电控单体泵供油系统的组成及工作原理

电控单体泵供油系统的组成及工作原理
电控单体泵供油系统的组成及工作原理

电控单体泵供油系统的组成及工作原理

黑龙江省农业机械维修研究所 王宝臣 张继伟

电控单体泵供油系统与传统的机械式喷油泵相比,在结构形式上主要有两点不同,一是每个油泵都是独立的,分别安装在发动机气缸体上,对应每个气缸,在气缸体上有安装单体泵的孔,六缸柴油机有六个单体泵(四缸柴油机有四个单体泵),这六个单体泵是由整个发动机的凸轮轴来驱动,也就是说,单体泵一般作为整体部件装在柴油机的气缸体上,由配气凸轮轴上的喷射凸轮驱动。而传统的六缸柴油机的机械式喷油泵是布置在整机缸体的外侧,通过外部托架固定在发动机缸体上,在喷油泵泵体内,有一根凸轮轴,专门驱动六套柱塞。第二点不同是电控单体泵的上部有电磁阀,电磁阀能够按照特性图谱的数据精确地控制喷射正时及喷油时间。传统的机械式喷油泵是位置控制,通过控制齿条的位置来控制油量,无法控制提前角的柔性。

单体泵的优点很多,它使燃烧更适合工况的需要,因而燃烧更充分,效率更高,降低了排气污染和燃油消耗率。它还有以下优点:

(1)由凸轮轴通过挺柱驱动,结构紧凑,刚度好;

(2)喷油压力可以高达116@108

Pa ;(3)较小的安装空间;(4)高压油管短,且标准化;

(5)调速性能好,适用不同用途发动机,任意设定调速特性;

(6)具有自排气功能;(7)换泵容易。

电控单体泵供油系统是带时间控制的模块式装置,发动机每个气缸都配有一个单独的模块,主要组件:

(1)整体插入式高压泵;(2)快速作用的电磁阀;(3)较短的高压油管;(4)喷油器总成。一、燃油系统的组成

单体泵供油系统组成如图1所示:1.低压油路

柴油从柴油箱1出来,经过燃油输油泵3进入

图1 单体泵柴油供给系统组成

11柴油箱 21燃油进油管 31燃油输油泵 41滤清器前燃油管 51燃油滤清器 61滤清器后燃油管 71单体泵 81高压油管 91喷油器 101限压阀 111回油管 121回油管 131燃油箱内进回油管距离规定

柴油滤清器5过滤之后,非电控机型则进入铸在缸

体内的低压油室,回油也在此油室内,低压油室的压

力为5@105

Pa 。电控发动机柴油从柴油滤清器出来之后,从外部接头进入连接电控单体泵的金属低压油路,每个泵都单独与外面的燃油进油管连接。燃油回油通道铸在气缸体上,低压油路中压力的稳定对发动机的功率输出是至关重要的。在发动机出现功率不足的情况时,应首先测量低压油路的压力,测量位置为低压油路外部接头处。在发动机转速为

2300r /m i n 时,压力P \415@105

Pa 。

2.高压油路

低压油路内的燃油从单体泵7经过很短的高压

油管8进到喷油器9,当压力达到212@107

Pa 时,喷油器开启,将燃油呈雾状喷入到燃烧室,与空气混合而形成可燃混合气。从柴油箱到金属燃油管接头这段油路中的油压是由燃油输油泵建立的,而输油泵

在发动机额定转速下的出油压力一般为5@105

Pa 左右,故这段油路称为低压油路,只用于向单体泵供给滤清的燃油。从单体泵到喷油器这段油路中的油

压是由单体泵建立的,约为116@108

Pa 左右。

3.燃油回流

由于输油泵的供油量比单体泵的出油量大10倍以上,大量多余的燃油经限压阀10和回油管12流回柴油箱,并且利用大量回流燃油驱净油路中的空气,有自动排气功能。

4.燃油温度传感器

用于燃料的油温及燃料喷射量的修正。二、电控单体泵供油系统组成11布局(1)供油系统组成及规范1喷油器:位置倾斜20b ,无回油喷油器,喷射压

力118@108

Pa ;

o电控单体泵:型号PLD12A,倾斜10b ,柱塞直

径?10mm ,喷射压力116@108

Pa ;

?挺柱:直径?32mm,滚轮直径?24mm;?凸轮轴:基圆直径?36mm,行程14mm;

?高压油管:各缸形状完全一致,其展开长度为196mm,外径?6mm,内径?118mm

图2 电控单体泵结构图

(2)主要功能

在发动机各种工况下,按照整机要求定时、定量

供给高压燃油,使各缸能够正常工作,发出要求的功率、扭矩,同时满足排放标准。它对发动机的性能、工作可靠性和耐久性起到至关重要的作用,是燃油供给系统的核心部位。

2.电控单体泵结构及工作原理

电控单体泵结构如图2所示。电控单体泵安装在发动机缸体上,由发动机的配气凸轮轴上的喷射

凸轮通过挺柱总成驱动柱塞,挺柱压缩柱塞弹簧。

凸轮上行过程,压缩柱塞弹簧,凸轮下行过程,柱塞弹簧释放,凸轮连续旋转,使柱塞作往复直线运动。在不通电的情况下,电磁阀是打开的。其工作原理如下:

(1)凸轮在基圆位置时,柱塞位于下止点,高压腔与低压腔中的燃油压力相等。

(2)压缩供油。凸轮轴旋转,凸轮通过挺柱压缩柱塞向上运动,只有在ECU 使电磁阀通电并关闭以后,高压区才能形成压力。高压腔中的燃油在柱塞

压缩下产生高压。泵端燃油压力可达116@108

Pa 。(3)喷射。高压燃油在高压油管中传递,并在到

达喷油嘴时压力继续提升,约在212@107

Pa 的压力时喷嘴打开,燃油喷入到燃烧室中。喷射压力达到118@108

Pa 。

(4)喷射结束。在EC U 使电磁阀断电并打开以后,高压油腔与低压油腔相通,高压油腔及喷嘴压力也大大下降,喷嘴落座,喷射过程结束。在柱塞的下一次运动中,将重新开始新的过程。当电磁阀打开时,允许在进油行程把燃油吸入油泵的油缸,在供油行程经原路排回去。

电控单体泵的控制方式是时间控制,无需在喷油正时与曲轴位置之间有直接的连接。喷油起始点必须与精确规定的活塞或曲轴位置相对应,它是靠在曲轴上装一个信号转子,同时在凸轮轴上装有与各缸喷射同步的脉冲信号发生器来完成的。

喷射过程的闭环控制是按严格规定的相互关系存贮于电子控制单元中的程序进行的。装在发动机上的电子控制单元控制着单体泵的电磁阀。电子控制单元应用数字技术来监测,并处理各种输入的传感器信号。

三、喷油器1.主要功能

将油泵提供的高压燃油以一定的空间分布,雾状喷入发动机燃烧室,以便燃油与空气形成有利于燃烧的可燃混合气,可燃混合气燃烧后的排放废气要求达到排放法规要求。它是燃油供给系统的关键部件。

2.结构及工作原理

喷油器总成在结构上无回油管,可以避免回油管断裂、不密封的情况发生。

燃油经电控单体泵加压后,由高压油管输送到喷油器进油端,经喷油器滤芯孔、进油道到达喷油嘴偶件,当压力室内压力为212@107

Pa 时,高压燃油

使轴针抬起,燃油经喷孔喷出。

四、燃油输油泵

1.主要功能

在发动机各种工况下,燃油输油泵以一定压力和输油量向电控单体泵提供充足的压力相对恒定的燃油,它是燃油供给系统的关键部件。它的性能达标与否直接影响着发动机的启动性能和功率大小。

