VxWorks下UDP协议栈效率的研究与改进

VxWorks下UDP协议栈效率的研究与改进

摘要电信网与计算机网的融合是一种趋势。在实时嵌入式操作系统VxWorks环境下,使用以太网上的UDP协议,高效传输电信业务的信令与数据。描述在此情况下,根据实际需求对以太网传输中网络设备驱动程序与UDP协议栈进行改进的研究与探索。

关键词VxWorks UDP 协议栈效率网络设备驱动

1 使用VxWorks标准UDP协议栈存在的问题

在VxWorks标准的IP协议实现的前提下,其UDP协议的实现存在于IP层。在VxWorks 中有一个网络任务(亦即进程),用于完成以太网包的收发处理及与各种网络协议的接口,其名为tNetTask,优先级低于一般的系统任务而高于应用程序任务。系统的上层网络协议,如Telnet、FTP等,在服务器端有一个相应的任务,处理网络任务转交过来的数据报。

应用程序想要实现UDP数据报的收发,就要使用操作系统提供的socket编程接口,主要包括创建socket,绑定socket和源IP与端口号,发送UDP数据报和接收socket中收到的内容。在VxWorks中有4个函数与之相对应,分别是:socket()、bind()、sendto()和recvfrom()。在VxWorks操作系统中,socket号是与文件打开描述符(fd)同样管理的,一个socket与源IP和一个源端口相对应。Sendto()函数调甩时指明目的的IP地址和服务端口号。

本文描述的UDP协议栈使用背景可简要描述如下:该系统使用的主要硬件CPU平台是摩托罗拉公司的MPC860的CPU,主频为50 MHz;操作系统使用美国WindRiver公司的VxWorks。系统中各个设备(均有以太网接口)之间要在以太网上进行信令与语音、数据业务的传输,各种数据包采用统一的消息头编码格式。

使用标准UDP协议栈最大的问题是效率。在该系统平台上,网络传输的速率成为最大的瓶颈,并由此影响了系统的容量。根据测试的极限速率,使用10M以太网的实际有效传输速率仅有1.8 Mb/s,使用100M以太网口电没有明显的提高。另外,还有一个问题,网络任务经常会挂起,在开机运行较长时间后此现象尤为明显,这对系统的可用性和无故障工作时间构成威胁。而项目的目标是实现高效稳定的以太网包处理。

2 改进UDP协议栈的思想与理由

根据对VxWorks操作系统的研究,发现它对以太网包的处理与一般的IP协议栈有所不同。MAC层的控制由硬件寄存器来实现,实现了发送方以太网帧的成帧和接收的以太网帧头确认以后,通过DMA方式实现内存与网络介质间的通信,网络任务与硬件之间通过设备中断进行通信。在该操作系统中,有一个MUX层,它提供统一的发送函数,其参数为发送的网络设备管理表指针和发送的数据报指针。我们知道,在一个有多个网络设备同时工作的计算机系统中,标准的IP协议栈要完成选取从哪个网络设备端口(gate way)发送和判断ARP 的Cache中是否有对端的MAC地址,从而决定是否启动ARP进行解析。在VxWorks中。是通过查Route表和ARP表来完成以上两项工作的。Route表中储存的是与每一个通信的子网的gart way,ARP表中储存的是已知的IP地址与MAC地址的对应关系。另外,数据报接收的处理过程中是在IP数据报存入内存后申请MUX层的队列缓冲区,然后依次调用各上层协议的处理函数。

根据以上情况,考虑在MUX层修改UDP协议栈,在发送过程中,跳过socket接口,直

接使用MUX层的发送函数。这样,可以减少从UDP层网络数据报缓冲区到MUX层缓冲区之间的复制工作,从而提高发送效率。在接收数据包的处理过程中,在MUX层收到数据报后钩挂(hook)一个处理函数,对UDP协议的数据包进行分检,优先于其他协议的处理。这样可减少从MUX层缓冲区到UDP层网络数据报缓冲区之间的复制,而且可以不再要求上层使用轮诲的方法检查socket的缓冲区中的内容,提高了处理的实时性。

3 改进UDP协议栈出现的新问题

VxWorks的muxLib类库中允许用户自己定义一个协议栈,将协议栈绑定到一个具体的网络端口上,同时要有一个处理函数对该网络设备上收到的包进行处理。加载改进后的协议栈要先创建一组缓冲区,每种缓冲区对应不同的数据报长。预先分配一大块内存,可避免发送数据包时再去分配内存,并可根据各种长度的数据报的使用频度申请不同个数的缓冲区。发送过程中,要填写IP首部的其他内容,如协议版本号、UDP协议编号、idenfication域、IP首部校验和等等。在填写的过程中,可以有意识地按照CPU的作业宽度和整数边界进行内存赋值,提高发送效率。在接收过程中,要先判断是否为UDP协议的数据报(根据第24字节为Oxll),然后做合法检验。对本协议栈处理的数据报,处理后要将其从MUX层的缓冲区队列中删除,未删除的数据报由其他协议的处理函数处理。

经过对协议栈的改进发现,在单向收发的环境下,发送效率提高了3倍左右;但是接收方效率的提高很不尽如人意,而且稳定性仍然存在问题,在运行几十小时后,网络任务的挂起现象出现得仍很频繁。关于接收方的问题,原因是:接收方的网络任务每收到一个包,从设备缓冲区搬移到应用缓冲区,然后切换到应用程序任务进行处理,处理结束以后再切换到网络任务收下一包,如果接收速度高于处理速度就会造成阻塞。下面举一个形象的例子:某个酒吧只有一个服务员,假设这个服务员要做两件事情,有顾客来的时候要到门口去给顾客开门,然后再到柜台为顾客服务,顾客依到达次序排队。假设门口和柜台之间的移动时间不能忽略,并且为顾客开门的优先级比较高,就是说如果有新顾客到来,必须先放下正在服务的顾客去开门。在这种情况下,如果顾客的到来间隔是均匀的,为每一位顾客服务要服务员跑两趟。如果顾客到达的间隔比较小,就出现服务员在门口和柜台之间频繁移动的情况。假如能使顾客分拨到达,每次有多个顾客到达,服务员就可以从柜台到门口开门让多个顾客进入,再回柜台为顾客服务。试验证明,在这种模型下接收效率能大幅提高,但是对均匀到达的顾客服务效率的提高难以得到解决。

4 深入网络设备驱动

经过对操作系统更为深入的研究发现,MUX层的发送数据包最终是通过调用网络设备驱动程序中的发送函数实现的。分析网络设备驱动的代码发现,其发送过程可描述为:

◇检查设备缓冲区(BD表)是否有可用BD;

◇根据设备缓冲区的可用情况与发送数据包的长度,判断是否需要进行分片;

◇根据设备缓冲区的可用情况决定传输发送还是拷贝发送;

◇置位设备控制寄存器,启动DMA传输,并引发设备收发中断;

◇清除使用过的设备缓冲区。

另据分析,在设备驱动的安装过程中完成的工作有:

◇根据配置数据申请内存,构建设备缓冲区表;

◇指定DMA使用的通道与工作方式;

◇配置设备寄存器(工作方式、帧类型、设备缓冲区表指针等);

◇连接设备中断处理例程。

接收过程中,是在网络设备收到数据包后启动DMA传输至内存,并引发中断,在中断处理程序中处理缓冲区指针,然后将一个函数处理指针写入一个环型缓冲区,最后是释放一个信号量,通知网络任务对收到的数据包进行处理。通过对该接收处理函数的反汇编解读,发现它的主要工作是申请MUX层的缓冲区并复制,处理设备缓冲区的指针,然后调用各个协议的处理函数。

根据以上的认识,有了一个更为大胆的设想:跳过MUX层,直接使用driver的发函数进行发送;在接收过程中,对本协议栈的数据包不再申请MUX层的缓冲区,而是直接拷贝到应用层缓冲区,并可将处理接口留给用户。另外一个想法是,直接在中断处理例程中进行处理,从而彻底抛弃网络任务。据此在百兆网络设备上完成了修改,其效率又提高将近l倍,满足了使用的要求;而且更为可喜的是,系统的稳定性大幅提高。

5 结论与数据分析

几种情况下的测试结果如下:

通过对上述数据的分析看出,使用MUX层的协议栈组发环境下,比使用标准协议栈发送的效率提高3倍左右,但是在均匀收发的情况下提高并不明显。直接使用中断方式克服了这一缺陷,比均匀收发的环境下又提高1倍。

但是这个测试结果只是在短包的情况下完成的,包长在100字节以下。通过对长包的测试,发现对512字节以上的长包的影响要稍微小一些。这是因为在同一速率下,使用长包调用的次数要少,改进的效果也就稍差,特别是在CPU主频更高的环境下,这一现象更为明显。

6 对实时操作系统的一点看法

通过对设备驱动的研究发现.在实时操作系统中,中断处理例程的处理时间都比较短,这也是实现实时性的一个重要思想。在改进中,中断处理例程中加入了执行代码,会影响系统的实时性,似乎违背了实时操作系统的初衷。但笔者认为,这个问题要在实际的环境下进行评价,中断中的通知网络任务与网络任务的执行,两者加起来的时间一定要比只在中断中处理需要的时间要长。这与IP包处理机的目标也是没有矛盾的,完全不必拘泥陈规。实时系统只是追求平均的响应时间较短,而在最差情况下则远低于平均水平。

VxWorks常用命令汇总

VxWorks常用的命令 1.与任务相关的命令 sp function,[arg1],...,[arg9] -启动任务,最多接受9个参数,默认的优先级100、堆栈20000字节 period n,function,[arg1],...,[arg8] -创建一个周期调用function的任务,周期为n秒,最多接受8个参数 repeat m,function,[arg1],...,[arg8] -创建一个反复调用function的任务,调用次数为m,m=0时永久调用,最多也是8个参数 ts tidX -挂起任务 tr tidX -恢复挂起的任务 td tidX -删除任务 i tidX -显示任务基本信息,参数为0时显示全部任务 ti tidX -显示任务详细信息,包括寄存器、堆栈等 tt tidX -显示任务的函数调用关系 checkStack tidX -显示任务堆栈使用的历史统计,参数为0时显示全部任务 [其中tidX可以为任务ID 也可以为任务名] 2、系统信息 lkup ["string"] -在系统符号表中查找并列出含有"string"字符的函数及全局变量,有两个特殊参数: 0,给出符号表统计;""(空字符串),列出全部符号 lkAddr addr -显示addr地址附近的符号表 l addr,[n] -显示addr地址开始的n条指令的反汇编,n省略时默认为10条指令 h [n] -n为0时列出最近执行的shell命令,默认20条;n非0时,设定shell记录的历史命令的数目 d [addr,[number],[width]] -显示addr地址开始的number个单元的内容,width定制每个单元的宽度,可以是1、2、4、8 m addr,[width] -按width宽度修改addr地址的内容,width可以是1、2、4、8 memShow 1 -显示系统分区上空闲和已分配空间的总数等 printErrno value -打印系统定义的错误码的宏 3、与网络相关的命令 ifShow ["ifname"] - show info about network interfaces inetstatShow - show all Internet protocol sockets tcpstatShow - show statistics for TCP udpstatShow - show statistics for UDP ipstatShow - show statistics for IP icmpstatShow - show statistics for ICMP arpShow - show a list of known ARP entries

嵌入式系统的比较

嵌入式系统的比较 简单介绍ecos, uc/OS,uClinux,RTlinux,Linux 到目前为止接触过QNX、RTLinux、uC/OS-II、Nucleus Plus、VRTX、VxWorks、eCos,总结下来有以下特点: Ecos:多任务抢占机制,可配置(特色),可配置文件系统 uc/OS:代码很少,多任务抢占机制,需自己扩展文件系统 uClinux:非抢占式,没有MMU管理存储器,有文件系统等许多功能 RTlinux:通过在L inux内核与硬件中断之间增加一个精巧的可抢先的实时内核,把标准的Linux内核作为实时内核的一个进程与用户进程一起调度,标准的L inux内核的优先级最低,可以被实时进程抢断。正常的Linux进程仍可以在Linux内核上运行。 Linux:有MMU管理存储器。 1:QNX 的可靠性很好,协议栈、各种外设驱动稳定,只是运行所需资源有些多,需要MMU。如果需要高可靠性应用,QNX可能是最好的选择。 2:RTLinux的实时性与其它RTOS相比有些差。但是,因为好多Linux资源可以利用,是RTLinux的优点。但是运行所需资源比QNX还多,也是需要MMU。可以选用开源的RTLinux 或内容新的商用RTLinux。 3:uC/OS-II比较小巧,移植容易,网上资源很多,核心可以做得很小。但不是免费的,并且驱动需要自己编写,协议栈、图形驱动都要另外加。 4:Nucleus Plus比uC/OS-II庞大,另外提供了文件系统、协议栈、图形界面等许多东西。当然也是分开卖的,不是免费的东西。使用起来比较容易上手。 5:VRTX 是一款比较早的RTOS,现在使用的人已经很少。运行还是比较可靠。配套的文件、协议栈等模块很少。 6:VxWorks是RTOS中的大牛,国内外用的人很多,开发工具功能强大,使用方便,但是价格昂贵。也有基于MMU的高可靠性的产品。所需资源比QNX小,比uC/OS、eCos 多。对于一些私企或者好似小公司来说,可用性值得商榷。 7:eCos是开源的RTOS。针对不同的CPU已经做了许多现成的移植。代码尺寸比Nucleus 的略大。如果不用USB host等,并且不想花费太多的金钱,应该是不错的选择。 μC/OS和uClinux的比较 引言 随着现代计算机技术的飞速发展和互联网技术的广泛应用,从PC时代过渡到了以个人数字助理、手持个人电脑和信息家电为代表的3C(计算机、通信、消费电子)一体的后PC 时代。后PC时代里,嵌入式系统扮演了越来越重要的角色,被广泛应用于信息电器、移动设备、网络设备和工控仿真等领域。 嵌入式系统是以嵌入式计算机为核心,面向用户、面向产品、面向应用,软硬件可裁减的,适用于对功能、可靠性、体积、成本、功耗等综合性能有严格要求的计算机系统。随着

