为直接的和间接的微生物燃料电池。所谓直接的是指燃料在电极上氧化的同时,电子直接从燃料分子转移到电极,再由生物催化剂直接催化电极表面的反应,这种反应在化学中成为氧化还原反应; 如果燃料是在电解液中或其它处所反应,电子通过氧化还原介体传递到电极上的电池就称为间接微生物燃料电池。根据电池中是否需要添加电子传递介体又可分为有介体和无介体微生物燃料电池。 2.1 微生物燃料电池的优势 与现有的其它利用有机物产能的技术相比,微生物燃料电池具有操作上和功能上的优势:首先,它将底物直接转化为电能,保证了具有高的能量转化效率;其次,不同于现有的所有生物能处理,微生物燃料电池在常温环境条件下能够有效运作;第三,微生物燃料电池不需要进行废气处理,因为它所产生的废气的

微生物燃料电池练习题

微生物燃料电池与电解氯化铝制备单质铝 Ⅰ.美国俄勒冈州立大学的研究团队近日在英国《能源与环境科学》期刊发表了一篇文章,阐述了他们的发明:利用微生物燃料电池从废水里面提取出电能。参与该研究的一位教授解释说:“废水中其实含有巨大的电能,但它们通常都被捆绑在有机分子上,非常难提取和利用。我们发明了一种新型的微生物燃料电池,里面的微生物在产出净水的时候,是要吃进有机物的,但我们给系统接上了阴极和阳极,利用两电极之间的吸力先将附在有机分子上的电子吸出来,让它们形成一股电流,从而产生了电能。” 1.请你用“化学语言”简要复述这位教授的解释。 2.请你分析这项发明的前景。 3.利用微生物发电也有其他形式,比如沼气发电,其原理是利用微生物先生成甲烷,再转化为电能。在通常情况下,8gCH4完全燃烧生成CO2和液态H2O时,放出445 kJ的热量。写出热化学方程式 现有一碱性(利用KOH溶液做电解质溶液)甲烷燃料电池,请你写出该电池的电极反应式:负极: 正极: 在电池工作时,负极周围溶液的pH(忽略溶液体积的变化)(选填“变大”“变小”或“基本不变”) 若用甲烷燃料电池作为电源电解饱和食盐水制备烧碱和氯气,从理论上计算,160kgCH4产生的电能最多可制取多少吨30%的烧碱溶液?同时获得多少立方米(标准状况)氯气? Ⅱ.1.电解法用来制备比较活泼的金属。其前提是该化合物必须是() A.碱性氧化物 B.金属氧化物 C.共价化合物 D.离子化合物 2.制备铝单质就是在加入冰晶石(助熔剂)的条件下,高温电解熔融Al2O3,电解槽的阳极材料一般选用,在实际生产过程中,需要定期补充该材料,这是因为 。 3.过去认为不可能用电解AlCl3来制铝的,但近年来,这种说法被打破,比如电解NaCl-AlCl3熔盐体系制金属铝,并取得初步研究成果。工艺如下:用氧化铝为原料,制得无水AlCl3,再制备AlCl3离子型液体(例如AlCl3-NaCl),以此AlCl3离子型液体进行电解。 实验证明,在阳极发生的电解反应是AlCl4-失去电子生成离子Al2Cl7-,试写出该电极反应式。 生成的Al2Cl7-离子移动到阴极,并在阴极得电子生成Al单质。试写出该电极反应式

相关文档
最新文档