2.结构及工作原理

燃油输油泵结构如图3

所示。

图3 燃油输油泵结构图

11皮带轮 21驱动轴 31螺母 41垫片 51挡圈61轴承 71骨架油封 81泵体 91外转子101内转子 111平键 121泵盖 131O 型圈141自攻自锁螺钉 151轴套 171螺堵 181垫片191柱塞弹簧 201钢球 211柱塞 221柱塞平衡弹簧

泵体8内有一对齿数相差1又相互啮合的内外

转子10/9,内转子10通过平键11与驱动轴2联接。驱动轴2通过轴承6及轴套15支承在泵体8上。泵盖12用三个自攻自锁螺钉14紧固在泵体8上。在泵体8的端面上开有密封槽,装O 型圈13用来防止泵内燃油从泵体与泵盖结合面外泄。泵体内安装骨架油封7,防止燃油从驱动轴处外泄。在泵体内高压油腔与低压腔之间设有一限压阀装置,它由螺堵17、垫片18、柱塞弹簧19、柱塞21、钢球20和柱塞平衡弹簧22组成。安装在泵体内的轴承用挡圈5卡住。皮带轮1用垫片4及螺母3固定在驱动轴2上。低压腔与油封之间有一润滑油孔,泵体上有一溢流孔。

燃油输油泵的优点是结构紧凑,体积小,流量脉动小,运转平稳,噪声小。

其工作原理如图4所示。该燃油输油泵为转子泵,主要有一对内啮合的内、外转子组成。外转子齿数9比内转子齿数8多一齿,两转子之间有一偏心

距,内转子为主动轮带动外转子异速同向旋转,由内

图4 燃油输油泵工作原理图

外转子、泵体及泵盖等零件形成两个独立的密封腔。随着转子的旋转,左半部齿退出啮合,低压腔容积增大,形成一定真空度,实现吸油,该腔称为吸油室;右半部齿进入啮合,压油腔容积减小,油压升高,实现泵油,该腔称为压力室。当压力室油压高于限压阀开启压力时,限压阀钢球开启,压力室和吸油室相通,实现卸压。燃油输油泵通过带传动直接由曲轴驱动。

3.燃油输油泵性能(1)密封性能。轴与轴封配合处不允许漏油;输油泵本体及各密封面处不允许有漏油现象。

(2)吸油能力。在燃油输油泵转速为250r /m in 和出油背压为(0~10)kPa 时,输油泵必须在[30s 时间内从出油口输出燃油。

(3)燃油输油泵总成的输油量当Qm i n =013L /m i n ,n 油泵=170r/m i n ,则P =50kPa ;

当Qm i n =6L /m i n ,n 油泵=3000r/m in ,则P =500kPa ;

当QN =(10~14)L /m i n ,n 油泵=5375r/m i n ,则P=250kPa 。

(4)限压阀开启压力P >500kPa ,压力室油压高于限压阀开启压力时,限压阀钢球压缩柱塞,压力室和吸油室相通,实现卸压。在低压油路中有空气的情况下,打动手油泵,钢球开启,燃油经柱塞到压力室,则为排气功能。

五、燃油供给系统故障诊断与排除

故障现象诊断排除

发动机启动不着p发动机燃油未供上去,燃油箱中燃油液面过低,油

箱中的吸油管吸不上来油

p向燃油箱中加入燃油,燃油品质符合GB/T19147

5车用柴油6

p燃油输油泵不工作

p燃油输油泵中限压阀上的柱塞卡住,拆下输油泵,

由专业人员检测,或修复或更换

p燃油滤清器阻塞

p拆下燃油进油管,连接发动机进油口端,按动燃油

粗滤器上的手油泵,看是否大量出油,如果不出或

很少,再更换燃油滤清器

p供油系统中有空气

p检查各连接处密封垫片,按规定力矩拧紧各密封

接头

p供油系统中有空气

p排气。拆下燃油进油管,连接发动机进油口端,打

动燃油粗滤器上的手油泵,直到有大量燃油流出

这时,一边继续打动手动输油泵,一边进行密封连

p供油系统中有空气

p如果上述两项仍不能排除,再检测燃油输油泵,应

拆开检测各零件,可能有油封损坏

p燃油中水分过多p使用符合标准的燃油

p非供油系统因素p检查其他系统

发动机功率不足p低压油路压力不够

在发动机低压油管进口处,即在连接各单体泵钢

管进口处检测油路压力,在发动机转速为2300rp m

时,压力\415@105P a

p若油路压力低于415@105P a时,就要检测回油

阀、燃油输油泵、燃油滤清器

p供油量不够

在发动机高怠速时,回油管处至少有8L/m i n的回

油量

p若回油量不足,应分别检测燃油输油泵、燃油滤清

器、喷油器总成

p喷油嘴雾化不好p拆下喷油器检测并更换

p喷油嘴积碳过多p拆下喷油器检测并更换

p喷油嘴滴油p拆下喷油器检测并更换

p发动机缺缸p拆下喷油器检测并更换

发动机油耗高p喷油嘴雾化不好p拆下喷油器检测并更换p喷油嘴积炭过多p拆下喷油器检测并更换p喷油嘴滴油p拆下喷油器检测并更换

发动机抖动明显p缺缸p拆下喷油器检测并更换输油泵漏油p泵盖处O型圈损坏p拆开输油泵泵盖,更换O型圈

六、总结

本文介绍了电控单体泵燃油供给系统的工作原理,燃油供给系统中主要部件总成的结构、工作原理和故障诊断排除。通过以上的介绍可以使我们更准确、更有效、迅速地判断和修理发动机的燃油供给系统。(03)

汽车《发动机电控供油系统》知识要点

汽车发动机构造与维修 第五章汽油喷射式供给系 汽油机燃料供给方式有化油器式和喷射式两种,它们的任务都是根据进气量配制相应空燃比和数量的可燃混合气进入气缸,以满足发动机不同工况的要求。 一、喷射式汽油供给系统与化油器式汽泊供给系统相比较,有如下优点: 1.能提高发动机的最大功率 2.耗油量低,经济性能 3.减小了排放污染 4.改善了发动机的低温起动性。 5.怠速平稳,工况过渡圆滑,工作可靠,灵敏度高 二、燃曲喷射系统的分类 1.按喷射装置的控制方式分类 1)机械控制式燃油喷射系统 2)机电混合控制式燃油喷射系统 3)电子控制式燃油喷射系统 2.按燃油喷射位置分类 1)缸内喷射 缸内喷射是指将汽油直接喷人气缸内。缸内喷射需要较高的喷射压力(3Mpa-4MPa). 2)缸外喷射 缸外喷射是指将汽油喷在进气管道相应部位,缸外喷射采用低压. 3.按喷油器安装部位分类 缸外喷射按喷油器安装部位又可分为单点喷射(SPl)和多点喷射(MPl)。 1)单点喷射 2)多点喷射 多点喷射是赘每缸进气门前分别设置一喷油器,实行各缸分别供油。 4.按燃油喷射方式分类 按汽油喷射方式不同可分为连续喷射和间歇喷射。 1)连续喷射 2)间歇喷射 顺序喷射:各缸喷油器按发动机的工作顺序,在各缸排气行程上止点前某一曲轴转角顺序轮流喷射,发动机每转两转,各缸喷油器各喷一次油。 分组喷射:所有气缸的喷油g2分成几组交替喷油,发动机ECU分路控制每组喷油器,同一组中的喷油罪同时喷油。 同时喷射:所有气缸的喷油器同时开启同时关闭,发动机ECU用一个喷油器指令控制所有喷油器同时动作。 5.按空气量的检测方式分类 电控汽油喷射系统按对空气量的检测方式不同可分为歧管压力计量式(D型)和空气流量计量式(L型)。 1)D型电控汽油喷射系统 该系统通过进气歧管绝对压力传感器检测进气歧管绝对压力来测量发动机吸人的空气量. 2)L型电控汽油喷射系统 该系统通过各种空气流量计检测空气流量来测量发动机吸人的空气量,实行对空燃比的精确控制。 三. 电控汽油喷射系统的组成和工作原理

