高一数学基本初等函数学习讲义

高一数学基本初等函数学习讲义
高一数学基本初等函数学习讲义

高一数学基本初等函数学习讲义

题型一:判断两函数是否为同一个函数

[例1] 试判断以下各组函数是否表示同一函数?

(1)

2)(x x f =,33)(x x g =;

(2)x x x f =)(,???<-≥=;01,01)(x x x g (3)

1212)(++=n n x x f ,1212)()(--=n n x x g (n ∈N *); (4)x x f =)(1+x ,x x x g +=2)(;

(5)12)(2--=x x x f ,12)(2--=t t t g

[解题思路]要判断两个函数是否表示同一个函数,就要考查函数的三要素。

[解析] (1)由于x x x f ==2)(,x x x g ==33)(,故它们的值域及对应法则都不相同,

所以它们不是同一函数. (2)由于函数x x

x f =)(的定义域为),0()0,(+∞-∞ ,而???<-≥=;

01,01)(x x x g 的定义域为R ,所以它们不是同一函数.

(3)由于当n ∈N *时,2n ±1为奇数,∴x x x f n n ==

++1212)(,x x x g n n ==--1212)()(,它们的定义域、值域及对应法则都相同,所以它们是同一函数. (4)由于函数x x f =)(1+x 的定义域为{}0≥x x ,而x x x g +=2)(的定义域为{}10-≤≥x x x 或,它们的定义域不同,所以它们不是同一函数.

(5)函数的定义域、值域和对应法则都相同,所以它们是同一函数. [答案](1)、(2)、(4)不是;(3)、(5)是同一函数

题型二:求函数的定义域、值域

【求函数的定义域】

[例2]设()x x x f -+=22lg

,则??? ??+??? ??x f x f 22的定义域为( ) A . ()()4,00,4 -;B . ()()4,11,4 --;C . ()()2,11,2 --;D . ()()4,22,4 --

[解题思路]要求复合函数??

? ??+??? ??x f x f 22的定义域,应先求)(x f 的定义域。

[解析]由202x x +>-得,()f x 的定义域为22x -<<,故22,222 2.x x ?-<

解得()()4,11,4x ∈--。故??

? ??+??? ??x f x f 22的定义域为()()4,11,4 --.选B. 【名师指引】求复合函数定义域,即已知函数()f x 的定义为[,]a b ,则函数[()]f g x 的定义域是满足不等式()a g x b ≤≤的x 的取值范围;一般地,若函数[()]f g x 的定义域是[,]a b ,指的是[,]x a b ∈,要求()f x 的定义域就是[,]x a b ∈时()g x 的值域。

【求函数的值域】

[例3] 已知函数22()2x x f x -+=,求函数()f x 在[]12,上的值域。

解析:()()2g x f x =,根据复合函数“同增异减”得到()f x 在区间[]12,上为增函数,故()f x 值域为[](1)(2)f f ,

解:由题意2min ()(1)24f x f ===,5max ()(2)232f x f ===,故()f x 在区间[]12,上的值域为[]432,

[例4]已知函数

)(6242R a a ax x y ∈++-=,若0≥y 恒成立,求f(a)=2-a(a+3)的值域。 [解题思路]应先由已知条件确定a 取值范围,然后再将)(a f 中的绝对值化去之后求值域

[解析]依题意,0≥y 恒成立,则0)62(4162≤+-=?a a ,解得231≤≤-a , 所以4

17)23()3(2)(2++-=+-=a a a a f ,从而4)1()(max =-=f a f ,419)23()(min -==f a f ,所以)(a f 的值域是]4,419[- [例3]求函数4

32+=x x y 的值域。 当0=x 时,0=y ;当0≠x 时,x

x y 43+=,若0>x ,则4424=?≥+x x x x 若0

x x x x x ,从而得所求值域是]43,43[-

题型三:函数的奇偶性 B

[例6]函数( )