Tornado_VxWorks官方培训教程1

嵌入式培训专题 微迪软件培训中心Tornado &VxWorks 培训 深圳市微迪软件技术有限公司 培训中心

嵌入式培训专题 微迪软件培训中心实时系统概念 ?实时系统是对外来事件在限定时间内能做出反应的系统。 ?指标 –响应时间Response Time –生存时间Survival Time –吞吐量Throughput

嵌入式培训专题 微迪软件培训中心实时系统与普通系统 ? 在实时计算中,系统的正确性不仅仅依赖于计算的逻辑结果而且依赖于结果产生的时间?对于实时系统来说最重要的要求就是实时操作系统必须有满足在一个事先定义好的时间限制中对外部或内部的事件进行响应和处理的能力 ? 此外作为实时操作系统还需要有效的中断处理能力来处理异步事件和高效的I /O 能力来处理有严格时间限制的数据收发应用

嵌入式培训专题 微迪软件培训中心实时系统分类 ?根据不同的分类方法可以分为几种。 –方法一是分为周期性的和非周期性的(p e r i o d i c 和 a p e r i o d i c ) –方法二是分为硬实时和软实时(h a r d r e a l _t i m e 和s o f t r e a l _t i m e ) –专用系统和开放系统 –集中式系统和分布式系统

嵌入式培训专题 微迪软件培训中心实时多任务操作系统与分时多任务操作系统? 分时操作系统,软件的执行在时间上的要求,并不严格,时间上的错误,一般不会造成灾难性的后果。?实时操作系统,主要任务是对事件进行实时的处理,虽然事件可能在无法预知的时刻到达,但是软件上必须在事件发生时能够在严格的时限内作出响应(系统响应时间),即使是在尖峰负荷下,也应如此,系统时间响应的超时就意味着致命的失败。另外,实时操作系统的重要特点是具有系统的可确定性,即系统能对运行情况的最好和最坏等的情况能做出精确的估计。

嵌入式实时操作系统VxWorks入门

嵌入式实时操作系统VxWorks入门 VxWorksVxWorks操作系统是美国WindRiver公司于1983年设计开发的一种嵌入式实时操作系统(RTOS),它以其良好的可靠性和卓越的实时性被广泛地应用在通信、军事、航空、航天等高精尖技术及实时性要求极高的领域中,如卫星通讯、军事演习、弹道制导、飞机导航等。在美国的 F-16、FA-18 战斗机、B-2隐形轰炸机和爱国者导弹上,甚至连1997年4月在火星表面登陆的火星探测器上也使用到了VxWorks。VxWorks原先对中国区禁止销售,自解禁以来,在我们的军事、通信、工业控制等领域得到了非常广泛的应用。 VxWorks的实时性体现在能于限定的时间内执行完所规定的功能,并能在限定的时间内对外部的异步事件作出响应。因此,实时性系统主要应用于过程控制、数据采集、通信、多媒体信息处理等对时间敏感的场合。本文将对这个操作系统进行一个入门级的、全面的介绍。为力求展示其全貌,全文共分五章: (1)搭建VxWorks嵌入式开发环境; (2)简要介绍VxWorks的基本组成,内核的基本结构; (3)概述VxWorks板级支持包(BSP)的概念及VxWorks的启动过程; (4)介绍VxWorks设备驱动的架构及编写方法; (5)指明VxWorks应用开发的思路,任务调度及任务同步、中断与任务的同步机制。 以上各章中将贯穿着许多实例,由于本文定位于入门级教程,所以文中的实例都将十分简单。下面我们进入第一章内容的讲解。 嵌入式系统的调试调试方法一般为通过PC(宿主机)上的集成开发环境交叉编译针对特定电路板(目标机)的程序,然后将程序通过目标板的JTAG、串口或网口等途径下载到目标板上运行。因此,为了构造一个嵌入式系统的学习环境,拥有一块包含CPU、存储器及I/O 电路(构造计算机系统)的目标电路板往往是必要的。虽然许多集成开发环境附带模拟软件,但仅限于指令集的模拟,均无法模拟物理的目标机硬件平台,因而在其上只能进行应用程序的象征性模拟开发。但是,并非所有人都能拥有一块物理的电路板。在这种情况下,我们如何构造一个模拟的开发环境,其学习效果就如同拥有完全真实的电路板一样呢?本文试图解答此问题,主体内容包括四个方面: (1) 利用VMware等软件模拟真实的目标机; (2) 构建VMware虚拟PC上VxWorks BSP,建立Bootrom和OS映像; (3) 修改Tornado相关设置,连接宿主机与目标机,建立调试通道; (4) 写一个简单的应用程序并下载到目标系统运行。 图1 嵌入式系统的调试 本章工作的最终目标为: (1)VxWorks在VMware启动成功并顺利运行,的开发模型: 图4 PC作为目标机 很遗憾,这种方法实际上非常麻烦,同时开动两台PC进行调试将使你和你的室友饱受折磨,既然他如此地热切于游戏和上网。因此,我们可以借助VMware来在本机上虚拟出另一PC。 VMware的确是天才的作品!在同一PC上,利用VMware几乎可以安装所有的操作系统,而且操作系统之间的切换不需要重新启动电脑。VM的意义是Virtual Machine,即虚拟出一个逻辑的电脑,它可以提供基于Intel CPU的虚拟PC系统环境,包括CPU、内存、BIOS、硬盘和其他外围硬件设备。 下面我们讲解用VMware来建立一台虚拟PC的步骤: (1)并安装VMware; (2)使用VMware向导建立一个针对VxWorks的虚拟机;

vxworks653编程手册

一.V xWorks653运行时系统 1.1. 运行时层 一个vxworks653模块由下面四层组成: ■core OS—必需 ■partition—至少需要一个(vThreads 或COIL-based),每个都在一个分区的操作系统之中■APEX shared library—ARINC 653 应用所需 ■POSIX shared library—POSIX 应用所需 1.1.1.Core OS层 核心操作系统提供服务给分区。 缺省的,核心操作系统使用ARINC653规范中的时间抢占的调度(TPS)来调度分区。Vxworks653的核心操作系统还可以采用APPS调度策略在TPS调度的空闲时间内调度优先级

