吹脱法处理高浓度氨氮废水的研究

吹脱法处理高浓度氨氮废水的研究
吹脱法处理高浓度氨氮废水的研究

吹脱法处理高浓度氨氮废水的研究

周明罗1,2 黄飞1,2

(1.宜宾学院化学与化工系 四川宜宾644007; 2.长江水环境教育部重点实验室宜宾研究基地 四川宜宾644007)

摘 要 采用逆流吹脱塔,研究了不同pH 、气液比对高浓度氨氮废水吹脱效率的影响。结果表明,吹脱效率随pH 值升高而增大;气液比越大,氨吹脱传质推动力越大,吹脱效率也随之增大。 关键词 氨氮废水 吹脱法 pH 气液比

Study on the T reatment for H igh Concentration Ammonal -nitrogen W astew ater by B low -off Method

ZHOU M ing -luo 1,2 HUANG Fei 1,2

(1.Dept.o f Chemistry and Chemical Engineering ,Yibin Univer sity Yibin ,Sichuan 644007)

Abstract Based on the experiment of dealing with high concentration of amm onia -nitrogen wastewater by blow -off method ,the in fluences of pH value and gas/liquid ratio are investigated in this paper.The result shows that the efficiency of blow -off method im proves with the in 2crease of pH value and the growth of gas/liquid ratio.

K eyw ords amm onal -nitrogen wastewater blow -off method pH value gas/liquid ratio

高浓度氨氮废水来源甚广且排放量大,如化肥、焦化、石化、制药、食品、垃圾填埋场等。氨氮废水排入水体不仅引起水体富营养化,造成水体黑臭,而且增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。近一二十年来,国内外对氨氮废水处理方面开展了较多的研究。吹脱法以其操作简单、成本低等优点,得到广泛应用。

1 吹脱技术原理

吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。吹脱是氨解吸的过程,传质推动力来自与废水中氨浓度成平衡的氨气组成和吹脱气体中氨气的组成之间的差值[2]即(Y 3-Y )。

水中的氨氮,大多以铵离子(NH +4)和游离氨(NH 3)保持平衡的状态而存在,其平衡关系式如下:

NH +

4+OH

-

 

3+H 2O (1)

该平衡式受pH 值和温度的影响,当pH 值高时,平衡向右移动,游离氨的比例较大,当pH 为11左右时,游离氨大致占90%。不同pH 值、温度下氨的离解率见表1。

表1 不同pH 、温度下氨的离解率

%

pH 20℃30℃35℃40℃9.0

255058689.56080838510.08090939511.0

98

98

98

98.1

气液比、pH 、温度是影响吹脱效率的直接因素。另外,吹脱时间、吹脱设备、填料、操作条件等因素也将影响氨氮废水的吹脱效率。本文主要研究pH 值、气液比等因素对吹脱法处理高浓度氨氮废水的影响及其技术特点。

2 实验部分2.1 实验方案及流程

实验采用逆流吹脱塔,塔内装PVC 拉西环填料。实验 由图4可知,投加H 2O 2可提高苯酚的降解效率,在一定的H 2O 2用量范围内,降解效率随H 2O 2用量的增大而增大,当H 2O 2用量过多时,降解效率反而下降。由此可见,联合工艺大大提高了降解率,表现出一种协同作用。H 2O 2作为一种强氧化性添加剂,在声空化过程中产生的空化泡崩溃的瞬间加快了气液表面和溶液中有机物的氧化,从而提高了苯酚的降解率。而过量的H 2O 2会与?OH 发生反应形成的氧化能力远不如?OH 的H O 2?,故降解效率下降。

4 结论

(1)苯酚属于难降解的有机物,用物理能场超声波处理,降

解率很低,随超声波功率的增大,降解率先上升后又略有下降。

(2)苯酚的降解率随时间的延长而增大,但时间过长其

降解率反而下降。酸性条件有利于苯酚的降解,当pH 值>8

时对降解反应有较大的影响。

(3)溶液中添加H 2O 2可显著提高去除率,并且去除率随

着H 2O 2的投加量增大而增大,H 2O 2浓度达一定值时,去除率增加趋于平衡。

参考文献

[1]马英石,吴哲仁,林智高.超声波/H 2O 2工艺分解水中危害性氯化

有机物.给水排水,1997,23,(8):12-18.

[2]张子间.超声波废水处理技术的研究进展.广东化工,2004(3-4):46-48.

[3]国家环境保护总局水和废水监测分析方法编委会.水和废水监

测分析方法.北京:中国环境科学出版社,2002.456-464.作者简介 郭晋君,1983年生,女,湘潭大学化工学院,湖南省环境监测中心站在读研究生。

(收稿日期:2008-05-20)

?

41? 工业安全与环保

Industrial Safety and Environmental Protection

2008年第34卷第11期

N ovember 2008

流程如图1所示,主要仪器设备见表2。实验用高浓度氨氮废水为实验室配制,NH3-N质量浓度大于4g/L。废水由磁力驱动循环泵从水箱抽至吹脱塔的顶部,吹脱塔的顶部安装有液体分布器。空气由空气泵提供,经气体流量计由气体分布装置塔底进入。塔内填料提供足够的传质面积使气、液两相充分接触。

2.2 测试项目及方法

本次实验主要考查pH值、气液比对吹脱效果的影响,分析测试项目为吹脱前、后废水中氨氮的质量浓度。采用纳氏试剂分光光度法[3]测定NH3-N的质量浓度(G B7479-87)。3 实验结果与分析

3.1 pH

值对吹脱效率的影响分析

图1 实验流程

1—水箱;2—磁力驱动循环水泵;3—玻璃转子流量计;

4—填料塔;5—空气流量计;6—旋涡式充气机

表2 实验主要设备

序号设备名称型号(规格)生产厂家备 注

1水箱塑料容器自制

2磁力驱动循环水泵MP-15R浙江西山泵业有限公司额定流量8L/m in 3玻璃转子流量计LZ B-6振兴流量仪表厂液体用,20℃

4填料吹脱塔 50×1400mm自制内装改型拉西环5旋涡式充气机HG-750-C浙江森森实业有限公司95m3/h

6空气流量计DK500-4常州成丰流量仪表有限公司最大5m3/

h

7pH计M ODE L868Therm o E lectron C orporation 调节废水pH分别为9.0、9.5、10.0、10.5、11.0、11.5、

