Matlab图像颜色空间转换

Matlab图像颜色空间转换
Matlab图像颜色空间转换

Matlab图像颜色空间转换

实验内容

用matlab软件编程实现下述任务:

读入彩色图像,提取其中的R、G、B颜色分量,并展示出来。

我们学习了多种表示图像的颜色空间,请编写程序将图像转换到YUV、YIQ、YCrCb、HIS、CMY等颜色空间,并展示出来。

颜色空间的转化关系参考以下公式:

原始图片

三个色调分量

YUV与RGB之间的转换

Y=0.229R+0.587G+0.114B U=-0.147R-0.289G+0.436B V=0.615R-0.515G-0.100B

YIQ与RGB之间的转换

Y=0.299R+0.587G+0.114B I=0.596R-0.275G-0.321B Q=0.212R-0.523G+0.311B

YCrCb与RGB之间的转换

Y = 0.2990R + 0.5870G + 0.1140B

Cr = 0.5000R - 0.4187G - 0.0813B + 128

Cb = -0.1687R - 0.3313G + 0.5000B + 128

HSI与RGB之间的转换

I=(R+G+B)/3

H=arccos{ 0.5*((R-G)+(R-B)) / ((R-G)^2 + (R-B)(G-B))^0.5} S=1-[min(R,G,B)/ I ]

CMY 与RGB 之间的转换

??????????-??????????=??????????B G R Y M C 111

心得体会

查阅了很多资料,并且学习了关于matlab实现图像颜色空间转换的过程。不同的颜色空间在描述图像的颜色时侧重点不同。如RGB(红、绿、蓝三原色)颜色空间适用于彩色监视器和彩色摄像机,HSI(色调、饱和度、亮度)更符合人描述和解释颜色的方式(或称为HSV,色调、饱和度、亮度),CMY(青、深红、黄)、CMYK(青、深红、黄、黑。)主要针对彩色打印机、复印机等,YIQ(亮度、色差、色差)是用于NTSC规定的电视系统格式,YUV(亮度、色差、色差)是用于PAL规定的电视系统格式,YCbCr(亮度单一要素、蓝色与参考值的差值、红色与参考值的差值)在数字影像中广泛应用。近年来出现了另一种颜色空间lαβ,由于其把亮度和颜色信息最大限度的分离,在该颜色空间可以分别处理亮度或颜色而不相互影响。

通过这次实验,实现了五种颜色空间的转换,看到了不同的绚丽结果,掌握了一些基本的知识。

程序

clear

rgb=imread('G:\Learning\MultiMedia\666.jpg');

rgb2hsi(rgb);

rgb_r=rgb(:,:,1);

rgb_g=rgb(:,:,2);

rgb_b=rgb(:,:,3);

[n, m] = size(rgb);

zero=zeros(n,m/3);

Y = 0.229 * rgb_r + 0.587 * rgb_g + 0.114 * rgb_b;

U = -0.147 * rgb_r - 0.289 * rgb_g + 0.436 * rgb_b;

V = 0.615 * rgb_r - 0.515 * rgb_g - 0.100 * rgb_b;

I = 0.596 * rgb_r - 0.275 * rgb_g - 0.321 * rgb_b;

Q = 0.212 * rgb_r - 0.523 * rgb_g + 0.311 * rgb_b;

Cr = 0.5 * rgb_r - 0.4187 * rgb_g - 0.0813 * rgb_b + 128; Cb = -0.1687 * rgb_r - 0.3313 * rgb_g + 0.5 * rgb_b + 128;

I = (rgb_r + rgb_g + rgb_b) / 3;

R=cat(3,Y,zero,zero);

G=cat(3,zero,U,zero);

B=cat(3,zero,zero,V);

RGB=cat(3, Y, Cr, Cb);%通过修改参数的值可以显示各种颜色空间的效果imshow(RGB);

subplot(2,2,1),imshow(R),title('红色分量');

subplot(2,2,2),imshow(G),title('绿色分量');

subplot(2,2,3),imshow(B),title('蓝色分量');

subplot(2,2,4),imshow(RGB);

HIS:

function hsi=rgb2hsi(rgb)

%提取单通道分量

rgb=im2double(rgb);

r=rgb(:,:,1);

g=rgb(:,:,2);

b=rgb(:,:,3);

%实现转换

num=0.5*((r-g)+(r-b));

den=sqrt((r-g).^2+(r-b).*(g-b)); theta=acos(num./(den+eps));

H=theta;

H(b>g)=2*pi-H(b>g);

H=H/(2*pi);

num=min(min(r,g),b);

den=r+g+b;

den(den==0)=eps;

S=1-3.*num./den;

H(S==0)=0;

I=(r+g+b)/3;

hsi=cat(3,H,S,I);

imshow(hsi);

CMY:

function hsi=rgb2CMY(rgb)

rgb=im2double(rgb);

r=rgb(:,:,1);

g=rgb(:,:,2);

b=rgb(:,:,3);

C = 1 - r;

M = 1 - g;

Y = 1 - b;