电控单体泵供油系统的组成及工作原理

电控单体泵供油系统的组成及工作原理 黑龙江省农业机械维修研究所 王宝臣 张继伟 电控单体泵供油系统与传统的机械式喷油泵相比,在结构形式上主要有两点不同,一是每个油泵都是独立的,分别安装在发动机气缸体上,对应每个气缸,在气缸体上有安装单体泵的孔,六缸柴油机有六个单体泵(四缸柴油机有四个单体泵),这六个单体泵是由整个发动机的凸轮轴来驱动,也就是说,单体泵一般作为整体部件装在柴油机的气缸体上,由配气凸轮轴上的喷射凸轮驱动。而传统的六缸柴油机的机械式喷油泵是布置在整机缸体的外侧,通过外部托架固定在发动机缸体上,在喷油泵泵体内,有一根凸轮轴,专门驱动六套柱塞。第二点不同是电控单体泵的上部有电磁阀,电磁阀能够按照特性图谱的数据精确地控制喷射正时及喷油时间。传统的机械式喷油泵是位置控制,通过控制齿条的位置来控制油量,无法控制提前角的柔性。 单体泵的优点很多,它使燃烧更适合工况的需要,因而燃烧更充分,效率更高,降低了排气污染和燃油消耗率。它还有以下优点: (1)由凸轮轴通过挺柱驱动,结构紧凑,刚度好; (2)喷油压力可以高达116@108 Pa ;(3)较小的安装空间;(4)高压油管短,且标准化; (5)调速性能好,适用不同用途发动机,任意设定调速特性; (6)具有自排气功能;(7)换泵容易。 电控单体泵供油系统是带时间控制的模块式装置,发动机每个气缸都配有一个单独的模块,主要组件: (1)整体插入式高压泵;(2)快速作用的电磁阀;(3)较短的高压油管;(4)喷油器总成。一、燃油系统的组成 单体泵供油系统组成如图1所示:1.低压油路 柴油从柴油箱1出来,经过燃油输油泵3进入 图1 单体泵柴油供给系统组成 11柴油箱 21燃油进油管 31燃油输油泵 41滤清器前燃油管 51燃油滤清器 61滤清器后燃油管 71单体泵 81高压油管 91喷油器 101限压阀 111回油管 121回油管 131燃油箱内进回油管距离规定 柴油滤清器5过滤之后,非电控机型则进入铸在缸 体内的低压油室,回油也在此油室内,低压油室的压 力为5@105 Pa 。电控发动机柴油从柴油滤清器出来之后,从外部接头进入连接电控单体泵的金属低压油路,每个泵都单独与外面的燃油进油管连接。燃油回油通道铸在气缸体上,低压油路中压力的稳定对发动机的功率输出是至关重要的。在发动机出现功率不足的情况时,应首先测量低压油路的压力,测量位置为低压油路外部接头处。在发动机转速为 2300r /m i n 时,压力P \415@105 Pa 。 2.高压油路 低压油路内的燃油从单体泵7经过很短的高压 油管8进到喷油器9,当压力达到212@107 Pa 时,喷油器开启,将燃油呈雾状喷入到燃烧室,与空气混合而形成可燃混合气。从柴油箱到金属燃油管接头这段油路中的油压是由燃油输油泵建立的,而输油泵 在发动机额定转速下的出油压力一般为5@105 Pa 左右,故这段油路称为低压油路,只用于向单体泵供给滤清的燃油。从单体泵到喷油器这段油路中的油 压是由单体泵建立的,约为116@108 Pa 左右。

汽车各部件工作原理图解

汽车各部件工作原理(图解)

————————————————————————————————作者: ————————————————————————————————日期:

汽车各部位工作原理(图示) ? 差速器具有三种功能: 使发动机动力指向车轮?相当于车辆上的最终传动减速器,在变速器撞击车轮之前最后一次降低其旋转速度 在以不同的速度旋转期间向车轮传输动力(这是将它称为差速器的原因) 本文将介绍汽车需要差速器的原因,以及差速器的作用和缺点。我们还将介绍几种防滑差速器,也称为限滑差速器。为什么需要差速器?车轮旋转的速度是不同的,尤其是转弯时。在以下动画中可以看到转弯时每个车轮行驶不同的距离,并且内侧车轮比外侧车轮行驶的距离短。由于速度等于行驶的路程除以通过这段路程所花费的时间,因此行进路程较短的车轮行驶的速度就较低。同时请注意,前轮与后轮的行驶距离也不同。对于汽车上的非驱动轮(后轮驱动汽车的前轮或前轮驱动汽车的后轮),这并不是问题。因为在前轮和后轮之间没有连接,所以它们独立旋转。但是驱动轮被连接到一起,以便单个发动机和变速器可以同时使两个车轮转动。如果汽车没有差速器,车轮必须锁止在一起,以便以相同的速度旋转。这样汽车将不便于转弯——为了使汽车能够转弯,一个轮胎必须滑动。对于现代轮胎和混凝土路面,轮胎需要很大的动力才会滑动。此动力必须由轴从一个车轮传输到另一个车轮,这会在轴组件上形成很大的压力。什么是差速器?差速器是将发动机扭矩按两个方向分开的设备,可允许每次输出的扭矩以不同的速度旋转。

现在在所有汽车或卡车上都配备差速器,一些全轮驱动车辆上(全时四轮驱动)也配备差速器。这些全轮驱动车辆的每组驱动轮之间都需要一个差速器,并且在前轮和后轮之间也需要一个,因为在转弯时前轮行驶的距离与后轮不同。

汽车ABS工作原理

汽车ABS工作原理 王登伟原创 | 2009-11-9 22:54 | 投票 关键字: wdw 汽车ABS是由控制装置,电磁阀,传感器;总成线束;齿圈;BS警示灯等组成,在不同的ABS 系统中,制动压力调节装置的结构形式和工作原理往往不同,电子控制装置的内部结构和控制逻辑也可能ABS通常都由车轮转速传感器、制动压力调节装置、电子不尽相同。 在常见的ABS系统中,每个车轮上各安装一个转速传感器,将有关各车轮转速的信号输入电子控制装置。电子控制装置根据各车轮转速传感器输入的信号对各个车轮的运动状态进行监测和判定,并形成相应的控制指令。制动压力调节装置主要由调压电磁阀组成,电动泵组成和储液器等组成一个独立的整体,通过制动管路与制动主缸和各制动轮缸相连。制动压力调节装置受电子控制装置的控制,对各制动轮缸的制动压力进行调节。 ABS的工作过程可以分为常规制动,制动压力保持制动压力减小和制动压力增大等阶段。在常规制动阶段,ABS并不介入制动压力控制,调压电磁阀总成中的各进液电磁阀均不通电而处于开启状态,各出液电磁阀均不通电而处于关闭状态,电动泵也不通电运转,制动主缸至各制动轮缸的制动管路均处于沟通状态,而各制动轮缸至储液器的制动管路均处于封闭状态,各制动轮缸的制动压力将随制动主缸的输出压力而变化,此时的制动过程与常规制动系统的制动过程完全相同。