12.0,吹脱温度为室温,废水流量为5L/h,空气流量为3.5 m3/h,测定不同pH值条件下吹脱前、后废水的氨氮浓度。氨氮吹脱效率随pH值变化曲线如图2所示。

图2 pH值对吹脱效率的影响

由图2可以看出,吹脱效率随pH升高不断增大;当pH 值从9.0升高到10.0时,吹脱效率随pH的上升几乎呈直线提高;当pH值从10.0升高到11.0,增大幅度变小;当pH值大于11.0以后,曲线趋于平缓。上述现象表明:pH值对吹脱效率的影响存在2个转折点,1个是pH值为10.0,另1个为11.0,这与文献[4]、[5]的报道是一致的。其原因可能是:由于废水中铵盐属于强酸弱碱盐,提高pH将逐渐地破坏其电离平衡,当pH值为10时,电离平衡基本破坏;当pH值小于10时,氨离解率随pH值升高增大得最快,因此pH值在10之前吹脱效率提高较快;当pH值大于11后

,污水中的氨氮大多数以游离氨存在,此时提高pH仅增加少量的游离氨,故对吹脱效率影响不大。在实际操作中,建议吹脱氨氮废水的pH控制在10-11之间,以避免因碱的大量加入而增大处理成本。

3.2 气液比对吹脱效率的影响分析

将废水pH调至11.0,水温为室温,废水流量为5、8、12 L/h,3种不同流量下,调整空气流量使气液比分别为500∶1、600∶1、700∶1、800∶1。不同气液比时氨氮废水吹脱效率随气液比变化曲线如图3所示

图3 气液比对吹脱效率的影响

由图3可以看出,氨氮去除效率随吹脱空气流量与废水流量比的增大而提高,这说明增大气液比能够提高去除效率,在实验条件下气液比从500∶1(体积比,下同)增大到700∶1之间时氨氮去除率增加最快。

如前所述,吹脱是氨气解吸过程,传质推动力来自与废水中氨浓度成平衡的氨气组成和吹脱气体中氨气的组成之间的差值即(Y3-Y)。由物料守衡(见图4)可得吹脱塔内任意截面上气、液相组成有如下关系:

Y=L/V(X-X1)+Y1(2)

图4 物料守恒分析

?

5

1

?

水力空化联合臭氧处理油田污水实验研究

冯高坡1 董守平1 李清方2

(1.中国石油大学(北京) 北京102249; 2.胜利油田工程设计咨询有限公司 山东东营)

摘 要 通过向空化装置中通入臭氧气体,研究了水力空化装置联合臭氧气体对油田污水COD 的降解情况。研究表明,水力空化装置联合臭氧气体能对油田污水COD 产生较大的去除率,在适当的臭氧气体通入速率、空化器入口压力和空化器结构参数下,存在最佳的去除效果。 关键词 水力空化 臭氧 油田污水 COD

Study on the T reatment for Oil Field W astew ater by H ydrodynamic C avitation Combined With Ozone

FE NG G ao -po 1 DONG Shou -ping 1 LI Qing -fang 2

(1.China Univer sity o f Petroleum -Beijing Beijing 102249)

Abstract In this paper the degradation of COD in oil field wastewater is studied by pouring oz one into hydrodynam ic cavitation device.The study shows that this method can greatly im prove the rem oval efficiency of COD in oil field wastewater and the the optimal rem oval efficiency can be achieved under the suitable parameters ,such as oz one pouring speed ,cavitation device inlet -pressure and cavitation device struc 2ture.

K eyw ords hydrodynam ic cavitation oz one oil field wastewater COD

0 前言油田采出水组成比较复杂,不仅被原油所污染,高温、高压的油层还溶解了地层中的各种盐类和气体;在采油过程中,从油层里携带了许多悬浮固体;在采油、油气集输、原油脱水过程中还投加了各类化学药剂;采出水中还有大量有机物,有适宜微生物生长繁殖的环境。因此采出水是含有多种杂质的工业废水[1]。

采出水中含有的各种耗氧污染物,会消耗水中的溶解氧,导致水中氧含量降低,水质恶化,水生生物难以生存,是目前影响水质的重要因素[2]。化学需氧量C OD 是表示水中耗氧污染物质含量的一项综合指标。C OD 含量太高,水质腐败,污染严重。因此,污水处理要求C OD 值不能超过标准。

水力空化装置虽然具有装置简单、污水处理量大的优点,但在降低油田污水C OD 方面存在降解率低的缺点。近年来虽然不断有关于超声空化联合臭氧[3-5]和水力空化联合臭氧[6-8]的实验研究报道出现,但这些研究又往往集中在模拟污水或净化饮用水方面,而关于降解油田污水C OD 方面未曾有报道出现。实验研究了水力空化装置和臭氧气体式中,L ,V 分别为废水、空气流率;Y ,X 分别为塔内任意截面气相、液相组成;Y 1,X 1塔底气相、液相组成,实验中Y 1=0。

此即为吹脱塔操作线方程,是以(L/V )为斜率的直线,如图5中直线MN 。随着气液比增大直线MN 斜率减小,操作线远离平衡线OP ,推动力(Y 3-Y )增大,有利于氨气解吸,表现为吹脱效率的增大

图5 逆流吹脱塔操作线

4 结论

(1)吹脱效率随pH 升高不断增大;pH 值对吹脱效率的

影响存在2个转折点,当pH 值从9.0升高到10.0时,吹脱

效率随pH 的上升几乎呈直线提高;当pH 值从10.0升高到

11.0,吹脱效率增大幅度变小;当pH 值大于11.0以后,吹脱

效率增大缓慢。

(2)气液比增大能增大氨气吹脱传质推动力,氨氮去除

效率随气液比增大而增大;在实验条件下气液比从500∶1增大到700∶1,时氨氮去除率增加最快。

参考文献

[1]钱易.环境保护与可持续发展.北京:高等教育出版社,2000.[2]夏清,陈常贵.化工原理(下册).天津:天津大学出版社,2005.[3]国家环保总局编委会.水和废水监测分析方法(第4版).北京:中

国环境科学出版社,2002.

[4]林奇.吹脱法处理中低浓度氨氮废水.福建环境,2000,17(6):35

-37.

[5]倪佩兰,郑学娟,徐月恩,等.垃圾填埋渗滤液氨氮的吹脱处理工

艺技术研究.环境卫生工程,2001,9(9):133-135.