解:∵

=

[例7] 函数y=是()

解:由函数的形式得解得

==y

最新基本初等函数讲义(全)

一、一次函数 二、二次函数 (1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

图像 定义域 (),-∞+∞ 对称轴 2b x a =- 顶点坐标 24,24b ac b a a ??-- ??? 值域 24,4ac b a ??-+∞ ??? 24,4ac b a ?? --∞ ?? ? 单调区间 ,2b a ??-∞- ??? 递减 ,2b a ?? -+∞ ??? 递增 ,2b a ? ?-∞- ??? 递增 ,2b a ?? -+∞ ??? 递减 ①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为 ,2b x a =-顶点坐标是24(, )24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减, 在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,] 2b a -∞-上递增,在[,)2 b a -+∞上递减,当2b x a =-时,2max 4()4ac b f x a -=. 三、幂函数 (1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象 2b x a =- 2b x a =-

高中三角函数公式大全必背知识点

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot( 2 A )=A A cos 1cos 1-+ tan( 2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 21 [sin(a+b)+sin(a-b)] cosasinb = 21 [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π -a) = cosa cos(2π -a) = sina sin(2π +a) = cosa cos(2 π +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式

高一数学抽象函数常见题型

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见题型及解法评析如下: 一、定义域问题 例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。 解:)(2x f 的定义域是[1,2],是指21≤≤x ,所以)(2x f 中的2x 满足412≤≤x 从而函数f (x )的定义域是[1,4] 例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 2 1x f -的定义域。 解:)(x f 的定义域是]21[,-,意思是凡被f 作用的对象都在]21[,-中,由此可得 4111)21(3)21(2)3(log 1122 1≤≤?≤-≤?≤-≤--x x x 所以函数)]3([log 2 1x f -的定义域是]4111[, 二、求值问题 例3. 已知定义域为+R 的函数f (x ),同时满足下列条件:①5 1)6(1)2(==f f ,;②)()()(y f x f y x f +=?,求f (3),f (9)的值。 解:取32==y x ,,得)3()2()6(f f f +=

因为5 1)6(1)2(= =f f ,,所以54)3(-=f 又取3==y x 得5 8)3()3()9(-=+=f f f 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2)]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 0)]2 ([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 四、解析式问题 例5. 设对满足10≠≠x x ,的所有实数x ,函数)(x f 满足x x x f x f +=-+1)1( )(,

基本初等函数知识点(一轮复习)

基本初等函数 中学阶段(初高中)我们只要求掌握基本初等函数及其复合函数即可。什么是基本初等函数?就是那些:幂函数(一次二次负一次)、指数、对数、三角等。力求在这些具体函数中,运用函数的性质(奇偶性、周期、单调等的性质),掌握某些函数的特殊技巧。 一、一次函数 初中的一个函数,Primary基本、简单而又很重要。解析式:y=kx+b或y=ax+b,通常我们会这样设。那么高中我们在什么地方会用到它呢?解析几何中我们会设直线;线性规划会有好多跟直线;也容易在函数里面作为条件表达一下…… 画出以下解析式的图像:要求快 (1)y=x+1; (2)y=x-1 (3)y=-x+1 (4)y=-x-1 (5)x=1(6)y=1 (7)y=2x 根据以下条件,设出一次函数的解析式: (1)直线经过(1,2)点 (2)直线的斜率是2 总结:两个参数主宰斜率和与y轴的交点位置。因为两个参数,所以要有两个条件才能解得解析式。 二、二次函数 二次函数的大部分内容在另外一个讲义里面已经讲述了,这里补遗强调一下。十分重要的内容,属于幂函数中最重要的一类。二次函数图象的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用,幂函数的内容要求较低,只要求会简单幂函数的图象与性质. 1、二次函数的三种表示形式 (1)一般式:y=ax2+bx+c,(a≠0); (2)顶点式:y=a(x-h)2+k(顶点坐标为(h,k)); (3)双根式:y=a(x-x1)(x-x2)(图象与x轴的交点为(x1,0),(x2,0)) 求一元二次解析式:将题目有的条件表示一下,没有难度,过场的题目而已 Eg:已知二次函数f(x)同时满足条件:(1)f(1+x)=f(1-x);(2)f(x)的最大值为15;(3)f(x)=0的两根平方和等于7.求f(x)的解析式. Ans:f(1+x)=f(1-x)知二次函数对称轴为x=1. ∴已知最大值和对称轴,用顶点式,设f(x)=a(x-1)2+15=ax2-2ax+15+a. ∵x21+x22=7 即(x1+x2)2-2x1x2=7