在制动过程中,电子控制装置根据车轮转速传感器输入的车轮转速信号判定有车轮趋于抱死时,ABS就进入防抱制动压力调节过程。例如,电子控制装置判定右前轮趋于抱死时,电子控制装置就使控制右前轮刮动压力的进液电磁阀通电,使右前进液电磁阀转入关闭状态,制动主缸输出的制动液不再进入右前制动轮缸,此时,右前出液电磁阀仍末通电而处于关闭状态,右前制动轮缸中的制动液也不会流出,右前制动轮缸的刮动压力就保持一定,而其它末趋于抱死车轮的制动压力仍会随制动主缸输出压力的增大而增大;如果在右前制动轮缸的制动压力保持一定时,电子控制装置判定右前轮仍然趋于抱死,电子控制装置又使右前出液电磁阀也通电而转入开启状态,右前制动轮缸中的部分制动波就会经过处于开启状态的出液电磁阀流回储液器,使右前制动轮缸的制动压力迅速减小右前轮的抱死趋势将开始消除,随着右前制动轮缸制动压力的减小,右前轮会在汽车惯性力的作用下逐渐加速;当电子控制装置根据车轮转速传感器输入的信号判定右前轮的抱死趋势已经完全消除时,电子控制装置就使右前进液电磁阀和出液电磁阀都断电,使进液电磁阀转入开启状态,使出液电磁阀转入关闭状态,同时也使电动泵通电运转,向制动轮缸泵输送制动液,由制动主缸输出的制动液经电磁阀进入右前制动轮缸, 使右前制动轮缸的制动压力迅速增大,右前轮又开抬减速转动。

机动车污染防治行业现状及发展趋势分析

报告编号:1657500

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网https://www.360docs.net/doc/0814086767.html,基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称: 报告编号:1657500←咨询时,请说明此编号。 优惠价:¥8280 元可开具增值税专用发票 网上阅读:anFangZhiFaZhanQuShiYuCeFenXi.html 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 健康。政府部门不断出台政策加大大气污染治理力度,其中,国务院印发的《大气污染防治行动计划》:提出到2017年,全国地级及以上城市可吸入颗粒物浓度比2012年下降10%以上;京津冀、长三角、珠三角等区域细颗粒物浓度分别下降25%、20%、15%。另外,油品质量升级也规定了时间表,汽油车、柴油车尾气排放标准也不断提升。 由于柴油车排放的污染物中,颗粒物是汽油车排放的104倍,NOX是汽油车的10倍。柴油车的尾气处理很重要。目前汽油车已在全国范围实施国Ⅳ尾气排放标准,北京已经实施京Ⅴ标准,国Ⅴ标准也有望尽快实施。而柴油车国Ⅳ排放标准的执行从原先的规划2011年1月开始已经三次延迟,不断推迟主要原因之一的油品质量升级时间已经确定。所以,我们预计最快2014年下半年,柴油车国Ⅳ排放标准将实施。 据中国产业调研网发布的中国机动车污染防治项目可行性分析与发展趋势预测报告(2016版)显示,治理PM2.5将为汽车催化剂、脱硫催化剂提供广阔的市场空间。机动车是PM2.5主要来源之一,约占22%。目前国内外处理汽车污染排放最有效的技术是采用尾气催化净化方案,而以贵金属为主的三元催化剂以其优良的催化性能成为最主要的汽车尾气净化装置。随着汽油车、柴油车尾气排放标准的提升,届时将显着提升汽车催化剂需求。2013年中国净化器增长20%以上,预计在2000万套左右,预计2020年将达到4000万套。而油品质量升级,需要降低含硫量,对脱硫催化剂需求也将提升。 《中国机动车污染防治项目可行性分析与发展趋势预测报告(2016版)》在多年机动车污染防治行业研究结论的基础上,结合中国机动车污染防治行业市场的发展现状,通过资深研究团队对机动车污染防治市场各类资讯进行整理分析,并依托国家权威数据资源和长期市场监测的数据库,对机动车污染防治行业进行了全面、细致的调查研究。

高压共轨燃油喷射系统的结构和工作原理

高压共轨燃油喷射系统的结构和工作原理 李明诚,《电控柴油机的基本结构及工作原理》,2011 1、高压共轨喷射系统简介 它是由燃油泵把高压油输送到公共的、具有较大容积的配油管——油轨内,将高压油蓄积起来,再通过高压油管输送到喷油器,即把多个喷油器,并联在公共油轨上。在公共油轨上,设置了油压传感器、限压阀和流量限制器。由于微电脑对油轨内的燃油压力实施精确控制,燃油系统供油压力因柴油机转速变化所产生的波动明显减小(这是传统柴油机的一大缺陷),喷油量的大小仅取决于喷油器电磁阀开启时间的长短。 特点: ①、将燃油压力的产生与喷射过程完全分开,燃油压力的建立与喷油过程无关。燃油从喷油器喷出以后,油轨内的油压几乎不变; ②、燃油压力、喷油过程和喷油持续时间由微电脑控制,不受柴油机负荷和转速的影响; ③、喷油定时与喷油计量分开控制,可以自由地调整每个气缸的喷油量和喷射起始角。 2、高压共轨燃油喷射系统的基本结构 高压共轨燃油喷射系统包括燃油箱、输油泵、燃油滤清器、油水分离器、高低压油管、高压油泵、带调压阀的燃油共轨组件、高速电磁阀式喷油器、预热装置及各种传感器、电子控制单元等装置。 高压共轨燃油喷射系统的低压供油部分包括:燃油箱(带有滤网、油位显示器、油量报警器)、输油泵、燃油滤清器、低压油管以及回油管等;共轨喷射系统的高压供油部分包括:带调压阀的高压油泵、燃油共轨组件(带共轨压力传感器)以及电磁阀式喷油器等。 3、电控燃油喷射系统的工作原理 电子控制单元接收曲轴转速传感器、冷却液温度传感器、空气流量传感器、加速踏板位置传感器、针阀行程传感器等检测到的实时工况信息,再根据ECU内部预先设置和存储的控制程序和参数或图谱,经过数据运算和逻辑判断,确定适合柴油机当时工况的控制参数,并将这些参数转变为电信号,输送给相应的执行器,执行元件根据ECU的指令,灵活改变喷油器电磁阀开闭的时刻或开关的开或闭,使气缸的燃烧过程适应柴油机各种工况变化的需要,从而达到最大限度提高柴油机输出功率降低油耗和减少排污的目的。 一旦传感器检测到某些参数或状态超出了设定的范围,电控单元会存储故障信息,并且点亮仪表盘上的指示灯(向操作人员报警),必要时通过电磁阀自动切断油路或关闭进气门,减小柴油机的输出功率(甚至停止发动机运转),以保护柴油机不受严重损坏——这是电子控制系统的故障应急保护模式

燃油供给系统构造与原理

燃油供给系统构造与原理 ·燃油供给系统组成:燃油泵、燃油滤清器、燃油压力调节器、喷油器、冷起动喷油器、油压脉冲衰减器等。 ·燃油供给系统功用:供给喷油器一定压力的汽油,喷油器根据电脑指令喷油。 ·一、电动燃油泵 1.电动燃油泵结构与原理 (1)滚柱式电动汽油泵

