第三次求解非线性优化问题的函数fmincon

第三次求解非线性优化问题的函数fmincon
第三次求解非线性优化问题的函数fmincon

MATLAB求解非线性优化问题的函数fmincon

1 、fmincon函数要求数学模型的形式

在MA TLAB优化工具箱中,用于求解非线性规划的函数有fmincon,要求的非线性规划的数学模型的一般形式为:min f(X) X∈R n

s.t. A*X≤b

Aeq*x=beq

lb≤x≤ub

c(X) ≤0

ceq(X)=0

上式中,c(X):表示约束函数中的非线性不等式约束函数;ceq(X) 约束函数中的非线性等式约束函数。其他含义同linprog函数。

2、fmincon函数的调用格式

调用格式如下:

[x,fval,exitflag,output]= fmincon (@objfun,x0, A,b, Aeq, beq, lb, ub, @nonlcon)

上式中,objfun为目标函数的m文件函数名,自己命名,引用时前面需要加句柄@,或用单引号‘’引用;x0为给变量赋的初值;nonlcon为非线性约束的m文件函数名,自己命名,引用时前面需要加句柄@,或用单引号‘’引用;

A、b、Aeq、beq、lb、ub、x0、options的含义同线性规划函数linprog。

3、上机编制程序求解过程

第一步:先编制目标函数的.m文件,并保存;

第二步:编制非线性约束的.m文件,并保存;

第三步:在MA TLAB的Command窗口输入赋予x0的初值,以及线性约束、边界约束等输入参数的值后,即可调用fmincon函数,进行求解。

4、实例

求使目标函数f(X)= (x1-3)2+x2 2取最小值时的X 的值,且满足约束条件为:

x1 2+x2-4≤0

x2-x1≤2

x1≥0,x2≥0

该问题是非线性规划问题,其约束条件中含有非线性约束,求解过程如下:

(1)先编制目标函数的m文件,并保存为myobjfun.m,代码如下:

function f=myobjfun(x)

f=(x(1) -3)^2+x(2)^2;

(2)编制非线性约束的.m文件,并保存为myconfun.m,代码如下:

function [c, ceq]= myconfun (x)

c =x (1) ^2+x(2);

ceq =[];

(3)在MA TLAB的Command窗口输入下列代码,即可求解:

x0=[1; 1]; A=[-1 ,1]; b=[2]; Aeq=[ ]; beq=[ ]; lb=[0; 0]; ub=[ ];

[x,fval,exitflag,output]= fmincon (@myobjfun,x0, A,b,Aeq,beq,lb,ub, @myconfun)

结果输出略。

5、作业

用fmincon函数求下列数学模型的最优解。

min f(X)=25/(x1 x23)s.t. 30/(x1 x23)-50≤0 10-4x1 x2≥0

2≤x1≤4

0.5≤x2≤1 min

3

2

1

)

(x

x

x

x

f-

=

s.t. 72

2

2

3

2

1

+

+

≤x

x

x

min f(X)=

2

1

2

1

2

2

2

1

5

2x

x

x

x

x

x-

-

-

+

s.t. 0

)1

(

2

2

1

+

-

-x

x

6

3

2

2

1

+

-x

x

min f(X)= x12+x22-10 x1-16 x2+89

s.t. x1-x2+1≥0

10-x1≥0

x2-1≥0

10-x2≥0

x2-x1=0

作业五:设计一圆柱螺旋压缩弹簧,参数为:弹簧中径D、钢丝直径d、总圈数n。设计要求在F=700N作用下,产生10mm 的变形量。要求弹簧压并高度≤50mm,弹簧内径≥16mm,在满足强度条件下,要求设计的弹簧具有最轻的重量。根据设计要求和弹簧的受力分析,可得到下面的数学模型

min

s.t.