作者简介 周明罗,1977年生,男,四川宜宾人,讲师,硕士,主要研究方向为水处理技术及工艺。

(收稿日期:2008-05-05)

?

61? 工业安全与环保

Industrial Safety and Environmental Protection

2008年第34卷第11期

N ovember 2008

高氨氮废水处理方法

高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比

例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 1.4MAP沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 1.5 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。

氨氮废水常用处理方法

氨氮废水常用处理方法 来源:作者:发布时间:2007-11-14 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。

王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。 Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。

氨氮吹脱塔

氨氮吹脱吸收系统 技术方案

一、方案设计依据: 1、废水水量:3600m3/d,设计水量为150m3/h。 2、出水氨氮要求:去除率60%-70% 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH4+)和游离氨(NH3)状态存在,其平衡关系如下所示: NH3+H2O—NH4+ +OH- 这个关系受pH值的影响,当pH值高时,平衡向左移动,游离氨的比例增大。常温时,当pH 值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%) 当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的空气逆流接触,完成传质过程,使氨由液相转为气相,随空气排放,完成吹脱过程。

三、运行条件 进水pH值≥11 外界条件:气温24℃,水温:35℃ PH: 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时空气在风机的作用下进入氨氮吹脱塔塔体下方进气口,并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,出水流出。 具体工艺流程见下图: 原水 pH调节池氨氮吹脱塔氨氮吸收 风机 废水经吹脱塔吹脱后,氨氮去除率达到60%-70%,氨氮含量由700mg/L处理至200-230mg/L。 六、设备清单(第一方案)三台并联

高浓度氨氮工业废水应用厌氧氨氧化技术处理的可行性分析

高浓度氨氮工业废水应用厌氧氨氧化技术处理的可行性分析 发表时间:2016-11-07T16:38:30.967Z 来源:《基层建设》2016年14期作者:丁伟文 [导读] 摘要:在氨氮工业废水的处理过程中通常都会采用厌氧氨氮氧化技术进行处理。厌氧氨氮氧化技术是一种新型的生物脱氮技术,在对工业氨氮废水的处理过程中有非常好的效果。在处理过程中不需要添加任何其他的有机物质和碳源,而且反应过程中产生的污泥量非常小,所以厌氧氨氮氧化技术具有有非常实用的工艺价值。 佛山市和利环保科技有限公司广东佛山 528000 摘要:在氨氮工业废水的处理过程中通常都会采用厌氧氨氮氧化技术进行处理。厌氧氨氮氧化技术是一种新型的生物脱氮技术,在对工业氨氮废水的处理过程中有非常好的效果。在处理过程中不需要添加任何其他的有机物质和碳源,而且反应过程中产生的污泥量非常小,所以厌氧氨氮氧化技术具有有非常实用的工艺价值。近年来,这种工艺技术的应用已经也来越广泛。本文对于这种处理技术的当前发展现状进行了介绍,并结合工作经验对于处理过程中的一些处理的原理及可行性进行了分析,希望能对工业氨氮废水的处理有所帮助。 关键词:工业废水;高浓度氨氮废水;废水处理;可行性分析 随着当前环境污染问题的加剧,对于工业废水的处理问题已经成为社会关注的焦点。在对工业废水的处理过程中氨氮的含量是处理结果的一个重要观察指标。这也是我国环境保护所面临的一个挑战,如何有效的减少工业废水的氨氮含量。目前在工业废水的处理过程中,主要是应用硝化/反硝生物脱氮技术进行处理的。应用这种处理方法虽然与传统的物理或者化学方法相比具有一定的优势,但是由于在反应过程中需要的能量较高造成能耗严重,而且处理效率低,产生的污泥量大。厌氧氨氮氧化技术的出现对于这些问题的解决提供了一种良好的途径。该技术在上个世纪90年代开始在工业废水的处理中应用的[1],主要是针对高浓度的工业废水进行处理应用。本文对于工业废水中常见的氨氮、有机物等物质对氨氮厌氧菌的影响进行了分析,并推应用氨氮氧化技术在工业废水处理中应用的可行性进行了探讨。 1、厌氧氨氮氧化技术的概念及应用现状 厌氧氨氮氧化技术(anaerobic ammonium oxidation,Anammox)是一种新兴的工业废水处理技术。这以技术在反应过程中主要是指在反映环境厌氧或者缺氧的状况下,经过厌氧氨氮氧化的微生物以溶液中的NO2—N作为直接的受体,将周围的NH4+-N直接氧化为氮气的生物化学过程。在工业废水的处理过程中,通过厌氧氨氮氧化技术处理,与传统的处理工艺相比,在曝气量以及有机碳源和所需要的运行费用方面都有很大幅度的降低,而且在反应过程中产生的污泥的数量很少。所以这种处理技术为我国的氨氮废水中低碳氮难处理、而且耗能较高、污泥产生量大等问题的解决带来了新的希望[2]。 目前相关的研究表明,在应用厌氧氨氮氧化技术进行工业废水的处理过程中,利用酵母对废水进性流化床处理后NH4+-N和NO3—N的浓度以及氮气的产生率都明显的得到提高。在应用厌氧氨氮氧化对工业废水进行处理时,常选用的厌氧氨氮菌大多都属于浮霉菌科目,这一种类的菌类大多存在于海洋中,部分也存在于实验室的器皿中。在厌氧反应中,主要是以NH4+-N和NO2—N作为反应的底物进行。不过由于废水中的NO2—N含量并不是很高,所以在进行厌氧氨氮氧化反应前需要通过硝化来实现对于NO2—N的积累,以达到厌氧反应所需的要求。在当前的应用反应中,对于厌氧氨氮氧化反应主要有两方面的问题还需要进行解决,第一个问题是在反应过程中,厌氧菌自身的增殖速率非常低;第二个问题是在反应过程中,高浓度的氨氮废水C/N比较低。这两方面的问题制约了厌氧氨氮氧化技术在工业废水处理过程中的进一步应用。 二、高浓度氨氮工业废水的特征分析 根据我国的相关数据统计,在2011年我国所排放的工业废水中含有的氨氮含量为29万吨,这一数字相当庞大。在这些工业废水的排放中,氨氮的含量排放量较多的几个行业分别是石化行业、焦化行业、化工行业以及制革行业等,如图1所示:图1:我国不同行业的工业废水水质情况 从图中我们可以看出,不同行业的的废水排放情况大不相同,其中焦化和石化行业所排放的工业废水中所含有的氨氮含量较高。不过由于一些制药企业所排放的工业废水中所含有的大量的COD以及重金属物质,所以无法直接通过厌氧氨氮氧化技术进行处理。一般在处理过程中需要首先对高浓度的氨氮工业废水进行厌氧消化处理,然后再进行厌氧氨氮氧化处理。 3.工业废水的水质对厌氧氨氮氧化的影响 厌氧氨氮氧化技术主要的处理对象就是工业废水,尤其是针对污泥水。这类废水中除了含有较高浓度的氨氮以外,还含有一些有机物质以及一些有毒的物质。这些有毒的物质对于厌氧氨氮氧化技术的应用形成了限制。相关研究表明,在工业废水中随着氯霉素物质浓度不断提高,厌氧氨氮菌的活性受到的抑制作用不断加强,不过在这一领域的研究结论上,不同研究者所得出的结论差别较大。比如Mora等人的研究表明当氯霉素的浓度小于1000mg·L-1时根本不会对厌氧氨氮菌的活性产生任何影响。但是Graaf等人的研究则表明当氯霉素的浓度大于20mg·L-1时就已经对厌氧氨氮菌的活性产生严重影响了,实验表明,其活性至少下降了40%[4]。 另外,工业废水中的污泥浓度、底物浓度以及一些其他类型的物质的浓度都会对厌氧氨氮菌的活性产生重要影响。虽然微生物菌类经过训话对于这些有毒有害的物质具有一定的扛耐性,但是由于许多有毒物质的浓度较高,对于厌氧氨氮菌的活性影响是非常大的。尤其是