CMY=cat(3,C,M,Y);

imshow(CMY);

matlab 图像的几何变换与彩色处理

实验四、图像的几何变换与彩色处理 一、实验目的 1理解和掌握图像的平移、垂直镜像变换、水平镜像变换、缩放和旋转的原理和应用; 2熟悉图像几何变换的MATLAB操作和基本功能 3 掌握彩色图像处理的基本技术 二、实验步骤 1 启动MATLAB程序,读入图像并对图像文件分别进行平移、垂直镜像变换、水平镜像变换、缩放和旋转操作 %%%%%%平移 >> flowerImg=imread('flower.jpg'); >> se=translate(strel(1),[100 100]); >> img2=imdilate(flowerImg,se); >> subplot(1,2,1); >> imshow(flowerImg); >> subplot(1,2,2); >> imshow(img2);

I1=imread('flower.jpg'); I1=double(I1); H=size(I1); I2(1:H(1),1:H(2),1:H(3))=I1(H(1):-1:1,1:H(2),1:H(3)); I3(1:H(1),1:H(2),1:H(3))=I1(1:H(1),H(2):-1:1,1:H(3)); Subplot(2,2,1); Imshow(uint8(I1)); Title('原图'); Subplot(2,2,2); Imshow(uint8(I3)); Title('水平镜像'); Subplot(2,2,3); Imshow(uint8(I2)); Title('垂直镜像'); img1=imread('flower.jpg'); figure,imshow(img1); %%%%%%缩放 img2=imresize(img1,0.25); figure,imshow(img2); imwrite(img2,'a2.jpg');

非常全非常详细的MATLAB数字图像处理技术

MATLAB数字图像处理 1 概述 BW=dither(I)灰度转成二值图; X=dither(RGB,map)RGB转成灰度图,用户需要提供一个Colormap; [X,map]=gray2ind(I,n)灰度到索引; [X,map]=gray2ind(BW,n)二值图到索引,map可由gray(n)产生。灰度图n默认64,二值图默认2; X=graylice(I,n)灰度图到索引图,门限1/n,2/n,…,(n-1)/n,X=graylice(I,v)给定门限向量v; BW=im2bw(I,level)灰度图I到二值图; BW=im2bw(X,map,level)索引图X到二值图;level是阈值门限,超过像素为1,其余置0,level在[0,1]之间。 BW=im2bw(RGB,level)RGB到二值图; I=ind2gray(X,map)索引图到灰度图; RGB=ind2rgb(X,map)索引图到RGB; I=rgb2gray(RGB)RGB到灰度图。 2 图像运算 2.1 图像的读写 MATLAB支持的图像格式有bmp,gif,ico,jpg,png,cur,pcx,xwd和tif。 读取(imread): [1] A=imread(filename,fmt) [2] [X,map]=imread(filename,fmt) [3] […]=imread(filename) [4] […]=imread(URL,…) 说明:filename是图像文件名,如果不在搜索路径下应是图像的全路径,fmt是图像文件扩展名字符串。前者可读入二值图、灰度图、彩图(主要是RGB);第二个读入索引图,map 为索引图对应的Colormap,即其相关联的颜色映射表,若不是索引图则map为空。URL表示引自Internet URL中的图像。 写入(imwrite): [1] R=imwrite(A,filename,fmt); [2] R=imwrite(X,map,filename,fmt); [3] R=imwrite(…,filename); [4] R=imwrite(…,Param1,V al1,Param2,Val2) 说明:针对第四个,该语句用于指定HDF,JPEG,PBM,PGM,PNG,PPM,TIFF等类型输出文件的不同参数。例如HDF的Quality,Compression,WriteMode;JPEG的BitDepth,Comment:Empty or not,Mode:lossy or lossless,Quality等。 2.2 图像的显示 方法1:使用Image Viewer(图像浏览器),即运用imview函数。 同时显示多帧图像的所有帧,可用到montage函数。

Matlab图像颜色空间转换

Matlab图像颜色空间转换 实验内容 用matlab软件编程实现下述任务: 读入彩色图像,提取其中得R、G、B颜色分量,并展示出来。 我们学习了多种表示图像得颜色空间,请编写程序将图像转换到YUV、YIQ、YCrCb、HIS、CMY等颜色空间,并展示出来。 颜色空间得转化关系参考以下公式: 原始图片 三个色调分量 YUV与RGB之间得转换 Y=0、229R+0、587G+0、114B U=-0、147R-0、289G+0、436B V=0、615R-0、515G-0、100B

YIQ与RGB之间得转换 Y=0、299R+0、587G+0、114B I=0、596R-0、275G-0、321B Q=0、212R-0、523G+0、311B YCrCb与RGB之间得转换 Y = 0、2990R + 0、5870G + 0、1140B? Cr = 0、5000R 0、4187G 0、0813B + 128 Cb = 0、1687R 0、3313G + 0、5000B + 128

HSI与RGB之间得转换 I=(R+G+B)/3 H=arccos{ 0、5*((RG)+(RB)) / ((RG)^2 + (RB)(GB))^0、5} S=1[min(R,G,B)/ I ] CMY与RGB之间得转换