试用MA TLAB编程分别求解上述优化问题的最优解。

(分别把步骤、代码、结果写在另一张纸上,作为作业交)作业六:教材166页实例。

20

)

(

1

)

(

20

)

(

1

)

(

50

)

(

8

)

(

]

[

8

)

615

.0

25

.0

(

)

(

10

)

(

4

)

(

16

)

(

50

)

(

)

(

10

)

(

8

)

(

4

)

(

3

12

3

11

2

10

2

9

1

8

1

7

3

2

1

1

2

1

2

2

1

6

2

1

5

2

1

4

2

1

3

3

2

2

4

2

3

3

1

1

3

2

2

1

2

-

=

-

=

-

=

-

=

-

=

-

=

-

+

-

-

=

-

=

-

=

+

-

=

-

=

=

-

=

=

x

x

g

x

x

g

x

x

g

x

x

g

x

x

g

x

x

g

x

Fx

x

x

x

x

x

x

x

g

x

x

x

g

x

x

x

g

x

x

x

g

x

x

x

g

Gx

n

x

Fx

x

g

x

x

x

X

f

τ

π

λ

ρπ

上式中,x1表示弹簧中径D,x2表示钢丝直径d,x3表示总圈数n。

其中:第一个约束为弹簧的变形量要求;

第二个约束为弹簧的压并高度要求;

第三个约束为弹簧的内径要求;

第四、五个约束为弹簧的旋绕比要求;

第六个约束为弹簧的强度要求;

第七到第十二个约束为弹簧的尺寸要求

(即边界约束要求);

其中未知参数的取值为:

材料剪切模量G=81000N/mm2;

弹簧支承圈数n0=1.75;

弹簧终端类型系数λ=0.5;

弹簧中径D和钢丝直径d的取值优先选用第一系列,有D:8,9,10,12,16,20,25,30,35,40,45,50;d:1,1.2,1.6,2,2.5,3,3.5,4,4.5,5,6,8,10,12,16,20

浅谈与二次函数有关的面积问题

实际问题与二次函数 柘城县牛城一中李中凯 一、知识和能力 能够根据二次函数中不同图形的特点选择方法求图形面积 二、过程和方法 通过观察、分析、概括、总结等方法了解二次函数面积问题的基本类型,并掌握二次函数中面积问题的相关计算,从而体会数形结合思想和转化思想在二次函数中的应用。 三、情感态度和价值观 由简单题入手逐渐提升,从而消除学生的畏难情绪,让学生有兴趣和积极性参与数学活动。 加强学生之间的合作交流,提高学生的归纳总结能力,培养学生不断反思的习惯。 四、教学重点和难点 重点:选择方法求图形面积 难点:如何割补图形求面积 教学方法 启发式、讨论式 教学用具: 多媒体课件 五、教学过程: 与二次函数有关的面积问题 小结方法 1、三角形的边在轴上或与轴平行 2、不规则图形或三角形三边均不与轴平行

教学活动 例题:已知:抛物线的顶点为D(1,-4),并经过点E(4,5),求(1)抛物线解析式 (2)抛物线与x轴的交点A、B,与y轴交点C 学生完成后展示过程、交流 (3)求下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE 思考:这几个图形求面积有何共同点?(三角形边特殊吗?) 小结: 教师活动追问:你能求四边形OCDB的面积吗?你有几种方法? 你肯定行:△ADE的面积如何求呢?

小结:不规则图形或三边不具特殊性的三角形如何求面积 能力提升: (4)若点F(x,y)为抛物线上一动点,其 中-1≤x≤4,求当△AEF面积最大时点F的坐标及最大面积。 解决问题: (二次函数检测)17.已知平面直角坐标系xOy中, 抛物线2(1) =-+与直线y kx y a x a x =的一个公共点为(4,8) A. (1)求此抛物线和直线的解析式; (2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值; (3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN 恰好是梯形,求点N的坐标及梯形AOMN的面积.

二次函数综合应用题(有答案)