氨吹脱塔计算

氨吹脱塔计算 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的应用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究应用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH4++OH- NH3+H2O (1) NH3+H2O→NH4++OH- 氨与氨离子之间的百分分配率可用下式进行计算: Ka=Kw /Kb=(CNH3?CH+)/CNH4+ (2) 式中:Ka———氨离子的电离常数; Kw———水的电离常数; Kb———氨水的电离常数; C———物质浓度。 式(1)受pH 值的影响,当pH值高时,平衡向右移动,游离氨的比例较大,当pH 值为11 左右时,游离氨大致占(氨态氮,杨)90%。 由式(2)可以看出,pH 值是影响游离氨在水中百分率的主要因素之一。另外,温度也会影响反应式(1)的平衡,温度升高,平衡向右移动。表1 列出了不同条件下氨氮的离解率的计算值。表中数据表明,当pH值大于10 时,离解率在80%以上,当pH 值达11时,离解率高达98%且受温度的影响甚微。 表1 不同pH、温度下氨氮的离解率% pH 20℃30℃35℃ 9.0 25 50 58 9.5 60 80 83 10.0 80 90 93 11.0 98 98 98 氨吹脱一般采用吹脱池和吹脱塔2 类设备,但吹脱池占地面积大,而且易造成二次污染,所以氨气的吹脱常采用塔式设备。 吹脱塔常采用逆流操作,塔内装有一定高度的填料,以增加气—液传质面积从而有利于氨气从废水中解吸。常用填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。废水被提升到填料塔的塔顶,并分布到填料的整个表面,通过填料往下流,与气体逆向流动,空气中氨的分压随氨的去除程度增加而增加,随气液比增加而减少。 2 影响因素及液气比的确定 影响游离氨在水中分布的pH 值、温度等因素都会影响吹脱效率。另外气液比、喷淋密度等操作条件也是影响吹脱效率的主要因素。下面以逆流塔为例分析液气比的确定及其影

氨氮废水处理方法

高氨氮废水处理技术 介绍各类氨氮废水处理技术及其原理,包括各种方法的优缺点、适用范围、高浓度氨氮废水处理技术的研究进展。通过对比分析,明确不同类型高氨氮废水处理的选择方法,为治理高氨氮废水提供一条便捷的选择方法。 近年来,随着环境保护工作的日益加强,水体中有机物的代表指标-COD基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。本文总结了国内外高氨氮废水处理技术及其优缺点、适用范围等。 1、废水中氨氮处理的主要技术应用与新进展 1.1吹脱法 吹脱法是将废水中的离子态铵(NH4+),通过调节pH值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH值、水温、布水负荷、气液比、足够的气液分离空间。 NH4++OH-→NH3+H2O 炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理,回收利用的氨部分抵消了产生蒸汽的高费用。石灰一般用来提高pH值。用蒸汽比用空气更易控制结垢现象,若用烧碱则可大大减轻结垢的程度。吹脱法一般采用填料吹脱塔,主要特征是在塔内装置一定高度的填料层,利用大表面积的填充塔来达到气水充分接触,以利于气水间的传质过程。常用的填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。胡允良等人研究了某制药厂生产乙胺碘呋酮时产生的一部分高浓度氨氮废水的静态吹脱效果。结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。 氨吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。 1.2化学沉淀法(MAP法)

吹脱法处理高浓度氨氮废水

吹脱法处理高浓度氨氮废水 作者:周明罗陈建中刘志勇 简介:对垃圾渗滤液处理难点进行了分析,阐述了垃圾渗滤液国内外处理现状、处理工艺对比、以及存在弊端,概述OFR新型专利技术处理垃圾渗滤液的原理、使用范围、技术优势及其推广方向,提出OFR 技术在高浓度有机废水处理有特殊的效果,已成功使用于国内外多家企业,尤其在垃圾渗滤液前预处理和经膜技术处理后的浓液处理方面有广阔的使用前景。 关键字:垃圾渗滤液浓缩液氨氮 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的使用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究使用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH4++OH-NH3+H2O (1) 氨和氨离子之间的百分分配率可用下式进行计算: Ka=Kw /K b=(C NH3·C H+)/C NH4+(2) 式中:Ka———氨离子的电离常数;