心得体会 查阅了很多资料,并且学习了关于matlab实现图像颜色空间转换得过程。不同得颜色空间在描述图像得颜色时侧重点不同。如RGB(红、绿、蓝三原色)颜色空间适用于彩色监视器与彩色摄像机,HSI(色调、饱与度、亮度)更符合人描述与解释颜色得方式(或称为HSV,色调、饱与度、亮度),CMY(青、深红、黄)、CMYK(青、深红、黄、黑。)主要针对彩色打印机、复印机等,YIQ(亮度、色差、色差)就是用于NTSC规定得电视系统格式,YUV(亮度、色差、色差)就是用于PAL规定得电视系统格式,YCbCr(亮度单一要素、蓝色与参考值得差值、红色与参考值得差值)在数字影像中广泛应用。近年来出现了另一种颜色空间lαβ,由于其把亮度与颜色信息最大限度得分离,在该颜色空间可以分别处理亮度或颜色而不相互影响。 通过这次实验,实现了五种颜色空间得转换,瞧到了不同得绚丽结果,掌握了一些基本得知识。 程序 clear rgb=imread('G:\Learning\MultiMedia\666、jpg'); rgb2hsi(rgb); rgb_r=rgb(:,:,1);

灰度变换_原理_及Matlab程序

图像灰度变换 内容摘要 1 引言 通常经输入系统获取的图像信息中含有各种各样的噪声与畸变,例如室外光照度不够均匀会造成图像灰度过于集中;由摄像头获得的图像经过A/D转换、线路传送都会产生噪声污染等等,这些不可避免地影响系统图像清晰度,降低了图像质量,轻者表现为图像不干净,难以看清细节;重者表现为图像模糊不清,连概貌都看不出来。因此,在对图像经行分析前,必须对图像质量经行改善,一般情况下改善的方法有两类:图像增强和图像复原。图像增强的目的是设法改善图像的视觉效果,提高图像的可读性,将图像中感兴趣的特征有选择的突出,便于人与计算机的分析和处理。图像增强不考虑图像质量下降的原因,只将图像中感兴趣的特征有选择的突出,而衰减不需要的特征。灰度变换是图像增强处理中一种非常基础直接的空间域图像处理方法。灰度变换是根据某种条件按一定变换关系逐点改变原图像中每一个像素灰度值的方法。 1.灰度的线性变换 当图像由于成像时曝光不足或过度, 由于成像设备的非线性或图像记录设备动态范围太窄等因素, 都会产生对比度不足的弊病, 使图像中的细节分辨不清。这时如将图像灰度线性扩展, 常能显著改善图像的主观质量。假设原图像f (x, y ) 的灰度范围是[ a, b ] 希望变换后图像的灰度范围扩展到[ c, d ] 则: M f 表示f ( x, y ) 的最大值。在线性灰度变换中,灰度执照完全线性变换函数进行变换。该线性灰度线性变换函数f ( r ) 是一个一维线性函数: 其中, a 为线性变换的斜率, b 为线性变换函数在y 轴的截距, 如图1所示。

在灰度的线性变换中, 当a > 1时, 输出图像的对比度将增大; 当a < 1时, 输出图像的对比 度将减小; 当a = 1且b ?0时, 所进行的操作仅使所有像素的灰度值上移或下移, 其效果 是使整个图像更暗或更亮; 如果a < 0, 则暗区域将变亮, 亮区域将变暗。 2分段线性灰度变换 为了突出感兴趣的目标或者灰度区间, 相对抑制那些不感兴趣的灰度区域, 可采用分段线性法。常用的是三段线性变换。分段线性变换称为图像直方图的拉伸, 它与完全线性变换类似, 其不同之处在于其变换函数是分段的, 如图2所示: 其变换函数表达式如下: 灰度拉伸可以更加灵活地控制输出灰度直方图的分布, 它可以有选择地拉伸某段灰度区间以改善输出图像。图2所示的变换函数的运算结果是将原图在r1 和r2 之间的灰度拉伸到s1 和s2 之间。如果一幅图像灰度集中在较暗的区域而导致图像偏暗, 可以用灰度拉伸功能来拉伸(斜率> 1) 物体灰度区间以改善图像; 同样如果图像灰度集中在较亮的区域而导致图像偏亮, 也可以用灰度拉伸功能来压缩(斜率< 1) 物体灰度区间来改善图像质量。 3非线性灰度变换

数字图像处理四个实验报告,带有源程序

数字图像处理 实验指导书 学院:通信与电子工程学院 专业:电子信息工程 班级: 学号: 姓名: XX理工大学

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像间如何转化。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。 图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: 亮度图像(Intensity images) 二值图像(Binary images) 索引图像(Indexed images) RGB图像(RGB images)