解:(1) y=50- x (0≤x ≤160,且 x 是 10 的整数倍)。 2 2(3) W= - x +34x +8000= - (x -170) +10890, ∴当 x=160 时,W 最大=10880,当 x=160 时,y=50- x=34。答:一天订住 34 个房间时, ( ( 函数综合应用题 题目分析及题目对学生的要求 1. 求解析式:要求能够根据题意建立相应坐标系,将实际问题转化成数学问题。 需要注意的是: (1) 不能忘记写自变量的取值范围(需要用的前提下) (2) 在考虑自变量的取值范围时要结合它所代表的实际意义。 2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求能够熟练地对二次三项 式进行配方,利用解析式探讨实际问题中的最值问题。 一般式化为定点式) 最值的求法: (1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。 (2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。 3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起 来。 推荐思路:画出不等式左右两边的图象,结合函数图象求出 x 的取值范围。 备选思路一:先将不等号看做等号,求出 x 的取值,再结合图象考虑将等号还原为不等号后 x 的取值范围; 备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。这一问里需要注意的是在 注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。 一、求利润的最值 1. (本题满分 10 分) 某宾馆有 50 个房间供游客住宿,当每个房间的房价为每天 180 元时, 房间会全部住满。当每个房间每天的房价每增加 10 元时,就会有一个房间空闲。宾馆需对 游客居住的每个房间每天支出 20 元的各种费用。根据规定,每个房间每天的房价不得高于 340 元。设每个房间的房价每天增加 x 元(x 为 10 的正整数倍)。 (1) 设一天订住的房间数为 y ,直接写出 y 与 x 的函数关系式及自变量 x 的取值范围; (2) 设宾馆一天的利润为 w 元,求 w 与 x 的函数关系式; (3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元? 1 10 1 1 (2) W=(50- x)(180+x -20)= - x 2 +34x +8000; 10 10 1 1 10 10 当 x<170 时,W 随 x 增大而增大,但 0≤x ≤160, 1 10 宾馆每天利润最大,最大利润是 10880 元。 2. 本题满分 10 分)某商品的进价为每件 40 元,售价为每件 50 元,每个月可卖出 210 件; 如果每件商品的售价每上涨 1 元,则每个月少卖 10 件(每件售价不能高于 65 元).设每件 商品的售价上涨 x 元( x 为正整数),每个月的销售利润为 y 元. (1)求 y 与 x 的函数关系式并直接写出自变量 x 的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为 2200 元?根据以上结论,请你直接 写出售价在什么范围时,每个月的利润不低于 2200 元?

二次函数求最大利润问题的教学设计

二次函数求最大利润问题的教学设计 范亚书 一、学生知识状况分析 学生的知识技能基础:由简单的二次函数y=x2开始,然后是y=ax2,y =ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,学生已经掌握了二次函数的三种表示方式和性质。 学生的活动经验基础:在前面对二次函数的研究中,学生研究了二次函数的图象和性质,掌握了研究二次函数常用的方法。 二、教学任务分析 “怎样获得最大利润”似乎是商家才应该考虑的问题,但是这个问题的数学模型正是我们研究的二次函数的范畴。二次函数化为顶点式后,很容易求出最大或最小值。而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题。因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践。即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释。具体地,本节课的教学目标是: (一)知识与技能

1、能根据实际问题建立二次函数关系式,并探求出何时刻,实际问题可取得理想值,增强学生解决实际问题的能力。 2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。(二)过程与方法 经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力。 (三)情感态度与价值观 1、体会数学与人类社会的密切联系,了解数学的价值。增进对数学的理解和学好数学的信心。 2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。 教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值 教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值 三、教学过程分析

2020二次函数中的面积问题

二次函数——面积问题 〖知识要点〗 一.求面积常用方法: 1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边) 2. 利用相似图形,面积比等于相似比的平方 3. 利用同底或同高三角形面积的关系 4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二.常见图形及公式 抛物线解析式y=ax 2 +bx+c (a ≠0) 抛物线与x 轴两交点的距离AB=︱x 1–x 2︱= a ? 抛物线顶点坐标(-a b 2, a b ac 442-) 抛物线与y 轴交点(0,c ) “歪歪三角形中间砍一刀” ah S ABC 2 1=?,即三角形面积等于水平宽与铅垂高乘积的一半. y 轴交PCD 的面 3、已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b = , c = . 〖典型例题〗 ● 面积最大问题 1、二次函数c bx ax y ++=2 的图像与x 轴交于点A (-1,0)、B (3 ,0),与y 轴交于点C ,∠ACB=90°. (1)求二次函数的解析式; (2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标 (3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标 (4) P 为抛物线上一点,若使得ABC PAB S S ??=2 1,求P 点坐标。 ● 同高情况下,面积比=底边之比 2.已知:如图,直线y=﹣x +3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x 2+bx +c 经过点B 、C ,点A 是 B 图1