1)工作过程 ·转子偏心地安装在泵体内,滚柱装在转子的凹槽中。当转子旋转时,滚柱在离心力的作用下紧压在泵体的内表面上;同时在惯性力的作用下,滚柱总是与转子凹槽的一个侧面贴紧,从而形成若干个工作腔。 ·在汽油泵工作过程中,进油口一侧的工作腔容积增大,成为低压吸油腔,汽油经进油口被吸入工作腔内。在出油口一侧的工作腔容积减小,成为高压油腔,高压汽油从压油腔经出油口流出。 ·限压阀(溢流阀)的作用是当油压超过0.45MPa时开启,使汽油回流到进油口,以防止油压过高损坏汽油泵。 ·在出油口处装设单向止回阀(出油阀),当发动机停机时,止回阀关闭,防止管路中的汽油倒流回汽油泵,借以保持管路中有一定的油压 2)特点 ·运转噪声大 ·油压脉动大 ·泵内表面和转子易磨损 (2)叶片式电动汽油泵

1)工作原理 ·叶轮是一个圆形平板,在平板的圆周上加工有小槽,形成泵油叶片。 ·叶轮旋转时,小槽内的汽油随同叶轮一同高速旋转。由于离心力的作用,使出口处油压增高,而在进口处产生真空,从而使汽油从进口吸人,从出口排出 2)特点 ·运转噪声小 ·泵油压力高 ·叶片磨损小 ·使用寿命长 2.电动燃油泵的控制 (1)燃油泵继电器控制电路

·点火开关STA:起动机继电器闭合,同时ECU有STA信号,起动机起动。·STA信号和NE信号输入ECU:Tr1接通,开路继电器闭合,燃油泵运转。·起动或重负荷时:ECU中的Tr2断开,燃油泵继电器闭合,燃油泵高速运转;·怠速或轻负荷时:ECU中的Tr2接通,燃油泵继电器断开,电流流过燃油泵电阻器,燃油泵低速运转 (2)燃油泵ECU控制电路

汽车两大机构和五大系统及工作原理汇总

1、对照实物总体介绍讲解发动机两大机构和发动机的工作原理; 总的来说,目前发动机由两大机构、五大系统组成 一、曲柄连杆机构 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。 二、配气机构 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。进、排气门的开闭由凸轮轴控制。凸轮轴由曲轴通过齿形带或齿轮或链条驱动。进、排气门和凸轮轴以及其他一些零件共同组成配气机构 三、燃料供给系 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去; 四、润滑系 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 五、冷却系 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 六、点火系 在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火

系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。 火花塞有一个中心电极和一个侧电极,两电极之间是绝缘的。当在火花塞两电极间加上直流电压并且电压升高到一定值时,火花塞两电极之间的间隙就会被击穿而产生电火花,能够在火花塞两电极间产生电火花所需要的最低电压称为击穿电压;能够在火花塞两电极间产生电火花的全部设备称为发动机点火系。 七、起动系 理解这个并不难,要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转,发动机才能自行运转,工作循环才能自动进行。因此,曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系统。 发动机的基本工作原理 我们以单缸汽油发动机为例,讲解一下汽油机的工作原理。 气缸内装有活塞,活塞通过活塞销、连杆与曲轴相连接。活塞在气缸内做往复运动,通过连杆推动曲轴转动。为了吸入新鲜气体和排出废气,设有进气门和排气门。 活塞顶离曲轴中心最远处,即活塞最高位置,称为上止点。活塞顶部离曲轴中心最近处,即活塞最低位置,称为下止点。上、下止点间的距离称为活塞行程,曲轴与连杆下端的连接中心至曲轴中心的距离称为曲轴半径。活塞每走一个行程相应于曲轴转角180°。对于气缸中心线通过曲轴中心线的发动机,活塞行程等于曲柄半径的两倍。 活塞从上止点到下止点所扫过的容积称为发动机的工作容积或发动机排量,用符号VL 表示。 四冲程发动机的工作循环包括四个活塞行程,既进气行程、压缩行程、膨胀行程(作功行程)和排气行程。 进气行程 化油器式汽油机将空气与燃料先在气缸外部的化油器中进行混合,然后再吸入气缸。进气行程中,进气门打开,排气门关闭。随着活塞从上止点向下止点移动,活塞上方的气缸容积增大,从而气缸内的压力降低到大气压力以下,即在气缸内造成真空吸力。这样,可燃混

高压共轨燃油喷射系统的结构和工作原理.

高压共轨燃油喷射系统的结构和工作原理 2017-06-14 高压共轨燃油喷射系统的结构和工作原理 李明诚,《电控柴油机的基本结构及工作原理》,2011 1、高压共轨喷射系统简介 它是由燃油泵把高压油输送到公共的、具有较大容积的配油管――油轨内,将高压油蓄积起来,再通过高压油管输送到喷油器,即把多个喷油器,并联在公共油轨上。在公共油轨上,设置了油压传感器、限压阀和流量限制器。由于微电脑对油轨内的燃油压力实施精确控制,燃油系统供油压力因柴油机转速变化所产生的波动明显减小(这是传统柴油机的一大缺陷),喷油量的大小仅取决于喷油器电磁阀开启时间的长短。 特点: ①、将燃油压力的产生与喷射过程完全分开,燃油压力的建立与喷油过程无关。燃油从喷油器喷出以后,油轨内的油压几乎不变; ②、燃油压力、喷油过程和喷油持续时间由微电脑控制,不受柴油机负荷和转速的影响;③、喷油定时与喷油计量分开控制,可以自由地调整每个气缸的喷油量和喷射起始角。 2、高压共轨燃油喷射系统的基本结构 高压共轨燃油喷射系统包括燃油箱、输油泵、燃油滤清器、油水分离器、高低压油管、高压油泵、带调压阀的燃油共轨组件、高速电磁阀式喷油器、预热装置及各种传感器、电子控制单元等装置。 高压共轨燃油喷射系统的低压供油部分包括:燃油箱(带有滤网、油位显示器、油量报警器)、输油泵、燃油滤清器、低压油管以及回油管等;共轨喷射系统的'高压供油部分包括:带调压阀的高压油泵、燃油共轨组件(带共轨压力传感器)以及电磁阀式喷油器等。 3、电控燃油喷射系统的工作原理 电子控制单元接收曲轴转速传感器、冷却液温度传感器、空气流量传感器、加速踏板位置传感器、针阀行程传感器等检测到的实时工况信息,再根据ECU内部预先设置和存储的控制程序和参数或图谱,经过数据运算和逻辑判断,确定适合柴油机当时工况的控制参数,并将这些参数转变为电信号,输送给相应的

汽车空调制冷系统组成与工作原理教案-doc

复习旧课: 对上次课以提问的形式复习 1、影响蒸发的因素? 2、影响液化的因素? 新课引入: 主要以讲解方式 上一节我们讲了物质的基本状态参数,以及影响物质蒸发和液化的几个因素,这一节我们就来讲一下汽车空调中的常用制冷剂的种类特点以及制冷循环原理。 §1.1.4制冷剂 制冷剂是制冷循环当中传热的载体,通过状态变化吸收和放出热量,因此要求制冷剂在常温下很容易气化,加压后很容易液化,同时在状态变化时要尽可能多的吸收或放出热量(较大的气化或液化潜热)。同时制冷剂还应具备以下的性质: ·不易燃易爆; ·无毒; ·无腐蚀性; ·对环境无害。 制冷剂的英文名称为refrigerant,所以常用其头一个字母R来代表制冷剂,后面表示制冷剂名称,如R12、R22、R134a等。 过去常用的制冷剂是R12(又称为氟立昂), 这种制冷剂各方面的性能都很好,但是有一个致命的缺点,就是对大气环境的破坏,它能够破坏大气中的臭氧层,使太阳的紫外线直接照射到地球,对植物和动物造成伤害。我国目前已停止生产用R12作为制冷剂的汽车空调系统。