VC编程实现灰度图像与彩色图像的相互转换要点

VC编程实现灰度图像与彩色图像的相互转换 PhotoShop的图像处理功能很强,其中有一个功能是将灰度图像转换为彩色图像,数字图像处理中,也经常要遇到灰度图像与彩色图像相互转换的问题,如何自己解决这个问题,值得大家探讨,现将我解决这类问题的方法陈述如下: 工程应用中经常要遇到需要把彩色图像到灰度图像的变换的问题,采集卡过来的图像为彩色图像,为加快处理速度,要把彩色图像转换为黑白图象,这个问题比较好解决,一般情况下彩色图像每个像素用三个字节表示,每个字节对应着R、G、B分量的亮度(红、绿、蓝),转换后的黑白图像的一个像素用一个字节表示该点的灰度值,它的值在0~255之间,数值越大,该点越白,既越亮,越小则越黑。转换公式为Gray(i,j)=0.11*R(i,j)+0.59*G(i,j)+0.3*B(i,j),其中Gray(i,j)为转换后的黑白图像在(i,j)点处的灰度值,我们可以观察该式,其中绿色所占的比重最大,所以转换时可以直接使用G值作为转换后的灰度。 至于灰度图像转换为彩色图像,技术上称为灰度图像的伪彩色处理,这是一种视觉效果明显而技术又不是很复杂的图像增强技术。灰度图像中,如果相邻像素点的灰度相差不大,但包含了丰富的信息的话,人眼则无法从图像中提取相应的信息,因为人眼分辨灰度的能力很差,一般只有几十个数量级,但是人眼对彩色信号的分辨率却很强,这样将黑白图像转换为彩色图像人眼可以提取更多的信息量。在转换过程中,经常采用的技术是灰度级-彩色变换,意思就是对黑白图像上的每一个像素点,取得该点的灰度值并送入三个通道经过实施不同的变换,产生相应的R、G、B的亮度值,即所求彩色图像对应像素点的彩色值,具体变换公式很多,我采用的是最常用的一种,变换曲线图如下: 上图中,三个图分别代表了三个变换通道,R、G、B指的是变换后对应点的R、G、B分量值,L指的是各个分量的最大值为255,G(x,y)为相应点的灰度值。理论上就这些,下面是我用VC实现的源代码,图一为我的灰度位图,图二为伪彩色处理后的结果图。我这个实现函数中是如何得到灰度位图的数据的就不多讲了,有兴趣的朋友可参考我在天极网上九月十号发表的《VC灰度位图处理》一文,那里应该讲的很

matlab图像处理图像灰度变换直方图变换

附录1 课程实验报告格式 每个实验项目包括:1)设计思路,2)程序代码,3)实验结果,4)实验中出现的问题及解决方法。 实验一:直方图灰度变换 A:读入灰度图像‘debye1.tif’,采用交互式操作,用improfile绘制一条线段的灰度值。 imread('rice.tif'); imshow('rice.tif'),title('rice.tif'); improfile,title('主对角线上灰度值')

B:读入RGB图像‘flowers.tif’,显示所选线段上红、绿、蓝颜色分量的分布imread('flowers.tif'); imshow('flowers.tif'),title('flowers.tif'); improfile,title('主对角线红绿蓝分量') C:图像灰度变化 f=imread('rice.png'); imhist(f,256); %显示其直方图 g1=imadjust(f,[0 1],[1 0]); %灰度转换,实现明暗转换(负片图像) figure,imshow(g1)%将0.5到0.75的灰度级扩展到范围[0 1] g2=imadjust(f,[0.5 0.75],[0 1]); figure,imshow(g2) 图像灰度变换处理实例: g=imread('me.jpg'); imshow(g),title('原始图片'); h=log(1+double(g)); %对输入图像对数映射变换 h=mat2gray(h); %将矩阵h转换为灰度图片

h=im2uint8(h); %将灰度图转换为8位图 imshow(h),title('转换后的8位图'); 运行后的结果: 实验二:直方图变换 A:直方图显示 I=imread('cameraman.tif'); %读取图像 subplot(1,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(1,2,2),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题运行结果如下:

常见医学图像格式

附录C 图像格式 译者:Synge 发表时间:2012-05-03浏览量:1604评论数:0挑错数:0 翻译:xiaoqiao 在fMRI的早期,由于大多数据都用不同研究脉冲序列采集,然后离线大量重建,而且各研究中心文件格式各不相同、大多数的分析软件也都是各研究单位内部编写运用。如果这些数据不同其他中心交流,数据的格式不影响他们的使用。因此图像格式就像巴别塔似的多式多样。随着fMRI领域的不断发展,几种标准的文件格式逐渐得到了应用,数据分析软件包的使用促进了这些文件格式在不同研究中心和实验室的广泛运用,直到近期仍有多种形式的文件格式存在。这种境况在过去的10年里随着公认的NIfTI格式的发展和广泛认可而优化。该附录就fMRI资料存储的常见问题以及重要的文件格式做一概述, 3.1 数据存储 正如第2章所述,MRI数据的存储常采用二进制数据格式,如8位或16位。因此,磁盘上数据文件的大小就是数据图像的大小和维度,如保存维度128 ×128×96的16位图像需要25,165,824位(3 兆字节)。为了保存图像的更多信息,我们希望保存原始数据,即元数据。元数据包含了图像的各种信息,如图像维度及数据类型等。这点很重要,因为可以获得二进制数据所不知道的信息,例如,图像是128 ×128×96维度的16位图像采集还是128 ×128×192维度的8位图像采集。在这里我们主要讨论不同的图像格式保存不同的数量及种类的元数据。