《与二次函数有关的综合问题》解析

与二次函数有关的综合问题 复习策略 根据大纲要求本章的学习目标主要有以下五点: (1)通过对实际问题的分析,体会二次函数的意义。 (2)会用描点法画出二次函数的图象,通过图象了解二次函数的性质。 (3)会用配方法将二次函数的一般式化为顶点式,并能由此得到二次函数的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单的实际问题。 (4)会利用二次函数的图象求一元二次方程的近似解。 (5)求二次函数的解析式。 结合大纲要求及近五年的中考命题的特点和规律,主要是考查学生综合运用知识的能力,以二次函数为载体,对几何进行考查,主要涉及二次函数与三角形、四边形等综合考查。从学生的解题情况来看,考生对二次函数压轴题不得其法,普遍畏惧压轴题,得分率偏低,这往往导致中考高分不多。为此,我们对中考试卷二次函数命题方向及解题策略进行了一些探索,希望能帮助学生在中考中提高解二次函数压轴题的能力。 首先:帮助学生了解并掌握二次函数综合题常见的类型 1.函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。 2.几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。 3.存在性问题:存在性问题则主要考查分类讨论的数学思想,常见的存在性是:是否存在等腰三角形、是否存在直角三角形、是否存在三角形相似,是否存在平行四边形等。有些题在分类讨论列方程求解后,还要检验,排除干扰。 4.最值型问题:这类题则需要根据条件,创设函数,利用函数性质(一般是二次函数)求解。同时注意求最值时要注意自变量的取值范围。解这类问题要注重在图形的形状或位置的变化过程中寻找函数与几何的联系,需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。 解题过程中应注意以下两点 1.抓住“关键点”---利用面积和周长公式、三角形相似、勾股定理、特殊等式等手段建构二次函数关系。 2.突破“难点”---(1)求最值的常见方法:利用“两点之间线段最短”的性质求一动点到两定点的距离之和的最小值;利用二次函数的性质求最值。 (2)分类讨论的常见形式:等腰三角形问题常按已知线段是底还是腰来分类;直角三角形问题常按哪个角是直角来分类;平行四边形问题常按已知线段是边还是对角线来分类;相似三角形问题常按对应边不同来分类;动点问题常按动点运动的分界点来分类。

二次函数与实际问题-利润问题

课题:人教版第二十六章第一节《实际问题与二次函数》 教学目标: 1、知识与技能: 能够分析和表示实际问题中变量之间的二次函数关系,并能利用二次函数求出实际问题中的最大(小)值,发展学生解决问题的能力。 2、过程与方法: 经历探索商品销售中最大利润问题的过程,进一步认识如何利用二次函数的有关知识解决实际问题,增强学生数学应用能力。 3、情感态度与价值观: 提高学生解决问题的能力,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值。 教学重点与难点: 1、重点: 让学生通过解决问题,掌握如何应用二次函数来解决经济中最大(小)值问题。 2、难点: 如何分析现实问题中数量关系,从中构建出二次函数模型,达到解决实际问题的目的。 教学过程: 一、创设情境: 请同学们考虑下列问题: 已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元? 学生根据相应的数量关系列出方程。 设每件涨价x元 (60+x -40)×(300-10x)=6090 (从实际生活入手,创设问题情境,提高学生兴趣,激发求知欲望。) 二、探索新知,进入新课 1、商场的服装,经常出现涨价、降价,这其中有何奥妙呢?商家的利润否是随涨价而增多,降价而减少呢? 2、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。如何定价才能使利润最大? 教师展示问题, (1)、本题中的变量是什么? (2)、如何表示赚的钱呢? 学生分组讨论,利用函数模型解决问题 设每件涨价x元,由此商品 ①每件的利润为:(60+x -40)元 ②每星期的销售量为:(300-10x)件 ③所获利润是:(60+x -40)×(300-10x)元 若设所获得利润为y元,则有y=(60-40+x)(300-10x),即 y=-10x2+100x+6000。

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

二次函数综合问题之抛物线与直线交点个数问题

二次函数综合问题之抛物线与直线交点个数 1.(2014?北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4). (1)求抛物线的表达式及对称轴; (2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围. 考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值. 专题:计算题. 分析:(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可; (2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围. 解答: 解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4), 代入得:, 解得:, ∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1; (2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4, 由函数图象得出D纵坐标最小值为﹣4, 设直线BC解析式为y=kx+b, 将B与C坐标代入得:, 解得:k=,b=0, ∴直线BC解析式为y=x,