R12的替代品目前汽车上广泛采用的是。R134a在大气压下的沸腾点为-26.9℃,在98kPa的压力下沸腾点为-10.6℃(图6-18)。如果在常温常压的情况下,将其释放,R134a便会立即吸收热量开始沸腾并转化为气体,对R134a加压后,它也很容易转化为液体。R134a的特性见图6-19。该曲线上方为气态,下方为液态,如果要使R134a从气态转变为液态,可以将低温度,也可以提高压力,反之亦然。 注意:R12和R134a两种制冷剂不可以互换使用。 §1.1.5 冷冻润滑油 在空调制冷系统中有相对运动的部件,需要对其润滑。由于制冷系统中的工作条件比较特殊,所以需要专门的润滑油——冷冻润滑油。冷冻润滑油除了起到润滑作用以外,还可以起到冷却、密封和降低机械噪音的作用。在制冷系统中的润滑油还有一个特殊的要求,就是要与制冷剂相容,并且随着制冷剂一起循环。因此在冷冻润滑油的选用上,一定要注意正确选用冷冻润滑油的型号,切不可乱用,否则将造成严重后果。 §1.2汽车空调暖风系统 作用:供暖、除霜、调节温湿度 汽车空调暖风系统是一种将空气送入加热器(又称为热交换器),同时吸入某种热源的热量,以提高空气温度的装置。按使用热源的不同可分为发动机冷却液采暖系统、发动机废气采暖系统和独立热源式采暖系统。 1、发动机冷却液采暖系统采暖时,将送入加热器中的车外或车内空气,与升温后的发动机冷却液进行热交换,由电动鼓风机将升温的空气经出风口送入车内。冷却液通过热水阀流入加热器,散热后的冷却液再流回水泵参与循环。热水阀对通过加热器的水流量进行调节,而加热器则将冷却液的热量传给空气。鼓风机多为离心式叶片鼓风机,具有高、中、低三挡转速,可以调节换气强度,一般与空调制冷系统送风共用。这种采暖系统没有独立的

汽车发动机供油系统技术及原理详解

供油系统分为化油器和燃油喷射系统两种,但是就马力输出、燃油效率、废气污染等各方面来说,化油器比起燃油喷射系统可说是一无是处,所以我们可以说:化油器的时代已经过去,它已成为历史名词,无讨论的价值。所以,我们谈引擎供油系统就是单指燃油喷射系统。 喷油系统是由燃油输送系统、感应器系统、电脑控制系统所组成。它的工作原理简单来说就是利用汽油泵将汽油加压以後,从油箱送进高压油路,经过压力调整器的调节作用,使系统中的供油压力维持在2.0-2.5 ,也就是将送到喷油嘴的汽油压力保持在2.0-2.5。同时由各感应器将引擎的进气量及运转状态以电压讯号的形式传送到供油电脑 (ECU:Electronic Control Unit),ECU根据这些电压讯号加以分析,算出所需的喷油量,也就是算出喷油嘴的喷油时间,然後再将喷油讯号传送到喷油嘴的线圈,喷油嘴接受喷油讯号後,将喷油阀打开,汽油便喷到进汽门前方的进气岐管内,再随着进汽门的打开进入汽缸内。 喷射系统的分类 一、依喷射(喷油嘴)位置分类: 1、节气阀体喷射式又称为单点,只使用一或二支喷油嘴,装在节气阀上方,以较低的压力喷出汽油,汽油与流经节气阀的空气形成混合气後,必须先通过进气歧管再由进汽门进入汽缸。但是油气流经进气歧管时,部份油气会在歧管壁附着,并且会因进气歧管的形状、长度不同而造成各缸混合气分配不均。因为油气从节气阀到汽缸必然会有的时间延迟,因此引擎加速时的反应会较慢。

2、进气口喷射式又称为多点喷射,每缸的进汽门口之前各有一支喷油嘴,对准进汽门,以2~5 的高压将汽油喷出,而与进气歧管的空气一起进入汽缸,形成混合气。如此一来进入各汽缸油气的混合比得以平均。 二、依喷油方式分类: 1、连续喷射,又称机械喷射式,喷油嘴在引擎运转时不断的喷油,而喷油量的控制是经由改变供油压力来达成。 2、程序喷射式,使用电子式喷油嘴,需要喷油时将喷油嘴的线圈通电,使柱塞因为磁力的作用而往上提升,喷油嘴便可喷油。喷油量是由喷油时间的长短来控制,单位是微秒(ms)。由于机械喷射已经是过时的设计,因此目前市面上的车种几乎都采用效率及经济性较佳的程序式喷射。而单点喷射除了价格较低、结构简单外,也无任何可和多点喷射媲美之处,况且它还有许多和化油器相同的缺点(效率低、各缸油气分配不均),因此多点喷射(MPI)可说是现代喷射供油系统的主流。 三、依空气流量检测方式分类:进气量的检测方式分为直接和间接两大类,一种是以进气歧管绝对压力感应器(MAP Sensor:Manifold Absolute Pressure Sensor)测出的进气歧管压力和引擎转速间接计算求得。另一种则是以空气流量计直接测得。较常见的空气流量计有叁种:翼板式、热线式、卡鲁曼涡流式。目前市场上的ó种是以MAP及热线式空气流量计为大宗。 供油量的计算 供油量的多寡是以喷油嘴燃料喷射时间的长短来计算,供油电脑(ECU)根据空气流量、引擎转速、及各个感应器所提供的补偿讯号,利用原先设定的供油程式算出所需的供油时间,这个供油程式我们可以用图形的方式来表现。ECU所算出的燃料喷射时间是『基本喷射时间』、『补偿喷射时间』和『无效喷射时间』的

欧3道依茨(DEUTZ)电控单体泵电控发动机培训教材

道依茨(DEUTZ)电控单体泵电控发动机 一、基本原理(包括系统,ECU,传感器,机械部分) 1.1、电控单体泵系统简介 道依茨电控单体泵系统是一个新型的全电子控制柴油机燃油喷射系统,它不再采用机械调速器(没有齿杆装置),而是通过控制电控单体泵上的电磁阀实现喷油量和喷油定时的控制。该电控系统采用的是第二代时间控制方式,与采用位置控制的第一代电子喷射控制相比,具有响应速度快、控制精度高等优点。并且电子控制单元(ECU)EDC16采用扭矩控制策略,可以灵活地控制发动机输出扭矩,更好地满足整车动力的需求。因此,该系统能够满足国家第三阶段(欧3)及后续的排放法规的要求。

1.2、电控单体泵系统组成 电控单体泵系统组成如下图所示: 电控单体泵系统可大体地划分为两个部分: ●燃油系统:低压油路、喷射模块; ●电控系统:电控单元(ECU)、传感器,以及线束。 1.2.1燃油系统

1.2.1.1 低压油路 如下图所示,包括油箱、两级燃油滤清器(其中初燃油滤清器需带手油泵)、输油泵、溢流阀(在发动机缸体上),以及低压管路。其作用是以一定的压力输送燃油。 1.2.1.2 喷射模块 如下图所示,包括电控单体泵、机械喷油器,以及短的高压油管。其作用是将一定量的燃油在非常精确的时刻以极高的压力喷射到燃烧室中。

道依茨电控单体泵是直接安装在发动机的缸体上,由发动机凸轮轴驱动,因此,整个系统刚度高、单体泵很容易拆装,便于维修更换。

1.2.2 电控系统 如下图所示,包括电控系统的核心部件:电控单元(ECU),各种传感器:曲轴转速传感器、凸轮轴转速传感器、进气温度压力传感器、冷却水温度传感器、燃油温度传感器、机油压力传感器(可选)、油门踏板位置传感器、大气压力传感器(安装在ECU内部),以及将它们连接起来的线束。其作用是ECU根据各传感器提供的信息,如油门踏板位置、发动机转速等,计算发动机输出的扭矩、喷油量、供油开始时刻、供油持续期等,进而通过控制电控单体泵的电磁阀的通断电,实现最终喷射。