MRI的结构图像通常保存为三维的资料格式。fMRI数据是一系列的图像采集,可以保存为三维格式,也可以保存为四维文件格式(第4维为时间)。通常,我们尽可能保存为四维数据格式,这样可以减少文件数量,但是有些数据分析软件包不能处理四维数据。 3.2 文件格式 神经影像的发展中出现了很多不同图像格式,常见的格式见表1.在这里我们就DICOM、Analyze和NIfTI最重要的三种格式做一讨论。 表1. 常见医学图像格式 Analyze .img/.hdr Analyze软件, 梅奥临床医学中心 DICOM 无ACR/NEMA协会 NIfTI .nii或.img/.hdr NIH影像学信息工具倡议 MINC .mnc 蒙特利尔神经学研究所(MNI,扩展名NetCDF) 3.2.1 DICOM格式 现今大多MRI仪器采集后的重建数据为DICOM格式。该数据格式源于美国放射学协会(ACR)和国际电子产品制造商协会(NEMA)。DICOM不仅仅是图像的存储格式,而且是不同成像系统的不同形式数据之间转换的模式,MRI图像只是其中一种特殊形式。目前使用的DICOM遵照1993年协议,且目前主要的MRI仪器供应商都支持该格式。 通常,DICOM把每一层图像都作为一个独立的文件,这些文件用数字命名从而反映相对应的图像层数(在不同的系统有一定差异)。文件中包含文件头信息,且必须要特定的软

实验一Matlab图像处理基础及图像灰度变换

实验一Matlab图像处理基础及图像灰度变换 一、实验目的 了解Matlab平台下的图像编程环境,熟悉Matlab中的DIP (Digital Image Processing)工具箱;掌握Matlab中图像的表示方法,图像类型、数据类型的种类及各自的特点,并知道怎样在它们之间进行转换。掌握Matlab环境下的一些最基本的图像处理操作,如读图像、写图像、查看图像信息和格式、尺寸和灰度的伸缩等等;通过实验掌握图像直方图的描绘方法,加深直方图形状与图像特征间关系间的理解;加深对直方图均衡算法的理解。 二、实验内容 1.从硬盘中读取一幅灰度图像; 2.显示图像信息,查看图像格式、大小、位深等内容; 3.用灰度面积法编写求图像方图的Matlab程序,并画图; 4.把第3步的结果与直接用Matlab工具箱中函数histogram的结果进行比较,以衡量第3步中程序的正确性。 5.对读入的图像进行直方图均衡化,画出处理后的直方图,并比较处理前后图像效果的变化。 三、知识要点 1.Matlab6.5支持的图像图形格式 TIFF, JEPG, GIF, BMP, PNG, XWD (X Window Dump),其中GIF不支持写。 2.与图像处理相关的最基本函数 读:imread; 写:imwrite; 显示:imshow; 信息查看:imfinfo; 3.Matlab6.5支持的数据类 double, unit8, int8, uint16, int16, uint32, int32, single, char (2 bytes per element), logical. 4.Matlab6.5支持的图像类型 Intensity images, binary images, indexed images, RGB image 5.数据类及图像类型间的基本转换函数 数据类转换:B = data_class_name(A);

图像格式转换源代码

求delphi源码图像格式转换 浏览次数:555次悬赏分:20 |解决时间:2010-6-4 16:33 |提问者:黑色城堡没有爱 毕业设计,Delphi语言编写的图像格式转换,各种图像格式相互转换。另加一点特效处理~~~~~跪谢 问题补充: scorpio-butterfly@https://www.360docs.net/doc/0b11405981.html, 最佳答案 常见图象格式转换技术 作者:lyboy99 e-mail:lyboy99@https://www.360docs.net/doc/0b11405981.html, url: https://www.360docs.net/doc/0b11405981.html, 给大家提供几个常用的图象格式转换方法和其转换函数 希望可以对你有帮助 1. ICO图标转换BMP格式 2. 32x32 BMP格式图象转换为ICO格式 3.转换BMP->JPEG文件格式 4.JPEG 转换为BMP函数 5.Bmp转换为JPEG文件格式函数 ------------------------------------------------------------------------------------------------------------------------- 1.Chinese : ICO图标转换BMP格式 English :(Conversion from ICO to BMP) -------------------------------------------------------- var Icon : TIcon; Bitmap : TBitmap; begin Icon := TIcon.Create; Bitmap := TBitmap.Create; Icon.LoadFromFile('c:picture.ico'); Bitmap.Width := Icon.Width; Bitmap.Height := Icon.Height; Bitmap.Canvas.Draw(0, 0, Icon ); Bitmap.SaveToFile('c:picture.bmp'); Icon.Free; Bitmap.Free; ===================================

灰度图像转彩色图像代码

clc; clear all; close all; I = imread('q.jpg'); I1 = I; I2 = I; I3 = I; I1(I1>60 & I1<120) = 255; I2(I2>20 & I2<50) = 255; I3(I3>80 & I3<160) = 255; J = cat(3, I1, I2, I3); figure; subplot(1, 2, 1); imshow(I, []); title('By lyqmath 原图', 'FontWeight', 'Bold', 'Color', 'r'); subplot(1, 2, 2); imshow(J, []); title('By lyqmath 彩色图', 'FontWeight', 'Bold', 'Color', 'r'); 二. I = imread('q.jpg'); GS8=grayslice(I,8); GS64=grayslice(I,64); subplot(1,3,1), imshow(I), title('原始灰度图像'); subplot(1,3,2), subimage(GS8,hot(8)), title('分成8层伪彩色'); subplot(1,3,3), subimage(GS64,hot(64)), title('分成64层伪彩色');