当x=1时,y=, 则t的范围为﹣4≤t≤. 点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键. 2.(2011?石景山区二模)已知:抛物线与x轴交于A(﹣2,0)、B(4,0),与y轴交于C(0,4). (1)求抛物线顶点D的坐标; (2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度?考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式. 专题:探究型. 分析:(1)先设出过A(﹣2,0)、B(4,0)两点的抛物线的解析式为y=a(x+2)(x﹣4),再根据抛物线与y轴的交点坐标即可求出a的值,进而得出此抛物线的解析式; (2)先用待定系数法求出直线CD解析式,再根据抛物线平移的法则得到(1)中抛物线向下平移m各单位所得抛物线的解析式,再将此解析式与直线CD的解析式联立,根据两函数图象有交点即可求出m的取值范围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位.解答:解:(1)设抛物线解析式为y=a(x+2)(x﹣4), ∵C点坐标为(0,4), ∴a=﹣,(1分) ∴解析式为y=﹣x2+x+4, 顶点D坐标为(1,);(2分) (2)直线CD解析式为y=kx+b. 则,,

人教版初三数学上册二次函数求最大利润问题

二次函数求最大利润问题的教学设计 巩义市二中附中贾雷明 一、学生知识状况分析 学生的知识技能基础:由简单的二次函数y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,学生已经掌握了二次函数的三种表示方式和性质。 学生的活动经验基础:在前面对二次函数的研究中,学生研究了二次函数的图象和性质,掌握了研究二次函数常用的方法。 二、教学任务分析 “怎样获得最大利润”似乎是商家才应该考虑的问题,但是这个问题的数学模型正是我们研究的二次函数的范畴。二次函数化为顶点式后,很容易求出最大或最小值。而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题。因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践。即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释。具体地,本节课的教学目标是: (一)知识与技能 1、能根据实际问题建立二次函数关系式,并探求出何时刻,实际问题可取得理想值,增强学生解决实际问题的能力。 2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。

(二)过程与方法 经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力。 (三)情感态度与价值观 1、体会数学与人类社会的密切联系,了解数学的价值。增进对数学的理解和学好数学的信心。 2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。 教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值 教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值 三、教学过程分析 本节课设计了六个教学环节:复习回顾、创设问题情境讲授新课、巩固练习、实践应用、课堂小结、课后作业。 第一环节复习回顾 活动内容: 1.复习二次函数y=ax2+bx+c的相关性质:顶点坐标、对称轴、最值等。2.复习这节课所要用的其他相关知识:利润=售价-进价,总利润=每件利润×销售额

二次函数与实际问题中考题

二次函数与实际问题 类型一用二次函数解决“抛物线型”问题 方法技巧:利用二次函数解决抛物线问题通常有以下几种:拱桥问题、导弹问题、投抛 球问题、喷泉喷水问题、跳台跳水问题、荡秋千问题等。解决此类问题常常要建立平面直角坐标系,通过建立图象模型,构造二次函数关系式解决实际问题。 1、如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边 AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是 11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系。 (1)求抛物线的解析式; (2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时) 的变化满足函数关系h=-1/128(t-19)2+8(0?t?40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行? 2、如图,庄子大桥有一段抛物线形的拱梁,抛物线的表达式为y=ax2+bx,小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁高度相同,则小强骑自行车通过拱梁部分的桥面OC共需( )秒

类型二用二次函数解决方案设计中最优化的问题 方法技巧:方案最优化问题实际就是求函数的最大(小)值,如利润最大,效益最好, 材料最省,根据题意列出二次函数关系式,通过配方转化为顶点式后,求最值。 1、为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担。张刚按照相关政 策投资销售本市生产的一种新型节能灯。已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500. (1)张刚在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价 为多少元? (2)设张刚获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元。如果张刚想要每月获得的利润 不低于3000元,那么政府为他承担的总差价最少为多少元?

求线性目标函数的最值

求线性目标函数的最值 1.设x ,y 满足约束条件????? 2x -y +1≥0,x -2y -1≤0, x ≤1,则z =2x +3y -5的最小值为________. 解析:画出不等式组表示的平面区域如图中阴影部分所示.由题 意可知,当直线y =-23x +53+z 3 过点A 时,z 取得最小值,联立????? 2x -y +1=0,x -2y -1=0,解得A (-1,-1),即z min =2×(-1)+3×(-1)-5=-10. 答案:-10 求非线性目标函数的最值 2.已知实数x ,y 满足????? x -2y +4≥0,2x +y -2≥0, 3x -y -3≤0,则x 2+y 2的取值范围是________. 解析:根据已知的不等式组画出可行域,如图阴影部分所示,则 (x ,y )为阴影区域内的动点.d =x 2+y 2可以看做坐标原点O 与可行 域内的点(x ,y )之间的距离.数形结合,知d 的最大值是OA 的长,d 的最小值是点O 到直线2x +y -2=0的距离.由????? x -2y +4=0,3x -y -3=0可得A (2,3), 所以d max =22+32=13,d min =|-2|22+12=25 . 所以d 2的最小值为45 ,最大值为13. 所以x 2+y 2的取值范围是??? ?45,13. 答案:??? ?45,13 线性规划中的参数问题 3.已知x ,y 满足????? x ≥2,x +y ≤4, 2x -y -m ≤0. 若目标函数z =3x +y 的最大值为10,则z 的最小 值为________.