高浓度氨氮废水处理工艺

高浓度氨氮废水处理工艺 目前,工业废水、垃圾渗滤液、城市污水等高浓度氨氮废水对水体造成的危害已成为全世界关注的环境问题。绝大部分含氨氮的废水在未经任何处理或处理不达标的情况下直接排入水体,导致水体污染及富营养化,进而影响土壤、空气等。常见的含氮化合物主要包括有机氮、氨氮、亚硝酸盐氮以及硝酸盐氮。其中氨氮是导致水体富营养化的主要污染物,其排放控制已成为目前水处理领域的重点和难点。 氨氮废水的处理方法有很多种,国内外学者针对该问题开展了大量研究。其中吹脱法是传统的高浓度氨氮废水处理方法,其设备占地面积小,操作灵活便捷,但也存在耗能大、处理成本高等缺点。成泽伟等采用超声波强化吹脱去除氨氮,去除率明显高于一般吹脱技术,且升幅超过50%。彭人勇等的研究也显示,超声波对吹脱的强化作用可以让氨氮去除率提升30%~40%。 沸石是含水多孔铝硅酸盐的总称,其晶体构造主要由(SiO)四面体组成,其中的部分Si4+为Al3+取代,导致负电荷过剩,故其结构中有碱金属(碱土金属)等平衡电荷的离子,同时沸石构架中存在较多的空腔和孔道。上述结构决定了沸石具有吸附、离子交换等性质,因此其对氨氮具有很强的选择性吸附能力。 本研究在超声吹脱工艺的基础上,利用改性沸石对超声吹脱后的高浓度氨氮废水进行超声强化吸附处理,考察了沸石粒度、吸附时间、沸石投加量、吸附温度、吸附超声功率等因素对处理效果的影响,以期为高浓度氨氮废水的处理提供参考。 一、实验部分 1.1材料和仪器 实验所处理废水为模拟高浓度氨氮废水,为NH4Cl和超纯水配制的NH4Cl溶液,氨氮质量浓度约为1200mg/L的,实验中以实测浓度为准。 吸附剂选用浙江省缙云县产天然沸石经复合改性后得到的改性沸石,密度2.16g/cm3,硬度3~4,硅铝比4.25~5.25,孔隙率30%~40%。 D-51型pH计:日本HORIBA有限公司;UV765型紫外-可见分光光度计:上海精密化学仪器有限公司;JJ50型精密电子天平:美国双杰兄弟(集团)有限公司;EVOMA15/LS15型扫描电子显微镜:北京欧波同有限公司。 1.2实验方法 1.2.1超声吹脱 实验装置如图1所示。超声波发生器通过将工频电转变为20kHz以上(一般为

某厂氨氮废水处理工程设计方案

氨氮废水处理工程 设计方案 废水水量及水质确定 一、废水的水量 根据业主提供的废水处理量为:Q=240T/d, 二、废水的水质 根据业主提供的资料,废水水质如下: NH4-N:6000mg/L T:30℃PH=7-8 SO42-:10000mg/L 废水处理要求 本项目设计废水处理能力为240T/d。 本工程废水处理后废水中氨氮含量达到国家一级排放标准, 即:NH3-N≤15mg/L 废水处理工艺方案 一、工艺确定原则 1、严格执行有关环境保护的各项规定,废水处理后氨氮含量达到该地区的地方排放标准氨氮小于15mg/L; 2、依据废水水质特点,在充分论证的基础上,选用先进合理的废水处理工艺,保证废水达标排放; 3、治理方案力求工艺简洁,方法原(机)理清晰明了; 4、处理系统具有灵活性和操作弹性,以适应废水水质、水量的变化; 5、本方案力求达到工艺先进、运行稳定、管理简单、能耗低、维修方便等特点; 6、处理后不造成二次污染。 二、工艺设计范围 1.废水处理工艺流程、工艺高程和各处理单元设计; 2.废水处理平面布置、设备选型、布置和控制设计; 3.废水处理区1.00m以内的所有工艺管道和线路设计; 三、污水处理工艺设计选择依据 1)、本工程的废水中主要污染物和控制指标为氨氮。氨氮废水处理,目前国内采用的处理工艺有以下几种:https://www.360docs.net/doc/0312110619.html, 1、生化处理工艺 该工艺利用生物菌将有机氮转化为氨氮,再通过硝化与反硝化将硝态氮还原成气态氮从水中逸出,从而达到脱氮的目的。

但由于生物菌所能承受氨氮的浓度较低,一般不能超过200mg/L,当氨氮高于200-300mg/L 时,会抑制细菌生长繁殖。因此该工艺只适用于氨氮含量200mg/L左右的低浓度氨氮废水。此外,生化处理工艺工程占地面积较大,温度较低时,总脱氮效率也不高。 2、传统填料式的吹脱工艺 该工艺是利用废水中所含的氨氮等挥发性物质的实际浓度与平衡浓度之间存在的差异,在碱性条件下用空气吹脱,使废水中的氨氮等挥发性物质不断的由液相转移到气相中,从而达到从废水中去除氨氮的目的。 但由于氨氮在水中存在溶解平衡关系,当气液两相的氨处于平衡状态时,水中的氨氮将不能被吹脱逸出,因此该工艺不适用于高浓度氨氮废水。且传统填料式吹脱工艺还存在吹脱效率低,吹脱风量大(气液比3000:1左右)、时间长,对温度要求高、填料易结垢等缺点。 3、蒸氨汽提法 蒸氨气体法也是利用氨氮的气相浓度和液相浓度之间的气液平衡关系对氨氮进行分离,该工艺是把水蒸气通入废水中,当蒸气压超过外界压力时,废水沸腾从而加速了氨氮等挥发性物质的逸出过程。 与传统填料式吹脱相同的是,当气液两相中氨达到平衡时,蒸氨气提法也不能继续使水中氨氮持续逸出,因此单次气提也不能将氨氮完全脱除,若采用连续多次气提进行脱氮则会大大增加投资成本和运行成本。 以上两种方法均只能将氨氮处理至100mg/L左右。 4、沸石离子交换法 沸石是含水的钙、钠以及钡、钾的铝硅酸盐矿物,因其含有一价和二价阳离子,具有离子交换性,因此沸石具有离子交换的能力,可将废水中的NH4+交换出来。 该工艺的缺点是只适用于氨氮含量在50mg/L以下的废水,且交换剂用量大需再生,再生频繁,并且再生液需要再次脱氨氮。采用该工艺还要求对废水做预处理以除去悬浮物,因此此法的成本较高,同等浓度下,处理费用为其他工艺的1.5~2倍。 5、折点加氯工艺 折点加氯工艺是利用氯气通入水中所发生的水解反应生成次氯酸和次氯酸盐,通过次氯酸与水中氨氮发生化学反应,将氨氮氧化成氮气而去除。 此方法的缺点是加氯量大、费用高、操作安全性差,设备腐蚀严重,容易发生危险,工艺过程中每氧化1mg/L的氨氮要消耗14.3mg/L的碱度,从而增加了总溶解固体的含量,比较适合低浓度氨氮废水的处理。 6、超声波吹脱工艺 利用超声波来降解水中的化学污染物,尤其是难降解有机污染物,是一种深度氧化处理废水的新技术。 该工艺利用超声波辐射将压缩空气作为超声波的推动力,产生空化气泡,加强了废水中