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

基本初等函数讲义(超级全)

一、一次函数 一次 函数 k kx b k0 k0k0 k, b 符号b0b0b0b0b0b0 y y y y y y 图象 O x O O x x O x O x O x 性质y随x的增大而增大y随x的增大而减小 二、二次函数 (1)二次函数解析式的三种形式 ①一般式:2 f(x)ax bx c(a0) ②顶点式:2 f(x)a(x h)k(a0) ③两根式:f(x)a(x x1)(x x2)(a0) (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便. (3)二次函数图象的性质 20 f x ax bx c a a0a0 图像 x b 2a x b 2a 定义域, 对称轴x b 2a 顶点坐标 2 b4ac b , 2a4a 文档

值域 2 4ac b 4a ,, 2 4ac b 4a , b 2a 递减, b 2a 递增 单调区间 b 2a , 递增 b 2a ,递减 ①.二次函数 b 2 f(x)ax bx c(a0)的图象是一条抛物线,对称轴方程为x, 2a 顶 点坐标是 2 b4ac b (,) 2a4a b ②当a0时,抛物线开口向上,函数在(,] 2a b 上递减,在[,) 2a 上递增,当 x b 2a 时,f(x) min 2 4ac b 4a b ;当a0时,抛物线开口向下,函数在(,] 2a 上递b 增,在[,) 2a 上递减,当x b 2a 时,f(x) max 2 4ac b 4a . 三、幂函数 (1)幂函数的定义 一般地,函数y x叫做幂函数,其中x为自变量,是常数. (2)幂函数的图象 过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).文档

抽象函数、图像、函数零点

函数基本知识 抽象函数: 1. 已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立. 证明:(1)函数()y f x =是R 上的减函数;(2)函数()y f x =是奇函数. 2. 已知)(x f 在(-1,1)上有定义,且满足),1( )()()1,1(,xy y x f y f x f y x --=--∈有 证明:)(x f 在(-1,1)上为奇函数; 3. 设)(x f 是R 上的函数,且满足1)0(=f ,并且对于任意的实数x ,y 都有 )12()()(+--=-y x y x f y x f 成立,则=)(x f _____________. 4. 已知定义在R + 上的函数()f x 同时满足下列三个条件:① (3)1f =-; ② 对任意x y R +∈、 都有()()()f xy f x f y =+;③0)(,1<>x f x 时. (1)求)9(f 、)3(f 的值; (2)证明:函数()f x 在R + 上为减函数; (3)解关于x 的不等式2)1()6(--

三角函数公式大全(很详细)

高中三角函数公式大全[图] 1 三角函数的定义1.1 三角形中的定义 图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数: ?正弦函数 ?余弦函数 ?正切函数 ?余切函数 ?正割函数 ?余割函数 1.2 直角坐标系中的定义

图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: ?正弦函数 ?余弦函数 r ?正切函数 ?余切函数 ?正割函数 ?余割函数 2 转化关系2.1 倒数关系 2.2 平方关系 2 和角公式 3.1 倍角公式