汽车各部件工作原理(图解)

汽车各部位工作原理(图示) 差速器具有三种功能: 使发动机动力指向车轮 相当于车辆上的最终传动减速器,在变速器撞击车轮之前最后一次降低其旋转速度 在以不同的速度旋转期间向车轮传输动力(这是将它称为差速器的原因) 本文将介绍汽车需要差速器的原因,以及差速器的作用和缺点。我们还将介绍几种防滑差速器,也称为限滑差速器。为什么需要差速器?车轮旋转的速度是不同的,尤其是转弯时。在以下动画中可以看到转弯时每个车轮行驶不同的距离,并且内侧车轮比外侧车轮行驶的距离短。由于速度等于行驶的路程除以通过这段路程所花费的时间,因此行进路程较短的车轮行驶的速度就较低。同时请注意,前轮与后轮的行驶距离也不同。对于汽车上的非驱动轮(后轮驱动汽车的前轮或前轮驱动汽车的后轮),这并不是问题。因为在前轮和后轮之间没有连接,所以它们独立旋转。但是驱动轮被连接到一起,以便单个发动机和变速器可以同时使两个车轮转动。如果汽车没有差速器,车轮必须锁止在一起,以便以相同的速度旋转。这样汽车将不便于转弯——为了使汽车能够转弯,一个轮胎必须滑动。对于现代轮胎和混凝土路面,轮胎需要很大的动力才会滑动。此动力必须由轴从一个车轮传输到另一个车轮,这会在轴组

件上形成很大的压力。什么是差速器?差速器是将发动机扭矩按两个方向分开的设备,可允许每次输出的扭矩以不同的速度旋转。 现在在所有汽车或卡车上都配备差速器,一些全轮驱动车辆上(全时四轮驱动)也配备差速器。这些全轮驱动车辆的每组驱动轮之间都需要一个差速器,并且在前轮和后轮之间也需要一个,因为在转弯时前轮行驶的距离与后轮不同。

分时四轮驱动系统在前轮和后轮之间没有差速器,相反,他们被锁止在一起,以便前轮和后轮以相同的平均速度转弯。这就是当四轮驱动系统啮合时这些车辆在混凝土路面上很难转弯的原因。以不同的速度旋转我们将介绍最简单的差速器——开式差速器。首先,我们需要了解一些术语:下面的图像标示的是开式差速器的组件。

发动机的燃油系统

发动机的燃油系统 汽油机所用的燃料是汽油,在进入气缸之前,汽油和空气已形成可燃混合气。可燃混合气进入气缸内被压缩,在接近压缩终了时点火燃烧而膨胀作功。可见汽油机进入气缸的是可燃混合气,压缩的也是可燃混合气,燃烧作功后将废气排出。因此汽油供给系的任务是根据发动机的不同情况的要求,配制出一定数量和浓度的可燃混合气,供入气缸,最后还要把燃烧后的废气排出气缸。 汽油及其使用性能 汽油是汽油机的燃料。汽油是石油制品,它是多种烃的混合物,其主要化学成分是碳(C)和氢(H)。汽油使用性能的好坏对发动机的动力性、经济性、可靠性和使用寿命都有很大的影响。因此,车用汽油需要满足许多要求。 化油器式发动机燃油系统 一、燃油系统的功用及组成 燃油系统的功用是根据发动机运转工况的需要,向发动机供给一定数量的、清洁的、雾化良好的汽油,以便与一定数量的空气混合形成可燃混合气。同时,燃油系统还需要储存相当数量的汽油,以保证汽车有相当远的续驶里程。化油器式发动机燃油系统中最重要的部件是化油器,它是实现燃油系统功用、完成可燃混合气配制的主要装置。此外,燃油系统还包括汽油箱、汽油滤清器、汽油泵、油气分离器、油管和燃油表等辅助装置。 二、可燃混合气的形成过程 汽车发动机的可燃混合气形成时间很短,从进气过程开始算起到压缩过程结束为止,总共也只有0.01~0.02s的时间。要在这样短的时间内形成均匀的可燃混合气,关键在于汽油的雾化和蒸发。所谓雾化就是将汽油分散成细小的油滴或油雾。良好的雾化可以大大增加汽油的蒸发表面积,从而提高汽油的蒸发速度。另外,混合气中汽油与空气的比例应符合发动机运转工况的需要。因此,混合气形成过程就是汽油雾化、蒸发以及与空气配比和混合的过程。 三、发动机运转工况对可燃混合气成分的要求 (一)可燃混合气成分的表示法可燃混合气中空气与燃油的比例称为可燃混合气成分或可燃混合气浓度,通常用过量空气系数和空燃比表示。 1.过量空气系数燃烧1kg燃油实际供给的空气质量与完全燃烧1kg燃油的化学计量空气质量之比为过量空气系数,记作φa。φa=1的可燃混合气称为理论混合气;φa<1的称为浓混合气;φa>1的则称为稀混合气。2.空燃比可燃混合气中空气质量与燃油质量之比为空燃比,记作σ 。按照化学反应方程式的当量关系,可

电控单体泵系统工作原理

电控单体泵系统工作原理 电控单体泵系统工作原理 电控单体泵系统喷射模块的内部结构如下图所示:单体泵通常装在发动机缸体上,通过滚轮由发动机 凸轮轴上的凸轮驱动挺柱体,柱塞回位弹簧相对发动机凸轮轴压紧滚轮,挺柱体使泵体中的柱塞上下运动,燃油通过内装在发动机缸体内的输油口注入泵中的柱塞腔。 工作原理:电控单体泵喷射系统的工作过程分为以下几个阶段:单体泵电磁阀安装在单体泵的上部,电磁阀断电时,回油道打开,单体泵内的柱塞即使已开始泵油,也不能建立高压,只有当电磁阀通电时,回油油道关闭,油压才迅速升高;高压燃油经过高压油管进入喷油器使其喷油。电磁阀断电时,回油油道打开,迅速溢流卸压,喷油停止。电磁阀通电的持续时间决定了循环供油量。 充油过程:电磁阀不通电,当柱塞下移时,喷射系统内部压力将低于低压油路的喷油压力,此时低压系统燃油将通过柱塞套上的进油口进入高压喷射系统。 旁通过程:当柱塞上升时,柱塞腔里的燃油被压缩,但是如果电磁阀仍处于断电状态,那么柱塞腔里的燃油压力将由回油溢流阀的开启压力决定,远低于喷油器的开启压力,这样燃油将通过回油通道流回到油箱。 喷射过程:柱塞上升过程中,如果电控单元(ECU)在某个特定时刻发出了一个控制喷油脉冲信号,使电磁阀通电,这时回油通道被关闭,柱塞腔形成了一封闭容积,随着柱塞上升,封闭容积里的燃油被压缩,压力迅速上升,并且喷油器的嘴端压力也急剧上升,当压力高于喷油器的开启压力(约300bar)时,喷油器打开,燃油喷到燃烧室中。最高喷射压力可达1800bar。 卸荷过程:当控制喷油脉冲信号终止时,电磁阀断电,回油通道重新打开,燃油由此溢流,柱塞腔以及喷嘴压力迅速下降,喷嘴闭合,喷射过程结束。