高低浓度氨氮废水处理工艺的对比

高低浓度氨氮废水处理工艺的对比 导读:污水中因氨氮浓度不同分为高低浓度氨氮废水,在实际应用中氨氮浓度大于500PPM的废水需要预处理(称为高氨氮废水 ),然后配合低氨氮废水的处理工艺进行最后的脱氮,因高氨氮废水与低氨氮废水采用的工艺不同,本文大体介绍一下。 污水中因氨氮浓度不同分为高低浓度氨氮废水,在实际应用中氨氮浓度大于500PPM的废水需要预处理(称为高氨氮废水),然后配合低氨氮废水的处理工艺进行最后的脱氮,因高氨氮废水与低氨氮废水采用的工艺不同,本文大体介绍一下! 1、高浓度氨氮废水处理技术 (1)吹脱法 将空气通入废水中,使废水中溶解性气体和易挥发性溶质由液相转入气相,使废水得到处理的过程称为吹脱,常见的工艺流程见图1。 吹脱法的基本原理是气液相平衡和传质速度理论。将氨氮废水pH 调节至碱性,此时,铵离子转化为氨分子,再向水中通入气体,使其与液体充分接触,废水中溶解的气体和挥发性氨分子穿过气液界面,转至气相,从而达到去除氨氮的目的。常用空气或水蒸气作载气,前者称为空气吹脱,后者称为蒸汽吹脱。 蒸汽吹脱法效率较高,氨氮去除率能达到90%以上,但能耗较大,一般应用在炼钢、化肥、石油化工等行业,其优点是可回收利用氨,经过吹脱处理后可回收到氨质量分数达30%以上的氨水。空气吹脱法的效率虽比蒸汽法的低,但能耗低、设备简单、操作方便。在氨氮总量不高的情况下,采用空气吹脱法比较经济,同时可用硫酸作吸收剂吸收吹脱出的氨氮,生成的硫酸铵可制成化肥。 但是在大规模的氨吹脱-汽提塔生产过程中,产生水垢是较棘手的问题。通过安装喷淋水系统可有效解决软质水垢问题,可是对于硬质水垢,喷淋装置也无法消除。此外,低温时氨氮去除率低,吹脱的气体形成二次污染。因此,吹脱法一般与其他氨氮废水处理方法联合运用,用吹脱法对高浓度氨氮废水进行预处理。

吹脱法处理高浓度氨氮废水

吹脱法处理高浓度氨氮废水 摘要:文章阐述了高浓度氨氮废水的来源及危害,论述了吹脱法处理高浓度氨氮废水的技术原理、影响因素,重点分析了液气比的影响和确定,提出了采用催化氧化法解决吹脱氨气的二次污染问题。 关键字:高浓度氨氮废水吹脱法液气比催化氧化 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的应用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究应用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH 4++OH-NH3+H2O (1) 氨与氨离子之间的百分分配率可用下式进行计算: Ka=Kw /K b=(C NH3·C H+)/C NH4+(2) 式中:Ka———氨离子的电离常数; Kw———水的电离常数; Kb———氨水的电离常数; C———物质浓度。

氨氮废水处理系统设计方案百度文库

应平化肥有限责任公司 30T/h氨氮废水处理系统 宜兴市裕泰华环保有限公司 二00八年五月 一、概述 1、采用国内目前较为先进成熟的吹脱+催化氧化+生物滤池处理工艺,该工艺具有可靠性、成熟性,并符合国内实际情况,并尽量采用新技术、新材料,实用性与先进性兼顾,以实用可靠为主。 2、废水处理主要设施材质以钢砼结构为主,具有结构紧凑,占地面积小,布局合理,尽可削减总投资及运行费用加以考虑。 3、对废水处理设施进行充分的考虑,按地区气候条件,考虑必要的防水防冻及防渗措施。 4、废水处理过程中产生的污泥排入污泥池,进行好氧消化稳定后,经压成泥饼外运,保证污泥出路可靠。 二、废水处理量及废水性质: 1废水来源及水量: 废水来源为化肥厂生产工艺经冷却塔冷却后的高氨氮废水 a、废水量:30m3/h b、废水水质:详见表一 表一、废水水质

序号项目数据(mg/L 1 氨氮846.3 2 化学需氧 量 737 3 环状有机 物(Ar-OH 9.095mg/L 4 总磷0.467 5 BOD 21 6 氰化物未知 7 SS 164 8 石油类未知 9 挥发酚未知 10 硫化物未知

11 pH 6-9 12 水温约30℃ c、运行方式:连续运行 1、处理出水标准:废水处理后达合成氨工业水污染物排放标准GWPB 4-1999中中型化肥厂一级排放标准,详见下表。 (2001年1月1日之后建设(包括改、扩建的单位 序号项目标准(mg/L 1 氨氮70 2 化学需氧 量 150 3 氰化物 1.0 4 SS 100 5 石油类 5 6 挥发酚0.1

7 硫化物0.50 8 pH 6-9 三、废水处理工艺选择: 根据废水处理工程特点、功能、要求及废水排放特征,由于废水含有一定的毒性,B/C比较低,氨氮较高,因此需经脱氮及强氧化来提高废水的B/C比在0.3以上,剩余的氨氮及有机物在后级生化系统中去除。 本公司采用生物滤池工艺,经水解酸化后水中的B/C比约0.35左右,可生化大大提高。根据废水排放标准出水有NH3-N的限制,所以在选择废水处理工艺时除了考虑除解有机物外,还考虑到脱氮,为达到这个目的,我们选用了工艺成熟、运行可靠的水解生化+DC生物滤池+N生物滤池的工艺。 四、废水处理工艺流程简图: 1、废水处理系统工艺: 自动加碱废气高空排放或回收塔回收 废水→格栅→调节池→提升泵→PH调节沉淀→中间槽→二级提升泵→氨氮吹脱塔 风机 →三级提升泵→最终中和槽→催化氧化装置→还原反应槽→提升泵→脉冲布水器 自动加酸加还原剂