3.3 万能公式 4 积化和差、和差化积 4.1 积化和差公式 证明过程 首先,sin(α+β)=sinαcosβ+sinβcosα(已证。证明过程见《和角公式与差角公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和角公式) 则 sin(α-β) =sin[α+(-β)] =sinαcos(-β)+sin(-β)cosα =sinαcosβ-sinβcosα 于是 sin(α-β)=sinαcosβ-sinβcosα(正弦差角公式) 将正弦的和角、差角公式相加,得到 sin(α+β)+sin(α-β)=2sinαcosβ 则 sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之一) 同样地,运用诱导公式cosα=sin(π/2-α),有 cos(α+β)= sin[π/2-(α+β)] =sin(π/2-α-β) =sin[(π/2-α)+(-β)] =sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α) =cosαcosβ-sinαsinβ 于是

基本初等函数讲义

一、一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 三、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 四、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

高一数学之抽象函数专题集锦-含详细解析

高一数学之抽象函数专题集锦 一、选择题(本大题共14小题,共70.0分) 1. 设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(?2),f(?π),f(3)的大小顺序是( ) A. B. C. D. 2. 函数f(x)在(0,+∞)上单调递增,且f(x +2)关于x =?2对称,若f(?2)=1,则f(x ?2)≤1的x 的取值范围 是( ) A. [?2,2] B. (?∞,?2]∪[2,+∞) C. (?∞,0]∪[4,+∞) D. [0,4] 3. 已知函数y =f(x)定义域是[?2,3],则y =f(2x ?1)的定义域是( ) A. [0,5 2] B. [?1,4] C. [?1 2,2] D. [?5,5] 4. 函数f(x)在(?∞,+∞)上单调递减,且为奇函数.若f(1)=?1,则满足?1≤f(x ?2)≤1的x 的取值范围是 ( ) A. B. C. [0,4] D. [1,3] 5. 若定义在R 上的奇函数f(x)在(?∞,0)单调递减,且f(2)=0,则满足xf(x ?1)?0的x 的取值范围是( ) A. [?1,1]∪[3,+∞) B. [?3,?1]∪[0,1] C. [?1,0]∪[1,+∞) D. [?1,0]∪[1,3] 6. 已知f(x)={ x 2+4x x ≥0 , 4x ?x 2 , x <0 若f(2?a 2)>f(a),则实数a 的取值范围是( ) A. (?2 , 1) B. (?1 , 2) C. (?∞ , ?1)?(2 , +∞) D. (?∞ , ?2)?(1 , +∞) 7. 已知定义在R 上的函数f(x)满足f(2?x)=f(x),且在[1,+∞)上为增函数,则下列关系式正确的是 A. f(?1)0,则f (x 1)+ f (x 2)的值( ) A. 恒为负值 B. 恒等于零 C. 恒为正值 D. 无法确定正负