抢占调度(PPS)使能的分区。 核心操作系统提供给每个VThreads分区操作系统的服务包括: ●分区系统资源 ●调度分区 ●代表分区的操作系统执行trap异常 ●定义和强制分区边界 ●装载分区 ●使用端口和通道在分区间传递消息 ●处理I/O ●代表应用完成系统调用 ●支持分区的调试 ●监控分区和系统的健康 1.1. 2.vThreads 层 vThreads分区操作系统在核心操作系统分配给该分区的时间内调度vThreads中的线程。vThreads不直接与设备交互,而是通过核心操作系统的系统调用。 1.1.3.APEX 层 构建在vThreads之上,遵循ARINC653规范,并且提供相应功能和API。 1.1.4.POSIX层 构建在vThreads之上,遵循用于实时扩展的POSIX标准(1003.1b)。 1.2. 装载和启动 当目标板加电时,按照下面的步骤进行装载和启动 ●初始的启动码装载核心操作系统,分区操作系统,共享库,以及应用 ●核心操作系统初始化自身,启动它自己的子系统 ●核心操作系统创建分区 ●核心操作系统启动分区调度器,并且让应用初始化自身 核心操作系统可以在初始化完成之后下载在线装载的应用程序到分区。应用可以在分区运行之时装载到分区。

VxWorks下几种定时延时方法的小结

编程过程中,出于需要,大家或多或少要用到定时/延时。VxWorks下提供了几种定时/延时机制,根据收集的一些资料和VxWorks相关文档,在学习和上机实验的基础上,对它们的使用以及我所遇到的问题做一个总结,希望对大家能有所帮助。不正确之处,恳请斧正。 1 taskDelay taskdelay()提供了一个简单的任务睡眠机制,也常用于需要定时/延时机制的应用中。它的格式是STATUS taskDelay(int ticks /* number of ticks to delay task */),可以看出使用该函数实现延时的单位为tick(一般系统中一个tick都是ms级的)。在VxWorks下可以这样使用taskDelay()函数:taskDelay(sysClkRateGet()*1)。函数sysClkRateGet()返回系统的时钟速率,单位是tick数/每秒(利用函数sysClkRateSet()可以改变系统的时钟速率)。在POSIX中有一个与taskdelay()相对应的函数――nanosleep()(下文中有介绍)。这两个函数仅仅是延时单位不同,效果是相同的。 利用taskdelay(),可以将调用的任务移动到具有相同优先级的就绪队列尾部。特别的,可以通过调用taskdelay(0),将cpu交给系统中其他相同优先级的任务。延时为0的调用只能用于taskdelay()中,nanosleep()认为这种调用是错误的。 taskdelay()会导致调用的任务在指定的延时期间(以ticks计数)放弃cpu,使任务处于DELAY状态(因此,其不能用于中断服务程序中)。通常其受到任务调度的影响,但在等待一些与中断无关联的外部条件时,其是有用的。如果调用的任务受到一个信号,指出其没有被阻塞或被忽略,taskDelay()将返回ERROR,并在信号处理程序运行后设置errno为EINTR。 2 WatchDog VxWorks提供了一个看门狗定时器(watchdog timer)机制,利用提供的函数,任何任务都可以创建一个看门狗定时器,经过指定的延时后,实现在系统时钟ISR的上下文中运行指定的程序。在VxWorks中,看门狗定时器作为系统时钟中断服务程序的一部分来维护。因此,与看门狗定时器相联系的函数运行在系统

常见的嵌入式操作系统

常见的嵌入式操作系统 分类:嵌入式操作系统2012-12-11 10:06 459人阅读评论(1) 收藏举报嵌入式操作系统 嵌入式操作系统与通用的操作相比较主要特点在于: 1.小内核,稳定可靠。 2.需要可装卸、可裁剪,以便能灵活应对各种不同的硬件平台。 3.面向应用,强实时性,可用于各种设备控制当中。 国际上常见的嵌入式操作系统大约有40种左,右如:Linux、uClinux、WinCE、PalmOS、Symbian、eCos、uCOS-II、VxWorks、pSOS、Nucleus、ThreadX 、Rtems 、QNX、INTEGRITY、OSE、C Executive 。他们基本可以分为两类,一类是面向控制、通信等领域的实时操作系统,如windriver公司的vxworks、isi的psos、qnx系统软件公司的qnx、ati的nucleus等;另一类是面向消费电子产品的非实时操作系统,这类产品包括个人数字助理(pda)、移动电话、机顶盒、电子书、webphone等,系统有Microsoft的WinCE,3Com 的Palm,以及Symbian和Google的Android等。 一、VxWorks VxWorks操作系统是美国WindRiver公司于1983年设计开发的一种嵌入式实时操作系统(RTOS),是T ornado嵌入式开发环境的关键组成部分。良好的持续发展能力、高性能的内核以及友好的用户开发环境,在嵌人式实时操作系统领域逐渐占据一席之地。VxWorks具有可裁剪微内核结构;高效的任务管理;灵活的任务间通讯;微秒级的中断处理;支持POSIX 1003.1b实时扩展标准;支持多种物理介质及标准的、完整的TCP/IP网络协议等。 然而其价格昂贵。由于操作系统本身以及开发环境都是专有的,价格一般都比较高,通常需花费10万元人民币以上才能建起一个可用的开发环境,对每一个应用一般还要另外收取版税。一般不通供源代码,只提供二进制代码。由于它们都是专用操作系统,需要专门的技术人员掌握开发技术和维护,所以软件的开发和维护成本都非常高。支持的硬件数量有限。 二、Windows CE Windows CE与Windows系列有较好的兼容性,无疑是Windows CE推广的一大优势。其中WinCE3.0是一种针对小容量、移动式、智能化、32位、了解设备的模块化实时嵌人式操