氨氮吹脱塔方案

氨氮吹脱系统技术方案 2013年4月18日

一、方案设计依据: 1、废水水量:每小时额定处理量50立方 2、进水氨氮含量2800mg/L 3、出水氨氮要求:15mg/L 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NH4+)和游离氨(NH3)状态存在,其平衡关系如下所示: NH3+H2O—NH4+ +OH- 这个关系受pH值的影响,当pH值高时,平衡向左移动,游离氨的比例增大。常温时,当pH值为7左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%。不同pH、温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%) 当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴,顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的蒸

汽逆流接触,完成传质过程,使氨由液相转为气相,随蒸汽排放,完成吹脱过程。 三、运行条件 进水pH值≥11 进水温度≥30℃ SS含量≤50mg/L 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布器,同时蒸汽在风机的作用下进入氨氮吹脱塔塔体下方进气口,并且充满进气段空间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出,由排气口排至吸收塔;出水流入中间池。 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到90%,氨氮含量≤280mg/L.经二级吹脱后,氨氮去除率达到95%,氨氮含量≤14mg,达到排放标准。 六、占地面积 氨氮吹脱项目主要为设备,设备主体面积4*4(两台)平米,考虑附属设备占地及设备间距,总占地面积约50平米。

氨氮废水处理技术

氨氮废水处理技术 氨氮废水的形成一般是由于氨水和无机氨共同存在所造成的,废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。氨氮废水主要来自化工、冶金、化肥、煤气、炼焦、鞣革、味精、肉类加工和养殖等行业。排放的废水以及垃圾渗滤液等。氨氮废水对鱼类及某些生物也有毒害作用。 另外,当含少量氨氮的废水回用于工业中时,对某些金属,特别是铜具有腐蚀作用,还可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和设备。 处理氨氮废水的方法有很多,目前常见的有化学沉淀法、吹脱法、化学氧化法、生物法、膜分离法、离子交换法以及土壤灌溉等。 本文对氨氮废水处理方法作一综述并对各种方法的优缺点进行分析汇总。 化学沉淀法 化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg2﹢、PO43﹣在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。磷酸按镁俗称鸟粪石,可用作堆肥、土壤的添加剂或建筑结构制品的阻火剂。反应方程式如下: Mg2﹢+NH4﹢+PO43﹣=MgNH4P04

影响化学沉淀法处理效果的因素主要有pH值、温度、氨氮浓度以及摩尔比(n(Mg2﹢):n(NH4﹢):n(P043-))等。 以氯化镁和磷酸氢二钠为沉淀剂对氨氮废水进行处理,结果表明当pH值为10,镁、氮、磷的摩尔比为1.2:1:1.2时,处理效果较好。 以氯化镁和磷酸氢二钠为沉淀剂进行研究,结果表明当pH值为9.5,镁、氮、磷的摩尔比为1.2:1:1时,处理效果较好。 对新出现的高浓度氨氮有机废水一生物质煤气废水进行研究,结果表明,MgC12+Na3PO4.12H20明显优于其他沉淀剂组合。当pH值为10.0,温度为30℃,n(Mg2﹢):n(NH4+):n(P043-)=1:1:1时搅拌30min废水中氨氮质量浓度从处理前的222mg/L降到17mg/L,去除率为92.3%。 将化学沉淀法和液膜法相结合用于高浓度工业氨氮废水的处理。在对沉淀法工艺进行优化的条件下,使氨氮去除率达到98.1%,然后联用液膜法进一步处理使其氨氮浓度降低到0.005g/L,达到国家一级排放标准。 对化学沉淀法进行改进研究,考察Mg2﹢以外的二价金属离子(Ni2﹢,Mn2﹢,Zn2﹢,Cu2﹢,Fe2﹢)在磷酸根作用下对氨氮的去除效果。对硫酸铵废水体系提出了CaSO4沉淀—MAP沉淀新工艺。结果表明,可以实现以石灰取代传统的NaOH调节剂。 化学沉淀法的优点是当氨氮废水浓度较高时,应用其它方法受到限制,如生物法、折点氯化法、膜分离法、离子交换法等,此时可先采用化学沉淀法进行预处理;化学沉淀法去除效率较好,且不受温度限制,操作简单;形成含磷酸馁镁的沉淀污泥可用作复合肥料,实现废物利用,从而抵消一部分成本;如能与一些产生磷酸盐废水的工业企业以及产生盐卤的企业联合,可节约药剂费用,利于大规模应用。 化学沉淀法的缺点是由于受磷酸铁镁溶度积的限制,废水中的氨氮达到一定浓度后,再投人药剂量,则去除效果不明显,且使投入成本大大增加,因此化学沉淀法需与其它适合深度处理的方法配合使用;药剂使用量大,产生的污泥较多,处理成本偏高;投加药剂时引人的氯离子和余磷易造成二次污染。 吹脱法吹脱法去除氨氮是通过调整pH值至碱性,使废水中的氨离子向氨转化,使其主要以游离氨形态存在,再通过载气将游离氨从废水中带出,从而达到