汽车各系统工作原理

发动机工作原理概述 汽车的引擎是汽车的动力源泉,就像人的心脏一样重要。所以,一部车引擎的特性可以作为决定整部车性能的重要指标。也就是说,如果一部车的引擎非常出色,那么这部车的性能也一定很出色。 汽车的引擎是通过燃油和空气所形成的混合气体燃烧、爆炸来产生动力的。这一切的物理、化学变化都是在燃烧室内进行的。 首先,起动机带动引擎的曲轴运动,而曲轴通过特有的曲柄连杆机构带动气缸内的活塞上下运动。在活塞向下运动时,气缸内产生了真空效应,同时外界的新鲜空气通过空气过滤器被吸入到进气腔,并通过此时开启的进气门而被引入到气缸内。 在空气进入气缸的同时,燃油也通过喷油嘴以绝对雾化状态喷射到气缸的燃烧室内(目前多数喷射引擎都是将燃油喷射到进气门处,然后与空气一起进入到气缸内)并与空气形成混合气体。 在混合气体形成同时,汽缸的燃烧室内火花塞开始打火,形成高达几万伏特的高压电火花,迅速点燃混合气体,混合气体发生爆炸,推动活塞向下运动。这时气缸的排气们开启,将燃烧后的废气引入到排气管内,通过消音器被排放到空气中。在活塞运动到下止点后,一个完整的工作流程结束。由于运动的特性及曲柄连杆机构的特性,活塞会再度向上运动,同时开始第二个工作流程。

通过上图我们不难了解整个运动的过程(由于是剖视图,气缸未标出,活塞位于气缸内,活塞到达运动的上止点时与缸盖之间的空间为燃烧室),正是因为引擎的多个气缸内的活塞有顺序的交替运 汽车总体工作原理概述 可以说,汽车是当代科学与艺术的结晶。从汽车的引擎启动开始就已经发生了涉及到物理、化学、机械等数不清的多种变化,因此,汽车的总体工作是一个非常复杂的过程。由于汽车行业的飞速发展,所以,我们仅对当今非常普遍的采用燃油喷射(EFI)引擎的汽车予以了解。

汽车转向系统工作原理

汽车转向系统工作原理 我们知道,当转动汽车方向盘时,车轮就会转向。为了使车轮转向,方向盘和轮胎之间发生了许多复杂的运动。最常见的汽车转向系统的工作原理包括:齿条齿轮式转向系统和循环球式转向系统。 当汽车转向时,两个前轮并不指向同一个方向。 要让汽车顺利转向,每个车轮都必须按不同的圆圈运动。由于内车轮所经过的圆圈半径较小,因此它的转向角度比外车轮要大。如果对每个车轮都画一条垂直于它们的直线,那么线的交点便是转向的中心点。转向拉杆具有独特的几何结构,可使内车轮的转向角度大于外车轮。转向器分为几种类型。今天讲述的的是齿条齿轮式转向。

齿条齿轮式转向系统已迅速成为汽车、小型货车及SUV上普遍使用的转向系统类型。其工作机制非常简单。齿条齿轮式齿轮组被包在一个金属管中,齿条的各个齿端都突出在金属管外,并用横拉杆连在一起。 小齿轮连在转向轴上。转动方向盘时,齿轮就会旋转,从而带动齿条运动。齿条各齿端的横拉杆连接在转向轴的转向臂上(参见上图)。 齿条齿轮式齿轮组有两个作用: ?将方向盘的旋转运动转换成车轮转动所需的线性运动。 ?提供齿轮减速功能,从而使车轮转向更加方便。 在大多数汽车中,一般要将方向盘旋转三到四周,才能让车轮从一个锁止位转到另一个锁止位(从最左侧转到最右侧)。 转向传动比是指方向盘转向程度与车轮转向程度之比。 例如,如果将方向盘旋转一周(360度)会导致车轮转向 20度,则转向传动比就等于360除以20,即18:1。比率 越高,就意味着要使车轮转向达到指定距离,方向盘所需 要的旋转幅度就越大。但是,由于传动比较高,旋转方 向盘所需要的力便会降低。 一般而言,轻便车和运动型汽车的转向传动比要小于大型 车和货车。比率越低,转向反应就越快,您只需小幅度 旋转方向盘即可使车轮转向达到指定距离。这正是运动型 汽车梦寐以求的特性。由于这些小型汽车很轻,因此比 率较低,转动方向盘也不会太费力。 有些汽车使用可变传动比转向系统,在此系统中,齿条齿轮式齿轮组的中心与外侧具有不同的齿距(每厘米的齿数)。这不仅能提高汽车转向时的响应速度(齿条靠近中心位置),还能减少车轮在接近转向极限时的作用力。

汽车发动机燃油供给系统教案

燃油供给系统 任务一汽油发动机燃料供给系统 学习目标 1.了解汽油机燃油系统的发展 2.掌握电控发动机燃油供给系统组成原理 3.掌握汽油机燃油供给系统组成部件作用 1.汽油机燃油系统的发展 上个世纪60年代,汽车用燃油输送系统绝大多数仍采用构造简化的化油器。随着汽车工业的发展,汽车尾气排放带来的空气污染日益严重,西方各国都制定了汽车排放法规法案。同时受能源危机的冲击以及电子技术、计算机等飞速发展,促进了电子控制汽油机喷射发动机的诞生。1953年美国奔第克斯(Bendix)首先开发了电子喷射器,1957年正式问世。 传统的化油器存在诸如发生气阻、结冰、节气门响应不灵敏等现象,在多缸发动机中供油不匀,引起工作不稳、不利于大功率设计。为了弥补这些缺陷,早在上世纪30年代,汽油喷射系统就已在开始航空发动机的研究中被作为研究对象,经过10多年的深入研发,在1945年开始应用于军用战斗机上。它充分的消除了浮子式化油器不能完全适用军用战斗机作战工况的缺点,汽油喷射技术应运而生。 尽管汽油喷射技术有诸多优势,但由于其生产受当时社会生产力、生产工艺、技术的制约,其制造成本非常高,因此汽车用汽油喷射装置最初只能应用在数量很少的赛车上,它能满足赛车所要求的大发动机输出功率和灵敏的油门响应性能。到50年代末期,大多数赛车都已经采用了汽油喷射作为燃油输送系统。 汽油喷射应用于民用批量生产的轿车发动机上,实在1950-1953年高利阿特与哥特勃罗特两公司首先在2缸2冲程发动机上安装了汽油喷射(缸内喷射)装置。1957年奔驰公司又在4冲程发动机上才用了它。 由于各发动机制造商强调发动机输出功率的提高,为了确保全负荷时大扭矩输出特性,空燃比控制必然偏小,以提高喷油量,因此,对空燃比的控制精度也比较低。但是随着电子控制技术的发展、应用,电子燃油控制的各种有点渐渐显现出来,包括各种精细的补偿功能和良好的空燃比控制性、灵敏的节气门响应性、高功率的从输出。 另外,在电子技术方面,晶体管早已发明,但是由于成本高,性能不稳定,还不能很好地应用于汽车上。故奔第克斯在开发阶段应用真空管开发了计算机。在1957年发表时,正式晶体管开始实用化时代,因此,她开发的电子控制汽油喷射装置只在美国三大汽车公司之一的克莱斯勒汽车上装用。 2.电控汽油机燃油喷射系统的优缺点 汽油喷射系统的实质就是一种新型的汽油供油系统。化油器利用空气流动时在节气门上方的喉管处产生负压,将浮子室的汽油连续吸出,经过雾化后输送给发动机。汽油喷射系统则是通过采用大量的传感器感受各种工况,根据直接或间接检测的进气信号,经过计算机判断和分析,计算出燃烧时所需的汽油量,然后将加有一定压力的汽油经过喷油器喷出,以供发动机使用。 电控发动机系统取消了化油器供油系中的喉管,喷油位置在节气门下方,直接在进气门

相关文档
最新文档