Vxworks任务创建编程学习代码

任务创建编程学习代码一 此代码主要的是创建若干的任务,来学习任务的创建和删除. 程序的结构是: start函数:任务创建函数 stop函数:任务删除函数 其它为任务 请大家仔细分析代码,理解任务内务的创建和删除.本代码是在tornado2.0版本调试成功. 如有疑问联系作者jdvxworks 邮箱:foxqs@https://www.360docs.net/doc/0015942320.html, /********************************* * date:2006.7.10 time:16.08 * maker: jdvxworks * aim: create 4 task * list: task0 task1 task2 task3 * change:_____________________ *********************************/ #include "stdio.h" #include "taskLib.h" #include "vxWorks.h" //#include "semBLib.h" int taskid0; int taskid1; int taskid2; int taskid3; int loopid; SEM_ID sem_id; STATUS Err; void start(void); void test0(void); void test1(void); void test2(void); void test3(void); void stop(void); void taskloop(void); //start init task void start(void) { int i,o; long p=9999999+100000;

VxWorks操作系统RTP介绍和使用方法

VxWorks 操作系统RTP 介绍和使用方法 从VxWorks 6.x开始引入RTP(VxWorks real time process projec模t) 式编程,这种模式的优点是应用程序相互独立,互不影响,而且增加了内核的稳定性,缺点是由于“内核态”与“用户态”的内存拷贝,其执行效率有所降低,随着CPU 速度越来越快,这点效率的牺牲已经越来越不重要。相比较于传统的DKM (downloadable kernel module project ),RTP适合多个团队独立运作,然后汇总 联试,这种模式除了全局函数不能再shell 里直接调用外,其对应用程序几乎不 做任何约束,原有的DKM 工程代码稍作修改即可正常运行。内核变化较大,需 要添加较多的组件,内存需要较好的划分,为保持应用程序直接调用函数调试的 习惯,需要封装接口供用户使用。 现简单的介绍RTP使用方法,并给出demo 代码供参考。 1. 新建并编译工程: (1) File->new-> VxWorks real time process projec如t, 图【1】 图【1】 (2) 一路next 后,选择如图【2】所示的编译器

图【2】 (3) 选择Finish 后,工程新建完毕。 (4) 导入源文件:这里的源文件名称是fooRtpApp.c ,一种较快捷的方式是选 中新建的工程,按下F5,源文件会出现在工程中. (5) 右键选择编译,出现如图【3】,选择Continue 继续。 图【3】 编译完成后,会生成vxe 格式的可执行文件,此处为usrAppA.vxe 。 2. 下载可执行性文件 待板子启动后,使用ftp 将vxe 文件下载到板子中。步骤如下: (1)运行->cmd,打开对话窗口,如图【4】所示:

物联网操作系统的必备特性

物联网操作系统的必备特性 物联网所带来的机遇与挑战都是空前的。要抓住机遇,迎接挑战,是否拥有最佳的操作系统做为基础是极为关键的问题。 那么,物联网环境对操作系统提出了哪些不同于以往的需求?产品开发商采用怎样的操作系统,拥有哪些特征或技术,最有可能在物联网的发展中把握先机?基本上,今后的RTOS 不仅必须具备传统的实时性、确定性和可靠性,还必须提供高度互联、全面安全、远程管理等物联网环境所要求的全新能力。最近,风河公司推出了VxWorks7,对这套在嵌入式领域主导多年的RTOs(实时操作系统)进行了再次创新,其目标正是“物联网市场已达 实时操作系统 (The RTOS for thelnternet of Things) ”。实时性依然是物联网操作系统的必备特性 实时操作系统( RTOS,RealTimeOperation System)是指能够在确定的时间对内部或者外部的事件做出正确的响应。在实时操作系统中,进程执行结果的正确与否不仅与逻辑运算或数学计算结果的正确性相关,而且与得出这个正确结果的时间有关。也就

是说,在实时系统 中,如果一个进程的运算结果虽然 是正确的,但是由 于它完成的时间超出了给定的最后期限,那么这个结果就是毫无意义的。 例如汽车中使用的气囊。当报告车辆碰撞的传感器通知CPu 后,操作系统应快速地发出打开气囊的任务,并且不允许任何其他非实时处理进行干扰,晚一秒钟展开气囊比没有气囊的情况更糟糕,这就是一个典型的实时系统。 通常认为,实时操作系统要求速度非常快。但实际上,实时操作系统强调的不仅仅是速度,而是时间关系的次序和确定性。例如,一条货轮在码头等待各地的卡车运来货物之后装船运往海外,规定好了离港启航的时间。那么,如果有一辆卡车在货轮离港时间之后才把货物运到了码头,逻辑上它虽然完成了陆地货运任务,但已经没有任何意义了。货车行驶速度和气囊打开速度当然不可相提并论,但就它与货轮配合的时间顺序而言具有同样都是实时系统,都必须要满足的是时序确定性,而跟速度有多快不一定相关! 再例如,如果使用足够高性能的CPU,Windows 可以提供非常快的速度。但是,当某些后台任务正在运行时,有时候响应会变得非常漫长,以至于某一个简单的读取文件的任务也会很长时间无响应。并不是说Windows 不够

vxWorks学习笔记

vxWorks学习笔记 vxWorks学习笔记 2006-07-20 11:141.VxWorks开发方式:交叉开发,即将开发分为主机(host)和目标机(target)两部分。 类似于dos下C语言程序的开发。 合并开发的优点:简单 缺点:资源消耗量大,CPU支持,非标准体系的支持 host (Tornado) target(vxWork) 小程序模块 vxWorks实际采用开发模式 Tornado提供:编辑,编译,调试,性能分析工具,是vxWorks 的开发工具 vxWorks:面向对象可以剪裁的实际运行操作系统 2.vxWorks启动方式 Rom方式(vxWork_rom) vxWorks直接烧入rom Rom引导方式(bootrom+vxWorks) 其中bootrom烧入rom,vxWorks可以通过从串口,网口,硬盘,flash等下载!这里的bootrom不是开发环境中的bootable,在开发环境里bootable指的是vxWorks,downloadable指application 3.调试

attach 用来在多任务调试时将调试对象绑定到某个任务 任务级调试(attach taskName) 单个任务的调试不会影响到其他任务的运行,主要用来调用户的应用程序。 全局断点:在调另一任务或本任务时,系统运行本任务断点,则停下。各任务要配合使用。 任务断点:调本任务时,系统运行到本任务断点,则停下。如果没有attach到本任务,不起作用。 一次性断点:跑到一次之后自动删除。 系统级调试(attach system) 把所有task和系统core、中断看成一个整体,可用于调试系统和中断。对中断调试,如果不是系统级调试,无论是那种断点都不起作用 !wdbAgent不在调试范围内,当任务级调试时工作在中断方式,系统级调试工作在轮询方式。 !可是使用命令行方式的调试,参看crossWind教程。 4.调度 优先级调度(无条件) 时间片:同优先级,如果时间片没有打开,任务采取先到先运行,运行完毕在交出cpu,如果打开,则轮流使用cpu。!死循环使比它优先级低的任务都不能运行。