氨氮废水的几种处理技术

氨氮废水的几种处理技术 王昊 周康根 (中南大学冶金科学与工程学院 长沙410083) 摘 要 介绍了氨氮废水处理的各种方法及原理,综述了目前国内外氨氮废水处理的研究现状及进展,并提出今后氨氮废水处理应着重考虑的几个问题。 关键词 氨氮废水 处理 研究进展 The R esearch Development on the T reatment of Ammonia -nitrogen W astew ater W ANG Hao ZHOU K ang gen (School o f Metallurgical Science and Engineering ,Central South Univer sity Changsha 410083) Abstract The methods and principles of treating amm onia nitrogen wastewater are introduced ,the research status and developments at home and abroad are described and several problems in the treatment for amm onia -nitrogen wastewater considered in the future are put for 2 ward. K eyw ords amm onia nitrogen wastewater treatment research development 氨氮是水体污染因素中重要的污染物,主要来自城镇生活污水、各种工业废水及化学肥料和农家肥料等。水体中氮含量超标,不仅使水环境质量恶化,引起富营养化,还对人类以及动植物有严重危害。我国从20世纪80年代开始废水处理过程中脱氮的研究,但目前大多数污水处理厂仍未考虑脱氮的问题。因此对废水中氮的去除,特别是氨氮的去除需要引起高度的重视。本文介绍几种氨氮废水处理方法。 1 氨氮废水处理的主要方法1.1 吹脱法 氨吹脱工艺[1,2]是将水的pH 值提到10.5 11.5的范 围,在吹脱塔中反复形成水滴,通过塔内大量空气循环,气水接触,使氨气逸出。这种方法广泛用于处理中高浓度的氨氮废水,常需加石灰,经吹脱可以回收氨气。 夏素兰 [3] 从相平衡与气液传质速率两方面分析了氨氮 吹脱工艺的影响因素,认为调节pH 值是改变吹脱体系化学平衡的重要手段,喷淋密度和气液比都是重要影响因素。胡继峰等[4]认为去除率要达到90%以上,pH 值必须大于12且温度高于90℃。胡允良等 [5] 实验室研究确定氨氮质量浓度 为7.27.5g/L 废水的最佳吹脱条件为:pH 值为11,温度为 40℃,吹脱时间2h ,出水中氨氮的质量浓度为307.4mg/L 。 黄骏等[6]采用吹脱法处理三氧化二钒生产的高浓度氨氮废水,在实验室试验的基础上进行工业试验,出水达标排放。 吹脱法主要用于处理高浓度的氨氮废水,其优点是设备简单,可以回收氨,但也存在许多缺点,主要有:①环境温度影响大,低于0℃时,氨吹脱塔实际上无法工作;②吹脱效率有限,其出水需进一步处理;③吹脱前需要加碱把废水的pH 值调整到11以上,吹脱后又须加酸把pH 值调整到9以下,所以药剂消耗大;④工业上一般用石灰调整pH 值,很容易在水中形成碳酸钙垢而在填料上沉积,可使塔板完全堵塞;⑤吹脱时所需空气量较大,因此动力消耗大,运行成本高。 1.2 化学沉淀(M AP )法 在一定的pH 条件下,水中的Mg 2+、HPO 43-和NH 4+可以生成磷酸铵镁沉淀[7],而使铵离子从水中分离出来。 影响沉淀效果的因素有沉淀剂种类及配比、pH 值、废水中的初始氨的浓度、干扰组分等。 有研究表明沉淀法去除废水中氨氮的pH 值为10.0,物质的量之比Mg ∶N =1.2、P ∶N =1.02时沉淀效果最好,氨氮去除率达到90%[8]。赵庆良等[9]研究表明,MgCl 2?6H 2O 和 Na 2HPO 4?12H 2O 组合沉淀剂优于MgO 和H 3PO 4组合,垃圾渗 滤液中的氨氮质量浓度可由5618mg/L 降低到65mg/L 。李芙蓉等[10]采用氧化镁和磷酸作为沉淀剂去除煤气洗涤循环水中高浓度的氨氮,效果良好。李才辉等[11]对M AP 法处理氨氮废水的工艺进行优化,研究表明氨氮的去除率随着反应时间的增加而增加,随着Mg ∶N 比值的增加而增加。刘小澜[12]探讨了不同操作条件对氨氮去除率的影响,在pH 值为 8.59.5的条件下,投加的药剂Mg 2+∶NH 4+∶PO 43-(摩尔比) 为1.4∶1∶0.8时,废水氨氮的去除率达99%以上,出水氨氮的质量浓度由2g/L 降至15mg/L 。 国外对用化学沉淀法去除废水中的氨氮也有较多研究。 S tratful 等[13]详细研究了影响磷酸铵镁沉淀及晶体生长的因 素,得出4点结论:①过量的铵离子对形成磷酸铵镁沉淀有利;②镁离子可能是形成磷酸铵镁沉淀的限制因素;③如果要想从废水中回收磷酸铵镁,需要得到比较大的晶体颗粒,则至少需要3h 的结晶时间;④沉淀的pH 值应大于8.5。 Battistoni 等[14]进行了用化学沉淀法从废水厌氧消化后的上 清液中同时回收氮和磷的研究。废水厌氧消化过程中,有机物中的氮和磷被微生物分解为无机的磷酸盐和氨氮,添加 MgO 可以生成磷酸铵镁沉淀可回收磷和氮。Lind 等[15]则进 行了用磷酸铵镁沉淀法从人的尿液中回收营养物质的研究,可以回收65.0%80.0%的氮。 ? 7?2006年第32卷第11期N ovenmber 2006 工业安全与环保 Industrial Safety and Environmental Protection

氨氮吹脱塔方案

氨氮吹脱系统 技术方案 2013年4月18日、方案设计依据: 1、废水水量:每小时额定处理量50立方

2、进水氨氮含量2800mg/L 3、出水氨氮要求:15mg/L 二、氨氮吹脱原理介绍 氨氮在废水中主要以铵离子(NHf)和游离氨(NH)状态存在,其平衡关系如下所示:NH3+H2O — NH*+0H这个关系受pH值的影响,当pH值高时,平衡向左移动,游离氨的比例增大。常温时,当pH值为7 左右时氨氮大多数以铵离子状态存在,而pH为11左右时,游离氨大致占98%不同pH温度下氨氮的离解率详见表。 不同pH、温度下氨氮的离解率(%) 当水的pH值升高,呈游离状态的氨易于逸出。若加以搅拌、曝气 等物理作用更可促使氨从水中溢出。在实际工程中大多采用吹脱塔。吹脱塔的构造一般采用气液接触装置,在塔的内部填充材料,用以提高接触面积。调节pH值后的水从塔的上部淋洒到填料上而形成水滴, 顺着填料的间隙次第落下,与由风机从塔底向上或水平方向吹送的蒸

汽逆流接触,完成传质过程,使氨由液相转为气相,随蒸汽排放,完成吹脱过程。 三、运行条件 进水pH值》11 进水温度》30 C SS含量w 50mg/L 四、工艺流程说明 氨氮废水首先进入调节池将pH值调到11左右,然后泵入吹脱塔的液体分布 器, 同时蒸汽在风机的作用下进入氨氮吹脱塔塔体下方进气口, 并且充满进气段空 间,然后匀压上升到填料段。在填料的表面上,蒸汽将游离状态的氨吹出, 由排 气口排至吸收塔;出水流入中间池。 五、预期处理效果 废水经吹脱塔吹脱后,氨氮去除率达到90%氨氮含量w 280mg/L. 经二级吹脱后,氨氮去除率达到95%,氨氮含量w 14mg达到排放标准。 六、占地面积 氨氮吹脱项目主要为设备,设备主体面积4*4(两台)平米,考虑附属设备占地及设备间距,总占地面积约50 平米。

相关文档
最新文档