解析:画出不等式组表示的区域,如图中阴影部分所示,作 直线l :3x +y =0,平移l ,从而可知经过C 点时z 取到最大值, 由????? 3x +y =10,x +y =4,解得????? x =3,y =1, ∴2×3-1-m =0,m =5. 由图知,平移l 经过B 点时,z 最小, ∴当x =2,y =2×2-5=-1时,z 最小,z min =3×2-1=5. 答案:5 [通法在握] 1.求目标函数的最值3步骤 (1)作图——画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条直线; (2)平移——将l 平行移动,以确定最优解的对应点的位置; (3)求值——解方程组求出对应点坐标(即最优解),代入目标函数,即可求出最值. 2.常见的3类目标函数 (1)截距型:形如z =ax +by . 求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距z b 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距z b 取最大值时,z 取最小值;截 距z b 取最小值时,z 取最大值. (2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -b x -a . [提醒] 注意转化的等价性及几何意义.

二次函数综合问题之抛物线与直线交点个数问题

二次函数综合问题之抛物线与直线交点个数 2 1. (2014?北京)在平面直角坐标系xOy中,抛物线y=2x+mx+ n经过点A (0, - 2), B (3, 4). (1)求抛物线的表达式及对称轴; (2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A, B之间的部分为图象G(包含A, B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围. 5 4 ? (1) 将A与B坐标代入抛物线解析 式求出m与n的值,确定出抛物线 解析式,求出对称轴即可; (2) 由题意确定出C 坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围. 2 解答:解:(1 )???抛物线y=2x +mx+ n经过点 A (0,- 2), B (3, 4), f n=-2 L 18+3nr^n=4 ???抛物线解析式为y=2x2- 4x - 2,对称轴为直线x=1; 2 (2)由题意得:C (- 3,- 4),二次函数y=2x - 4x- 2的最小值为-4, 由函数图象得出D纵坐标最小值为-4, 设直线BC解析式为y=kx+b , 考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值. 专题:计算题. 分析: 解得:* :-4 n= - 2 代入得: 将B与C坐标代入得: 3k+b=4 -3k+b二- 解得: k= , b=0, 3 ?直线BC解析式为y=-x, 当x=1 时,y=J

点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待 定系数法是解 本题的关键. 2. (2011?石景山区二模)已知:抛物线与 x 轴交于A (- 2, 0)、B (4, 0),与y 轴交于C ( 0, 4). (1) 求抛物线顶点 D 的坐标; (2) 设直线CD 交x 轴于点E ,过点B 作x 轴的垂线,交直线 CD 于点F ,将抛物线沿其对称轴上下平移,使抛物线 与线段EF 总有公共点?试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度? (1) 先设出过A (- 2, 0)、B (4, 0)两点的抛物线的解析式为 y=a (x+2) (x - 4),再根据抛物线与 y 轴 的交点坐标即可求出 a 的值,进而得出此抛物线的解析式; (2) 先用待定系数法求出直线 CD 解析式,再根据抛物线平移的法则得到 ( 1)中抛物线向下平移 m 各单位 所得抛物线的解析式,再将此解析式与直线 CD 的解析式联立,根据两函数图象有交点即可求出 m 的取值范 围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位. 考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式. 专题:探究型. 分析:

二次函数的最大面积问题

初四数学二次函数中的最大面积专题练习题 1.如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线y=ax 2+bx+c 经过点A 、B 、 C . (1)求抛物线的解析式. (2)若点P 是第二象限内抛物线上的动点,其横坐标为t . ①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标. ②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由. 2.如图,已知抛物线c x ax y +- =2 32与x 轴相交于A ,B 两点,并与直线221-=x y 交于B ,C 两点,其中点C 是直线221-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由. 3.某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:

(1)设AB=x 米(x >0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说法正确,为什么? 4.如图,已知抛物线c bx ax y ++=2 过点A (6,0),B (-2,0),C (0,-3). (1)求此抛物线的解析式; (2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积; (3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠QGA=45o,求点Q 的坐标. 5.如图,抛物线y=-x 2-2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 、C 的坐标; (2)设点H 是第二象限内抛物线上的一点,且△HAB 的面积是6,求点H 的坐标; (3)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积. 6.如图,△ABC 中,∠C=90°,BC=7cm ,AC=5,点P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.