几种主流嵌入式操作系统分析

几种主流嵌入式操作系统分析 1.嵌入式Linux 嵌入式Linux(Embedded Linux)是指对标准Linux经过小型化裁剪处理之后,能够固化 在容量只有几KB或者几MB 字节的存储器芯片或者单片机中,是适合于特定嵌入式应用场合的专用Linux操作系统。在目前已经开发成功的嵌入式系统中,大约有一半使用的是Linux。 这与它自身的优良特性是分不开的。 嵌入式Linux 同Linux 一样,具有低成本、多种硬件平台支持、优异的性能和良好的网络支持等优点。另外,为了更好地适应嵌入式领域的开发,嵌入式Linux 还在Linux 基础上 做了部分改进,如下所示。 ? 改善的内核结构 Linux 内核采用的是整体式结构(Monolithic),整个内核是一个单独的、非常大的程序,这____________样虽然能够使系统的各个部分直接沟通,提高系统响应速度,但与嵌入式系统存储容量小、 资源有限的特点不相符合。因此,在嵌入式系统经常采用的是另一种称为微内核(Microkernel) 的体系结构,即内核本身只提供一些最基本的操作系统功能,如任务调度、内存管理、中断 处理等,而类似于文件系统和网络协议等附加功能则运行在用户空间中,并且可以根据实际 需要进行取舍。这样就大大减小了内核的体积,便于维护和移植。 ? 提高的系统实时性 由于现有的Linux 是一个通用的操作系统,虽然它也采用了许多技术来加快系统的运行 和响应速度,但从本质上来说并不是一个嵌入式实时操作系统。因此,利用Linux 作为底层 操作系统,在其上进行实时化改造,从而构建出一个具有实时处理能力的嵌入式系统,如RT-Linux 已经成功地应用于航天飞机的空间数据采集、科学仪器测控和电影特技图像处理等 各种领域。 嵌入式Linux 同Linux 一样,也有众多的版本,其中不同的版本分别针对不同的需要在内核等方面加入了特定的机制。嵌入式Linux 的主要版本如表4.1所示。 表4.1 嵌入式Linux主要版本 版本简单介绍 μCLinux 开放源码的嵌入式Linux 的典范之作。它主要是针对目标处理器没有存储管理单元 MMU,其运行稳定,具有良好的移植性和优秀的网络功能,对各种文件系统有完备 的支持,并提供标准丰富的API RT-Linux 由美国墨西哥理工学院开发的嵌入式Linux硬实时操作系统。它已有广泛的应用 Embedix 根据嵌入式应用系统的特点重新设计的Linux发行版本。它提供了超过25种的Linux 《嵌入式Linux应用程序开发详解》——第4章、嵌入式系统基础 系统服务,包括Web服务器等。此外还推出了Embedix的开发调试工具包、基于图 形界____________面的浏览器等。可以说,Embedix是一种完整的嵌入式Linux解决方案

Dos引导VxWorks

CF卡上引导VxWorks的三种方法 方法一. 直接引导: 引导扇区 >> bootrom.sys >> VxWorks 这种方法最快,但要求bootrom.sys保持连续性(可用chkdsk检查)。 方法二. FreeDOS引导: 引导扇区 >> FreeDOS >> https://www.360docs.net/doc/0015942320.html, >> bootrom.sys >> VxWorks 这种方法牺牲少量启动时间换取灵活性,因为你可以为FreeDOS增加菜单实现选择性启动,而且许多维护性工作也可在DOS下进行。 方法三. GRUB引导: 引导扇区 >> GRUB >> FreeDOS启动盘映像 >> FreeDOS >> https://www.360docs.net/doc/0015942320.html, >> bootrom.sys >> VxWorks 这种方法比上一种更进一步,你可以利用GRUB的强大功能实现多系统引导,不过不是所有的主板都支持GRUB。 grub> kernel --type=netbsd /vxWorks 一共两个分区,都是主分区。C盘为Fat32格式,设为活动分区。D盘为Fat格式,设为非活动分区。C盘装的Winxp,用XP引导Grub4DOS。把DOS的系统文件(IO.sys,MSDOS.sys,https://www.360docs.net/doc/0015942320.html,)拷贝到D盘根目录。 修改menu.lst如下: title DOS6.22 root (hd0,1) chainloader (hd0,1)/IO.SYS title DOSDOS find --set-root (hd0,1)/io.sys chainloader (hd0,1)/io.sys title FINDDOSACT find --set-root (hd0,1)/io.sys

VxWorks操作系统MakeFile

VxWorks操作系统MakeFile(一) 时间:2008-8-24 夜 版权申明:本文为水煮鱼为水煮鱼@博客园撰写,不得用于商业用途,如需摘用,请与水煮鱼联系。 1、介绍 本文将介绍为什么要将你的C源代码分离成几个合理的独立文档,什么时候需要拆分,那又怎么拆分呢? 然后再介绍如何使用GUN Make使你的编译和链接步骤自动化。可能你使用的是其他的make工具,但是其实道理都差不多。当然如果你对自己的编程工具有怀疑的话,可以不妨实际的试试。 2、多文件项目介绍 a. why? 为什么使用多文件项目?他们有什么好处呢? 从表面上看,多文件项目是够复杂的了,又要头文件,又需要extern申明,并且如果你要查找一个文件的话,还需要在更多的文件里搜索。 但是如果把其考虑成一个项目,那一个项目根据功能划分为小的模块,那就不难理解了。 想想如果是一个一万行代码,如果你把其放到一个文件里,则在编译的时候,则需要对一万行代码进行重新编译。不过如果你如果把其放到不同的文件里,那修改一行,则只需要编译一个文件就可以了。可能你会说,一万行代码,就算全部编译,那点时间也基本可以忽略不计,但是实际情况是,在一个大的系统里,可能代码达到几十万甚至上百万,千万行代码的规模。以我们的项目为例,目前代码规模已经达到了上千万行的级别,如果全部重新编译,则将耗费几个小时甚至半天的时间。如果将其划分多多个文件,则修改一行所引入的编译代码,将不会随着你代码规模的增大而增大。所以多个文件的优点不言自明了。 不过对于不便于搜索的问题,其实只要文件划分得当,也并不会造成多大的困难。其实,从多个目标文件生成一个程序包比从一个单一文件生成程序包要好的多。当然,实际上这是不是一个优势还与你所使用的系统有关。但是当使用gcc/ld(一个GUN C编译器/连接器)把一个程序包连接到一个程序时,在连接的过程中,它会尝试不去连接没有使用到的部分,但它每次只能从程序包中把一个完整的目标文件排除在外。因此,如果你修改了一个程序包中某一个目标文档中任何一个符号的话,那么这个目标文件整个都会被连接进来。要是一个程序包被非常充分的分解的话,那么经过链接后,得到的可执行文件会比从一个大目标文件组成的程序包连接得到的文件小的多。 并且常常我们的程序是模块化的,高内聚,低耦合,使得文件之间共享部分被减少到了最少,因此采用多文件的方式,可以比较容易的找到代码中的bug。 b.when? 那什么时候分解你的项目? 如果你开发的是一个大项目,在开始前,应该好好考虑一下你将如何实现,并且将生成几个文件来存放你的代码。当然,在项目的开发过程中,你可以建立新的我文件,但是这将打乱你的整体布局,可能造成你整体结构的调整。因此特别建