k=imread('q.jpg'); [x y z]=size(k); % z should be one for the input image k=double(k); for i=1:x for j=1:y if k(i,j)>=0 & k(i,j)<50 m(i,j,1)=k(i,j,1)+5; m(i,j,2)=k(i,j)+10; m(i,j,3)=k(i,j)+10; end if k(i,j)>=50 & k(i,j)<100 m(i,j,1)=k(i,j)+35; m(i,j,2)=k(i,j)+28; m(i,j,3)=k(i,j)+10; end if k(i,j)>=100 & k(i,j)<150 m(i,j,1)=k(i,j)+52; m(i,j,2)=k(i,j)+30; m(i,j,3)=k(i,j)+15; end if k(i,j)>=150 & k(i,j)<200 m(i,j,1)=k(i,j)+50;

Matlab二维灰度图象分析及变换处理要点

《基础强化训练》设计报告 题目:二维灰度图象的统计分析及变换处理专业班级: 学生姓名: 指导教师: 2010 年7 月17 日

《基础强化训练》设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 二维灰度图象的统计分析及(FFT)变换处理 课程设计目的: ①较全面了解常用的数据分析与处理原理及方法; ②能够运用相关软件进行模拟分析; ③掌握基本的文献检索和文献阅读的方法; ④提高正确地撰写论文的基本能力。 课程设计内容和要求 ①采集一幅像素大于64*64黑白图像; ②常规的数学统计数据处理:计算图象各象素点灰度值得均值、标准差、方差,并绘出灰度直方图; ③采用[FFT(傅立叶变换)]对图像进行分析 初始条件: ①MATLAB软件。 ②数字信号处理与图像处理基础知识。 时间安排: 第18周周一:安排任务 19~20周:仿真设计(鉴主13楼计算机实验室) 第20周周六:完成(答辩,提交报告,演示) 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) Abstract (2) 1 数据采集 (3) 1.1图像的选取 (3) 1.2 MATLAB读取方法 (4) 1.2.1 编辑M文件 (4) 1.2.2 图像的读取 (4) 1.2.3查看图像的格式 (6) 1.2.4 灰度值的获取 (7) 2 数据统计处理 (8) 2.1 均值计算 (8) 2.1.1 原理及计算公式 (8) 2.1.2 计算程序及结果 (9) 2.2 各像素点灰度值的标准差 (9) 2.3 各像素点灰度值的方差 (10) 2.4 灰度直方图 (11) 3.傅立叶变化 (13) 3.1 原理及计算公式 (13) 3.2 变换及逆变换程序及结果 (14) 3.3对变换后的图像的说明 (16) 4.总结(心得体会) (17) 5.参考文献 (18)

Java 图片处理 格式转换

Java 图片处理(包括 Jmagick 的应用) 图片处理( 的应用)
作者: 佚名, 出处:IT 专家网,
2010-10-29 08:30
责任编辑: 谢妍妍,
近期有使用到图片的压缩处理,由于在之前用 Java 处理时,在低像素的情况下, Java 处理的效果确实很差,然后尝试了用网上推荐的免费开源的第三方软件,利用 Java 的 jni 调用 dll 文件进行处理,效果还可以。在此记录下,方便以后继续积累。
近期有使用到图片的压缩处理, 由于在之前用 Java 处理时, 在低像素的情况下, Java 处理的效果确实很差,然后尝试了用网上推荐的免费开源的第三方软件,利用 Java 的 jni 调用 dll 文件进行处理,效果还可以。在此记录下,方便以后继续积累。
1、纯 Java 类处理图片代码
Java 代码
以下是代码片段: 以下是代码片段: /** * 转换图片大小,不变形 * * @param img * 图片文件 * @param width * 图片宽 * @param height * 图片高 */ public static void changeImge(File img, int width, int height) { try { Image image = ImageIO.read(img); //图片尺寸的大小处理, 如果长宽都小于规定大小, 则返回, 如果有一个大于规定大小, 则等比例缩放 int srcH = image.getHeight(null); int srcW = image.getWidth(null); if (srcH <= height && srcW <= width) { return;

彩色空间转换

实验五彩色空间转换一、 实验目的 掌握MATLAB 中彩色空间的转换 二、实验步骤 1、由RGB 空间转换到YIQ: 读入5.jpg 图像; clc;clear; f = imread('5.jpg') yiq_image=rgb2ntsc(f); imshow(yiq_image) 显示结果如下: 2、由YIQ 彩色空间转换到RGB 空间下: rgb_image=ntsc2rgb(yiq_image); figure,imshow(rgb_image) 转换结果如图:

2、YCbCr 和RGB 彩色空间的相互转换 ycbcr_image=rgb2ycbcr(f); figure,imshow(ycbcr_image) rgb_image=ycbcr2rgb(ycbcr_image); figure,imshow(rgb_image) 效果如下图: 3、HSV 和RGB 彩色空间的相互转换 >> hsv_image=rgb2hsv(f); >> figure,imshow(hsv_image); >> rgb_image=hsv2rgb(hsv_image); >> figure,imshow(rgb_image); 效果如下图: 4、CMY 和RGB 彩色空间的相互转换 >> cmy_image=imcomplement(f); >> figure,imshow(cmy_image); >> rgb_image=imcomplement(cmy_image); >> figure,imshow(rgb_image); 效果如下图:

5、RGB 彩色空间到HSI 彩色空间的转换 hsi=rgb2hsi(f); figure,subplot(141),imshow(hsi) subplot(142),imshow(hsi(:,:,1)) subplot(143),imshow(hsi(:,:,2)) subplot(144),imshow(hsi(:,:,3)) 效果如下图: 三、实验总结 通过本次实验我掌握了MATLAB 中彩色空间的转换的基本方法。本次实验与上次实验联系比较紧密。但本次实验于上次实验相比,难度上有了一些变化,尤其是在RGB 彩色空间到HSI 彩色空间的转换的时候,出现了一点问题。由于在系统中本身没有rgb2hsi这个函数,所以运行时出现了错误,但通过,上网查找资料终于解决了这一问题。总体来说本次实验收获还是比较大的。

matlab图像的灰度变换

实验二 图像的灰度变换 一、实验目的 1、 理解数字图像处理中点运算的基本作用; 2、 掌握对比度调整与灰度直方图均衡化的方法。 二、实验原理 1、对比度调整 如果原图像f (x , y )的灰度范围是[m , M ],我们希望对图像的灰度范围进行线性调整,调整后的图像g (x , y )的灰度范围是[n , N ],那么下述变换: []n m y x f m M n N y x g +---=),(),(就可以实现这一要求。 MATLAB 图像处理工具箱中提供的imadjust 函数,可以实现上述的线性变换对比度调整。imadjust 函数的语法格式为: J = imadjust(I,[low_in high_in], [low_out high_out]) J = imadjust(I, [low_in high_in], [low_out high_out])返回原图像I 经过直方图调整后的新图像J ,[low_in high_in]为原图像中要变换的灰度范围,[low_out high_out]指定了变换后的灰度范围,灰度范围可以用 [ ] 空矩阵表示默认范围,默认值为[0, 1]。 不使用imadjust 函数,利用matlab 语言直接编程也很容易实现灰度图像的对比度调整。但运算的过程中应当注意以下问题,由于我们读出的图像数据一般是uint8型,而在MATLAB 的矩阵运算中要求所有的运算变量为double 型(双精度型)。因此读出的图像数据不能直接进行运算,必须将图像数据转换成双精度型数据。 2、直方图均衡化 直方图均衡化的目的是将原始图像的直方图变为均衡分布的形式,即将一已知灰度概率密度分布的图像,经过某种变换变成一幅具有均匀灰度概率密度分布的新图像,从而改善图像的灰度层次。 MATLAB 图像处理工具箱中提供的histeq 函数,可以实现直方图的均衡化。 三、实验内容及要求 1、 用MATLAB 在自建的文件夹中建立example2.m 程序文件。在这个文件的程序中,将girl2.bmp 图像文件读出,显示它的图像及灰度直方图(可以发现其灰度值集中在一段区

图像处理matlab源码加实验报告

大学 2016 —2017 学年第 1 学期 数字图像处理课程设计 年级与专业学号姓名 题目:图像的代数运算 目标:1.深入理解图像处理中代数运算的基本作用; 2.掌握在MTLAB中对图像进行代数运算的方法; 3.通过实验分析比较各种代数运算算法的效果。 课程设计日期: 2016年11月11号

一、问题背景 随着移动设备的日渐普及,在日常的生活我们可以直接采集到清晰的图像,但是在工业或勘测领域,仍存在许多图像需要进行处理,以便人眼或机器进行符合其认知逻辑的观察,进而得出结论或进行下一步的作业。 鉴于工业或勘测我们无法直接参与,本文仅通过最为简单的图像代数运算,结合matlab进行实验,借助处理后的直观结果,对图像处理做一些最基本的研究。 二、实验原理 图像的代数运算是图像的标准算术操作的实现方法,是两幅输入图像之间进行的点对点的加、减、乘、除运算后得到输出图像的过程。如果输入图像为A(x,y)和B(x,y),输出图像为C(x,y),则图像的代数运算有如下四种形式: C(x,y) = A(x,y) + B(x,y) C(x,y) = A(x,y) - B(x,y) C(x,y) = A(x,y) * B(x,y) C(x,y) = A(x,y) / B(x,y) 图像的代数运算在图像处理中有着广泛的应用,它除了可以实现自身所需的算术操作,还能为许多复杂的图像处理提供准备。例如,图像减法就可以用来检测同一场景或物体生产的两幅或多幅图像的误差。 使用MATLAB的基本算术符(+、-、*、/ 等)可以执行图像的算术操作,但是在此之前必须将图像转换为适合进行基本操作的双精度类型。为了更方便地对图像进行操作,MATLAB图像处理工具箱包含了一个能够实现所有非稀疏数值数据的算术操作的函数集合。下表列举了所有图像处理工具箱中的图像代数运算函数。 表2-1 图像处理工具箱中的代数运算函数 能够接受uint8和uint16数据,并返回相同格式的图像结果。虽然在函数执行过程中元素是以双精度进行计算的,但是MATLAB工作平台并不会将图像转换为双精度类型。 代数运算的结果很容易超出数据类型允许的范围。例如,uint8数据能够存储的最大数值是255,各种代数运算尤其是乘法运算的结果很容易超过这个数值,有时代数操作(主要是除法运算)也会产生不能用整数描述的分数结果。图像的代数运算函数使用以下截取规则使运算结果符合数据范围的要求:超出数据范围的整型数据将被截取为数据范围的极值,分数结果将被四舍五入。例如,如果数据类型是uint8,那么大于255的结果(包括无穷大