二次函数综合问题例谈

二次函数综合问题例谈 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题. 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知f x ax bx ()=+2,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((2 1)),1()1((21--=-+=f f b f f a (*) 将以上二式代入f x ax bx ()=+2,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵214≤≤f (),2)1(1≤-≤f , ∴ ()1025≤≤f .

二次函数最优化问题

龙文教育学科导学案 教师:学生:日期:星期:时段:课题二次函数最优化问题 学习目标与考点分析1:体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。 2:掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值。 学习重点重点:二次函数最值解决实际问题中的最优化。 难点:能够正确地应用二次函数最值解决实际问题中的最优化 学习方法探究法、分析、对比、归纳总结 学习内容与过程 回顾所学,强化旧知 1、如图所示,桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中 心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m. (1)如果不计其它因素,那么水池的半径至少要多少m,才能使喷出的水流不致落到池外? (2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流的最大高度应达 到多少m(精确到0.1m)?

2、某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原 点O的一条抛物线(图中标出的数据为已知条件)。在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面32/3米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。 (1)求这条抛物线的解析式; (2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为18/5米,问此次跳水会不会失误?并通过计算说明理由。 3、一场篮球赛中,小明跳起投篮,已知球出手时离地面高米,与篮圈中心的水平距离为8米,当球出手后 水平距离为4米时到达最大高度4米,设篮球运行的轨迹为抛物线,篮圈中心距离地面3米。 ⑴问此球能否投中? ⑵在出手角度和力度都不变的情况下,小明的出手高度为多少时能将篮球投入篮圈?

二次函数型综合问题

读书破万卷下笔如有神 二次函数型综合问题 这类综合题是以二次函数为中心,综合二次方程、二次三项式、不等式或几何、三角等知识,组成一个题组,重点、难点集中,综合性较强,灵活性较大,是当前各地中考命题的一个热门题型。3.2.1直接与代数知识相结合的问题 这类问题主要是代数知识的综合,解题时牢牢抓住二次函数的有关性质和其它二次三项式的有关知识和解题方法,并结合函数的图象就能找到解题的思路。 2?(m?1)2xx?m?1y?。(1)求证:无论m为何值时,函数y的图象与1例.已知二次函数x 轴总有交点,并指出当m为何值时只有一个交点?(2)当m为何值时,函数y的图象经过原点,并求出此时图象与x 轴的另一个交点的坐标。(3)如果函数y的图象的顶点在第四象限,求职m的取值范围。 2?(m?2)x?(m?1)x1(m?y为实数)。求:(1)m取何值时,抛物线与x例2.已知二次函数轴2?(m?2))xx?1?0(m?1的两个不相等的实的一元二次方程)如果关于x有两个交点?(2数根倒数平方和等于2,求m的值。(3)如果抛物线与x 轴相交于A、B两点,与y轴交于C S?2确定m点,且的值。ABC? 3)02,32,?),(?0(,),()(13例.()已知一个二次函数的图象经过三点。求这个二次函数的解析式;22)中所求的二次函数图象的开口方向和形状保持不变,平行移动这个函数的图象,使之1如果()1,0?(,求此时二次函轴交于两点,与,轴交于与xAByC|AC|=|AB|点坐标为B点,若,且数的解析式。 下笔如有神读书破万卷

22)?3?4)x?(mmy??xm?(2?2的整数,它0m中,例4.以x为自变量的二次函数为不小于)求这个二次函数的解析1B在原点右边。(A,B,点A在原点左边,点的图象与x轴交于点10?S b?y?kx,C式;(2)一次函数A,与这个二次函数的图象交于点,且的图象经过点ABC?求一次函数的解析式。 221mmmx??y?x??2轴有交点,那)求证:如果抛物线与x例5.设抛物线为实数)。(1(m 轴的所有交点中,求与原点距离最近的交点坐)在抛物线与x轴的正半轴上;(2x么交点都在m 的值。标,并求此时 2)a?0?bx?c(?yax与坐标轴有两个且只有两个公共点,这两个公共点到原点已知抛物线.例622dd,dd,0?7???x4x2?5xx?5求符合的两个实数根。的距离分别为是方程,而2211条件的抛物线的解析式。 习题:20m?xy?)求平1(两点。)()m,0(,)0,0轴相交于(x的图象平移,使它与把二次函数.1. 下笔如有神读书破万卷 )若平移后函数图象的顶点在第三象限内两条坐标轴夹角的平分线2移后函数图象的解析式;(的值。上,求m