Vxworks中断服务程序解析

Vxworks中断服务程序解析 中断服务程序用来处理来自硬件的中断,是设备驱动程序的重要组成部分。为及时响应外部中断,防止中断丢失.中断服务程序应该尽量的小,只把最必要的任务放在中断服务程序里面执行。一般在系统启动,硬件设备成功初始化之后将ISR与中断向量挂上:也可以在系统启动后的任何时刻挂中断向量。调试中经常采用后一种方式。在VxWorks中有两个不同的函数可提供挂中断:intConnect和pciIntConnect。两者的区别是intConnect使用的中断向量是独占的,pcilntConnect则可在各个不同的ISR之间共享中断向量。实际上pcilntConnect 内部调用了 intConnect函数,在内部使用一个链表来管理多个不同的ISR。pcilntConnect 要求每次进入ISR都要检查硬件的寄存器,证实中断的确是由ISR服务的硬件产生。如果硬件的寄存器表明该硬件并未产生中断,则ISR立即退出,以让挂在同一个中断向量上的其它ISR有机会检查是否有中断产生。pcilntLib.c中的代码清楚的说明了这个问题:void pciInt (int irq ){ PCLlNT RTN *pRtn; for (pRm = (PCI_INT_RTN*)DLL_FIRST(&pcilntList[irq]); pRtn!=NULL; pRtn =(PCI_INT_RTN*)DLL_NEXT(&pRtn->node)) (*pRtn->routine) (pRtn->parameter); } 当PCI总线上有中断发生时,系统调用void pcilnt(int irq)函数,再由pciInt使用内部的链表来依次调用挂在该中断上的ISR。如果某个ISR不能正常退出,就会影响到其它ISR的运行。在调试时为了检查中断向量是否已经和ISR可靠的连接上,可以在命令行上或程序中直接调用pciInt来查看ISR是否被触发。在硬件确定的情况下,可以小心设计保证各个硬件使用不同的中断,这样对PCI上的设备也可直接使用intConnect来挂中断。 需要说明的是ISR挂上中断向量的过程不是简单的在向量表中设置中断向量值。VxWorks 除了设置中断向量值以外,还在与中断向量相连的ISR加上了一层薄薄的包装,包括IsR执行前保存寄存器值.设置堆栈以及IsR执行后恢复寄存器和堆栈。在中断频繁的场合,系统中中断堆栈有可能被耗尽而溢出。为了避免上述情况发生,必须修改系统的中断堆栈大小,即在config.h中加入以下代码: #define INCLUDE_KERNEL #define ISR_STACK_SIZE 0xl000 //表示系统中中断堆栈的大小为4k 由于中断处理程序的特殊性,中断处理程序中不能使用可能导致阻塞的函数,如printf,semTake等,具体不可使用的函数列表可以在<>中查到。有时候为了调试方便,希望在ISR中打印一些信息,系统提供了一个与prinf等价的函数sysLog,该函数可接受 7个参数。它是非阻塞的。比较而言,prinf函数要在打印任务完成后才返回,sysLog只把打印任务放到系统的打印队列中就返回。在ISR中虽然不可以使用semTake,但可以使用semGive(互斥类型的除外)。一般使用semTake和semGive在ISR和普通程序间通信:当一个中断产生,ISR 完成必要的任务后,调用semGive通知另外一个使用semTake等待ISR信号的任务,该任务收到semGive释放的信号后,继续完成ISR中不便处理的任务。

嵌入式操作系统的种类与特点

1.3.1 嵌入式操作系统的种类、特点与发展 1.嵌入式操作系统的种类 一般情况下,嵌入式操作系统可以分为两类: 非实时操作系统:面向消费电子产品等领域,这类产品包括个人数字助理(PDA)、移动电话、机顶盒、电子书等。 实时操作系统RTOS(Real-Time Embedded Operating System):面向控制、通信等领域,如windriver公司的vxworks、isi的psos、qnx系统软件公司的qnx等。 (1)非实时操作系统 早期的嵌入式系统中没有操作系统的概念,程序员编写嵌入式程序通常直接面对裸机及裸设备。在这种情况下,通常把嵌入式程序分成两部分,即前台程序和后台程序。前台程序通过中断来处理事件,其结构一般为无限循环;后台程序则掌管整个嵌入式系统软、硬件资源的分配、管理以及任务的调度,是一个系统管理调度程序。这就是通常所说的前后台系统。一般情况下,后台程序也叫任务级程序,前台程序也叫事件处理级程序。在程序运行时,后台程序检查每个任务是否具备运行条件,通过一定的调度算法来完成相应的操作。对于实时性要求特别严格的操作通常由中断来完成,仅在中断服务程序中标记事件的发生,不再做任何工作就退出中断,经过后台程序的调度,转由前台程序完成事件的处理,这样就不会造成在中断服务程序中处理费时的事件而影响后续和其它中断。 实际上,前后台系统的实时性比预计的要差。这是因为前后台系统认为所有的任务具有相同的优先级别,即是平等的,而且任务的执行又是通过FIFO队列排队,因而对那些实时性要求高的任务不可能立刻得到处理。另外,由于前台程序是一个无限循环的结构,一旦在这个循环体中正在处理的任务崩溃,使得整个任务队列中的其它任务得不到机会被处理,从而造成整个系统的崩溃。由于这类系统结构简单,几乎不需要RAM/ROM的额外开销,因而在简单的嵌入式应用被广泛使用。 (2)实时操作系统 所谓实时性,就是在确定的时间范围内响应某个事件的特性。而实时系统是指能在确定的时间内执行其功能并对外部的异步事件做出响应的计算机系统。其操作的正确性不仅依赖于逻辑设计的正确程度,而且与这些操作进行的时间有关。“在确定的时间内”是该定义的核心。也就是说,实时系统是对响应时间有严格要求的。 实时系统对逻辑和时序的要求非常严格,如果逻辑和时序出现偏差将会引起严重后果。实时系统有两种类型:软实时系统和硬实时系统。软实时系统仅要求事件响应是实时的,并不要求限定某一任务必须在多长时间内完成;而在硬实时系统中,不仅要求任务响应要实时,而且要求在规定的时间内完成事件的处理。通常,大多数实时系统是两者的结合。实时应用软件的设计一般比非实时应用软件的设计困难。实时系统的技术关键是如何保证系统的实时性。实时操作系统可分为可抢占型和不可抢占型两类。 嵌入式实时操作系统在目前的嵌入式应用中用得越来越广泛,尤其在功能复杂、系统庞大的应用中显得愈来愈重要。 从某种意义上说,没有操作系统的计算机(裸机)是没有用的。在嵌入式应用中,只有把CPU嵌入到系统中,同时又把操作系统嵌入进去,才是真正的计算机嵌入式应用。 操作系统的实时性在某些领域是至关重要的,比如工业控制、航空航天等领域。想像飞机正在空中飞行,如果嵌入式系统不能及时响应飞行员的控制指令,那么极有可能导致空难事故。有些嵌入式系统应用并不需要绝对的实时性,比如PDA播放音乐,个别音频数据丢失并不影响效果。这可以使用软实时的概念来衡量。