用matlab实现图像灰度变换课程设计

课程设计报告册 课程名称: MATLAB课程设计 课题名称:灰度变换增强 专业班级: 姓名: Bob Wang 学号: 15164 课程设计主要场所:信息楼220 时间: 指导教师:成绩:

前言 数字图像处理技术是20世界60年代发展起来的一门新兴学科,随着图像处理理论和方法的进一步完善,使得数字图像处理技术在各个领域得到了广泛应用,并显示出广阔的应用前景。MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台。它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。根据它提供的500多个数学和工程函数,工程技术人员和科学工作者可以在它的集成环境中交互或变成以完成各自的计算。MATLAB中集成了功能强大的图像处理工具箱。由于MATLAB语言的语法特征与C语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式,而且这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以MATLAB在图像处理的应用中具有很大的优势。 MATLAB是一种以矩阵运算为基础的交互式程序语言,能够满足科学、工程计算和绘图的要求,与其它计算机语言相比,其特点是简洁和智能化,适应科技专业人员的思维方式和书写习惯,使得编程和调试效率大大提高。我们学习掌握MATLAB,也可以说是在科学工具上与国际接轨。

目录 一、课程设计目的 (2) 二、设计任务及容 (2) 三、课题设计实验条件 (3) 四、涉及知识 (3) 五、具体设计过程及调试 (4) 5.1、图像的读入和显示 5.1.1、打开图像 (4) 5.1.2、显示原图像 (5) 5.1.3、图像灰度处理 (7) 5.1.4、显示灰阶后图像 (8) 5.2、直方图均衡化 5.2.1、生成直方图 (10) 5.2.2、直方图均衡化 (12) 5.3、灰度变换 5.3.1、线性变换 (9) 5.3.2、分段线性变换 (9) 5.3.3、非线性变换.................................... (9) 六、心得体会 (17) 七、参考文献 (18) 八、程序清单 (19)

图像格式转换实验报告

实验1 图像格式转换实验报告 学 号:12224506 姓 名:陈振辉 班 级:5班 一、实验目的 掌握两种以上图像的格式,重点掌握BMP 图像格式。 二、实验原理: 1、JPEG 文件的解码过程。 敷设技于管路护层防含线槽试以正常杂设方案以卷技术地缩小进行自动作,

①.读入文件的相关信息 按照上述的JPEG 文件数据存储方式,把要解码的文件的相关信息一一读出,为接下来的解码工作做好准备。参考方法是,设计一系列的结构体对应各个标记,并存储标记内表示的信息。其中图像长宽、多个量化表和哈夫曼表、水平/垂直采样因子等多项信息比较重 要。以下给出读取过程中的两个问题。 1)整个文件的大体结构 JFIF 格式的JPEG 文件(*.jpg)的一般顺序为: SOI(0xFFD8)APP0(0xFFE0)[APPn(0xFFEn)]可选 DQT(0xFFDB)SOF0(0xFFC0)DHT(0xFFC4)SOS(0xFFDA)压缩数据EOI(0xFFD9)2)字的高低位问题 JPEG 文件格式中,一个字(16位)的存储使用的是 Motorola 格式, 而不是 Intel 格式。 也就是说, 一个字的高字节(高8位)在数据流的前面, 低字节(低8位)在数据流的后面,与平时习惯的Intel 格式不一样。. 3)读出哈夫曼表数据 在标记段DHT 内,包含了一个或者多个的哈夫曼表。 不同位数的码字数量JPEG 文件的哈夫曼编码只能是1~16位。这个字段的16个字节分别表示1~16位的编码码字在哈 夫曼树中的个数。编码内容这个字段记录了哈夫曼树中各个叶子结点的权。所以,上一字段(不同位数的码字数量)的16个数值之和就应该是本字段的长度,也就是哈夫曼树中叶 子结点个数。 4)建立哈夫曼树 读出哈夫曼表的数据后,就要建立哈夫曼树。 ②.初步了解图像数据流的结构 a) 在图片像素数据流中,信息可以被分为一段接一段的最小编码单元(Minimum CodedUnit ,MCU )数据流。所谓MCU ,是图像中一个正方矩阵像素的数据。矩阵的大小 是这样确定的:查阅标记SOF0,可以得到图像不同颜色分量的采样因子,即Y 、Cr 、Cb 三个分量各自的水平采样因子和垂直采样因子。大多图片的采样因子为4:1:1或 1:1:1。其中,4:1:1即(2*2):(1*1):(1*1));1:1:1即(1*1):(1*1): (1*1)。记三个分量中水平采样因子最大值为Hmax ,垂直采样因子最大值为Vmax ,那么 单个MCU 矩阵的宽就是Hmax*8像素,高就是Vmax*8像素。 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

相关文档
最新文档