特别解析线性规划求最值

特别解析线性规划求最 值 Document number:BGCG-0857-BTDO-0089-2022

特别解析:线性规划求最值一、目标函数线的平移法:利用直线的截距解决最值问题 例1 已知点() P x y ,在不等式组 20 10 220 x y x y - ? ? - ? ?+- ? , , ≤ ≤ ≥ 表示的平面区域上运动,则 z x y =-的取值范围是(). (A)[-2,-1](B)[-2,1] (C)[-1,2](D)[1,2] 解析:由线性约束条件画出可行域,考虑z x y =-, 变形为y x z =-,这是斜率为1且随z变化的一族平行 直线.z-是直线在y轴上的截距.当直线满足约束条件且经过点(2,0)时,目标函数z x y =-取得最大值为2;直线经过点(0,1)时,目标函数z x y =-取得最小值为-1.故选(C). 注:本题用“交点法”求出三个交点坐标分别为(0,1),(2,1),(2,0),然后再一一代入目标函数求出z=x-y的取值范围为 [-1,2]更为简单. 例2 已知实数x、y满足约束条件 50 3 x y x y x +≥ ? ? -+≥ ? ?≤ ? ,则24 z x y =+的最小值为 () 分析:将目标函数变形可得 1 24 z y x =-+,所求的目标函数的最小值 即一组平行直 1 2 y x b =-+在经过可行域时在y轴上的截距的最小值的4 倍。

解析:由实数x 、y 满足的约束条件,作可行域如图所示: 当一组平行直线L 经过图中可行域三角形ABC 区域的点C 时,在y 轴上的截距最小,又(3,3)C -,故24z x y =+的最小值为 min 234(3)6z =?+?-=-。 二、数行结合,构造斜率法:利用直线的斜率解决最值问题 例3 设实数x y ,满足20240230x y xc y y --?? +-??-? , ,, ≤≥≤,则y z x =的最大值是__________. 解析:画出不等式组所确定的三角形区域ABC (如图2), y y z x x -= = -表示两点(00)()O P x y ,,,确定的直线的斜率,要求z 的最大值,即求可行域内的点与原点连线的斜率的最大值.由图2可以看出直线OP 的斜率最大,故P 为240x y +-=与230y -=的交点,即A 点. ∴31 2P ?? ??? ,.故答案为32 . 注:解决本题的关键是理解目标函数0 y y z x x -== -的 几何意义,当然本题也可设 y t x =,则y tx =,即为求 y tx =的斜率的最大值.由图2可知,y tx =过点A 时, t 最大.代入y tx =,求出32 t =, 即得到的最大值是32 . -5 3 O x y C A B L

二次函数综合(定值)问题与解析

成都市中考压轴题(二次函数)精选 【例一】.如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式; (2)求证:AO=AM; (3)探究: ①当k=0时,直线y=kx与x轴重合,求出此时的值; ②试说明无论k取何值,的值都等于同一个常数. 的长,然后代入计算即可得解; ,x+,再联立抛物线与直线解析式, , x ,

=AM==+==1x ,+==,+ = 取何值,++ 【例二】. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限 内,且AB ,sin ∠(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式; (2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由; (3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ,△QNR

的面积QNR S ?,求QMN S ?∶QNR S ?的值. 解:(1)如图,过点B 作BD OA ⊥于点D . 在Rt ABD △中, AB = sin OAB ∠= sin 3BD AB OAB ∴=∠==. 又由勾股定理, 得6AD = ==. 1064OD OA AD ∴=-=-=. 点B 在第一象限内, ∴点B 的坐标为(43),. ∴点B 关于x 轴对称的点C 的坐标为(43)-,. · ·················································· 2分 设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为 2(0)y ax bx a =+≠. 由11643810010054 a a b a b b ? =?+=-?????+=??=-??,. ∴经过O C A ,,三点的抛物线的函数表达式为215 84 y x x = -. ····························· 2分 (2)假设在(1)中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形. ①点(43)C -, 不是抛物线215 84 y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .

相关文档
最新文档