VxWorks实时操作系统SIGNAL机制的应用

[摘要] 介绍VXWORKS实时操作系统的信号机制以及各种处理方法,特别是利用该机制实现异常情况的恢复和处理。 1.概述 信号可用来在同一任务内部或不同任务之间实现异步通信,从而改变对多个任务的控制流程。所有任务或中断服务程序均能向指定的任务发送信号,该信号的接收任务将立刻挂起当前的执行线程,而激活任务指定的信号处理程序。信号处理程序是由用户定义的,它关联与特定的信号,而且任务接收到该指定信号时的所有必要处理都在该程序中实现。信号的这种机制使得它特别适合于用来实现差错和异常处理。 2.信号屏蔽 在信号处理时,可通过信号屏蔽来选择需要进行处理的信号,接收到被屏蔽的信号,即使指定了相应的处理程序,也不作任何处理。 为了实现对信号的屏蔽,需要定义数据类型为sigset_t的变量,同时必须包含头文件“signal.h”。 下面介绍实现这一功能的函数: int sigemptyset ( sigset_t *pSet ) 该函数初始化信号集,使得该信号集不包含任何信号; int sigfillset ( sigset_t *pSet ) 该函数初始化信号集,使得该信号集包含所有信号; int sigaddset ( sigset_t *pSet , int signo ) 该函数向信号集中增加新的信号; int sigdelset ( sigset_t *pSet , int signo ) 该函数删除信号集中的信号; int sigismember ( sigset_t *pSet , int signo ) 该函数用来判断信号集是否包含某信号; int sigprocmask ( int how, const sigset_t *pSet, sigset_t *pOset ) 该函数用来设置信号屏蔽;这里,pSet为新的信号集,pOset为当前的 信号集,而how则指示处理方式,其取值与处理方式对应关系如下: SIG_BLOCK 结果信号集为当前信号集和指定信号集二者的并集,通过这种方式,可向当前信号集增添指定的元素; SIG_UNBLOCK 结果信号集为指定信号集的补集和当前信号集二者的交集;通过这种方式,可从当前信号集删除指定的元素;

vxWorks中断处理

Vxworks作为一个实时嵌入式操作系统,通常采用中断的方式来满足系统实时性的要求,因此,熟悉其中断的处理过程对于VxWorks操作系统的开发是至关重要的.本文通过编写和调试基于AT91RM9200处理器的VxWorks嵌入式操作系统的BSP,来讨论VxWorks操作系统的中断机制。 1 VxWorks中断处理机制及AIC AT91RM9200使用一个8优先级,可单独屏蔽中断的中断向量控制器AIC。在ARM体系结构中,有7种异常中断,对应有一个异常中断向量表。ARM体系结构要求这个异常中断向量表从0地址处开始,对于外部中断请求IRQ,系统又增加了一块由中断控制器控制的中断向量表。 2 AT91RM9200 BSP的中断驱动的实现 2.1 中断驱动中定义的函数 STATUS at91rm9200LvlVecChk (int*,int*); STATUS at91rm9200LvlVecAck(int,int); STATUS at91rm9200LvlEnable(int); STATUS at91rm9200LvlDisable(int); 2.2 高级中断控制器AIC的初始化 在usrInit()中excVecInit()函数对异常中断向量进行初始化.整个中断库,以及中断控制器的初始化都是在syslib.c中的sysHwInit2()函数中完成的.该函数在sysClkConnect()中被调用,因为系统时钟中断要在内核开放中断后就要使能,因此内核在初始化为一个多任务环境后,就产生一个usrRoot()的任务,在该任务中要建立系统时钟中断,因此调用了sysClkConnect()函数,中断库以及中断控制器的初始化也就完成了。 高级中断控制器必须进行初始化,其初始化是在板级支持包BSP的中断驱动程序中。具体的实现函数是void at91rm9200IntDevInit(void)。该函数在文件syslib.c的sysHwInit2()函数中调用。 at91rm9200IntDevInit(void)函数中主要是配置系统的钩子函数,然后对中断源向量寄存器和中断模式寄存器进行配置,同时要清除并禁止AIC中所有的中断。 2.3 中断驱动中的回调函数 在intEnt中,程序很快就进入了特权模式(SVC32),如果是中断可嵌套模式,要设置该模式下的堆栈,并且将中断深度intCnt值加1.然后跳转到intIntRtnPreempt中,在intIntRtnPreempt中为后来调用中断驱动中的函数开辟了32个字节的堆栈空间,并且将程序指针拉到at91rm9200LvlVecChk函数处执行,at91rm9200LvlVecChk函数是在中断驱动中定义的函数,是用来检测当前挂起的中断中,优先级最高的中断源。检测出最高优先级的中断后,首先要禁止该中断,因此要调用at91rm9200LvlDisable函数,该函数也在中断驱动中定义。在禁止中断的过程中,需要通过intLock和intUnLock函数来保护临界代码不被新的中断打断。

相关文档
最新文档