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

高中数学竞赛讲义_几个初等函数的性质

几个初等函数的性质 一、基础知识 1.指数函数及其性质:形如y =a x (a >0, a ≠1)的函数叫做指数函数,其定义域为R ,值域为(0,+∞),当01时,y =a x 为增函数,它的图象恒过定点(0,1)。 2.分数指数幂:n m n m n n n m n m n n a a a a a a a a 1 ,1,,1 = ===--。 3.对数函数及其性质:形如y =log a x (a >0, a ≠1)的函数叫做对数函数,其定义域为(0,+∞), 值域为R ,图象过定点(1,0)。当01时,y =log a x 为增函数。 4.对数的性质(M>0, N >0); 1)a x =M ?x =log a M(a >0, a ≠1); 2)log a (M N )= log a M+ log a N ; 3)log a ( N M )= log a M- log a N ;4)log a M n =n log a M ;, 5)log a n M =n 1 log a M ;6)a loga M =M; 7) log a b =a b c c log log (a ,b ,c >0, a , c ≠1). 5. 函数y =x +x a (a >0)的单调递增区间是(]a -∞-,和[)+∞,a ,单调递减区间为[) ,a -和(] a ,0。(请读者自己用定义证明) 6.连续函数的性质:若a 0. 【证明】 设f (x )=(b +c )x +bc +1 (x ∈(-1, 1)),则f (x )是关于x 的一次函数。 所以要证原不等式成立,只需证f (-1)>0且f (1)>0(因为-10, f (1)=b +c +bc +a =(1+b )(1+c )>0, 所以f (a )>0,即ab +bc +ca +1>0. 例2 (柯西不等式)若a 1, a 2,…,a n 是不全为0的实数,b 1, b 2,…,b n ∈R ,则(∑=n i i a 1 2 )·( ∑=n i i b 1 2 ) ≥( ∑=n i i i b a 1)2,等号当且仅当存在∈μR ,使a i =i b μ, i =1, 2, …, n 时成立。 【证明】 令f (x )= (∑=n i i a 1 2)x 2 -2( ∑=n i i i b a 1 )x + ∑=n i i b 1 2=∑=-n i i i b x a 1 2)(, 因为 ∑=n i i a 1 2>0,且对任意x ∈R , f (x )≥0, 所以△=4(∑=n i i i b a 1)-4( ∑=n i i a 1 2)( ∑=n i i b 12)≤0. 展开得( ∑=n i i a 1 2)( ∑=n i i b 1 2)≥( ∑=n i i i b a 1 )2。 等号成立等价于f (x )=0有实根,即存在μ,使a i =i b μ, i =1, 2, …, n 。

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

高中数学三角函数公式大全

高中数学三角函数公式大全三角函数和差化积公式 sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 三角函数积化和差公式 sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] 三角函数万能公式 sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 三角函数半角公式 sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 三角函数三倍角公式 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα

三角函数倍角公式 sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 三角函数两角和与差公式 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

高中数学抽象函数的图像以及抽象函数常见类型及部分题目

函数()f x 的定义域为D ,则其图像为: ()(){},|,x y y f x x D =∈ 1,若把这个图像向左平移a 个单位,得到新图像为: ()(){},|,x y y f x a x D =+∈ 简单说明:新图像上任取点(),x y ,向右平移a 个单位得到(),x a y +,这个点在()f x 图像上,所以()y f x a =+ 向右、上、下平移函数图象情况类似,请自己给出 2,若把()f x 图像按照直线x a =作一次对称,得到新函数为()2y f a x =- 简单说明:新图像上任取点(),x y ,按照直线x a =作一次对称得到点()2,a x y -,这个点在()f x 图像上,所以()2y f a x =- 按照直线y a =作对称类似,请自己给出 需要指出的是,不能按照任意直线作对称得到新函数,因为新的图像不一定是函数图像(实际上那是方程的图像),另外,按照直线y x =作对称得到的是反函数,当然前提是该函数存在反函数。 3,若把()f x 图像按照点(),a b 作对称,得到新函数()22y b f a b =-- 简单说明:新图像上任取点(),x y ,按照点(),a b 作对称,得到点()2,2a x b y --,这个点在()f x 图像上,则()22b y f a x -=-,整理得()22y b f a x =-- 4,若把()f x 图像在水平方向上作伸缩,横坐标都变为原来的a 倍(0a ≠),纵坐标不变,那么得到新函数图像是x y f a ?? = ??? 简单说明:新函数图像上取点(),x y ,变回去,x y a ?? ???, 这点在()f x 图像上,所以x y f a ?? = ??? 至于竖直方向的伸缩,请自己给出 ==============华丽的分割线=================== 下面是函数图像本身的对称性 5,如果一个函数向左平移a 个单位与原图像重合,即a 是一个周期,那么按照第1条, ()y f x a =+这个新函数与原函数()y f x =重合,也就是说:()()f x a f x += 6,如果一个函数有一条对称轴x a =,那么按照第2条到的新函数()2y f a x =-与原函数是同一个,也就是说:()()2f a x f x -=,至于类似()()f a x f b x +=-这样的条件,改写一下是非常显然的

相关文档
最新文档