Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits rnicroRNAs and short interfering R

Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits rnicroRNAs and short interfering R
Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits rnicroRNAs and short interfering R

Arabidopsis ARGONAUTE1is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs

N.Baumberger and D.C.Baulcombe*

Sainsbury Laboratory,Norwich Research Park,Norwich NR47UH,United Kingdom Contributed by D.C.Baulcombe,June 30,2005

ARGONAUTE (AGO)RNA-binding proteins are involved in RNA silencing.They bind to short interfering RNAs (siRNAs)and microRNAs (miRNAs)through a conserved PAZ domain,and,in animals,they assemble into a multisubunit RNA-induced silencing complex (RISC).The mammalian AGO2,termed Slicer,directs siRNA-and miRNA-mediated cleavage of a target RNA.In Arabi-dopsis ,there are 10members of the AGO family,and the AGO1protein is potentially the Slicer component in different RNA-silencing pathways.Here,we show that AGO1selectively recruits certain classes of short silencing-related RNA.AGO1is physically associated with miRNAs,transacting siRNAs,and transgene-derived siRNAs but excludes virus-derived siRNAs and 24-nt siRNAs involved in chromatin silencing.We also show that AGO1has Slicer activity.It mediates the in vitro cleavage of a mir165target RNA in a manner that depends on the sequence identity of amino acid residues in the PIWI domain that are predicted by homology with animal Slicer-competent AGO proteins to constitute the RNase catalytic center.However,unlike animals,we ?nd no evidence that AGO1Slicer is in a high molecular weight RNA-induced silencing complex.The Slicer activity fractionates as a complex of ?150kDa that likely constitutes the AGO1protein and associated RNA without any other proteins.Based on sequence similarity,we predict that other Arabidopsis AGOs might have a similar catalytic activity but recruit different subsets of siRNAs or miRNAs.

posttranscriptional regulation ?ribonuclease ?viral RNA ?silencing

A

RGONAUTE (AGO)proteins are implicated in RNA-silencing processes that also involve 21-to 26-nt short RNAs (sRNAs)(1)cleaved from double-stranded or partially double-stranded (ds)RNAs by the RNase III enzyme Dicer.There are several types of RNA-silencing mechanisms,including RNA inter-ference (RNAi),the micro RNA (miRNA)pathway,and RNA-directed chromatin silencing (1).RNAi is a type of RNA silencing in which the Dicer substrate is fully double stranded,the sRNA cleavage product is short interfering RNA (siRNA),and the outcome is targeted destruction of siRNA-complementary RNAs.The miRNA pathway is similar except that the Dicer substrate is an inverted repeat RNA with a partially ds structure,the sRNA is referred to as a miRNA,and the target RNAs can be suppressed at the translational level or degraded as in RNAi,depending on the degree of complementarity between the sRNA and its target.Plants possess an additional class of degradative sRNAs called transacting siRNAs (ta-siRNAs)whose formation depends on the miRNA-mediated cleavage of their precursor and its conversion into a dsRNA by RDR6(2–4).The last pathway,RNA-directed chro-matin silencing,is similar to RNAi,but the siRNA targets are either DNA or chromatin-associated RNAs and the outcome is DNA methylation or histone modification at the target locus.

In the best understood of these RNA-silencing mechanisms,the duplex siRNAs or miRNAs produced by Dicer are unwound in an ATP-dependent process.One strand of this RNA is then preferentially assembled with an AGO protein to form an RNA-induced silencing complex (RISC)(5–7).RISC has an associated ribonuclease activity (Slicer)that cleaves its substrate

at sRNA-complementary sites.The size and composition of RISC varies (8–10),but AGO proteins are a common compo-nent in all systems.The crystal structure of an archaebacterial AGO homologue revealed that the PIWI domain,one of the two signature domains of AGO proteins,adopts a fold similar to RNase H (11).This finding prompted the suggestion that AGO proteins may be the Slicer nuclease,and,consistent with this idea,the human AGO2has a DDH motif that is essential for Slicer activity and is functionally equivalent to the catalytic metal-coordinating triad DDE of RNase H (12,13).Final proof that hAGO2has Slicer activity was from the finding that the bacterially expressed recombinant protein is competent for sRNA-directed RNA cleavage (13).The PAZ domain is a second signature of AGO proteins,and it has been implicated by structural studies as an sRNA-binding feature (14–17).

Many eukaryotes,with the notable exception of fission yeast,have AGO multigene families whose members have specialized biological function,as revealed by the variety of mutant phenotypes (18).For example,mutants defective in RDE1,one of the 23Caenorhabditis elegans AGO family members,are resistant to RNAi,but the miRNA pathway operates normally (19),whereas AGO-like gene (alg)-1and alg-2mutants are competent for RNAi but have heterochronic defects due to defects in a miRNA-silencing pathway (20).Drosophila ago mutants also reveal diversification of siRNA and miRNA pathways:ago2mutants are RNAi-defective but are able to mediate miRNA-directed RNA cleavage.The ago1mutants,in contrast,are deficient in miRNA processing and subsequent miRNA-mediated RNA cleavage but not in RNAi (21).The four human ARGONAUTES are equally competent for binding siRNAs and miRNAs,but only AGO2is able to mediate RNA cleavage of target RNAs (12,22).Although AGO2is essential for embryo development,it is still unclear whether this requirement is related to its unique ability to cleave mRNAs (12).

In Arabidopsis ,the AGO family comprises 10members (18,23)of which two have been unambiguously associated with different forms of RNA silencing.It is therefore likely that,as in animals,the functional diversification of RNA silencing is linked to the variation between AGO family members.AGO1is associated with the miRNA pathway and transgene-silencing pathway (23,24),and AGO4with endogenous siRNAs affecting epigenetic silencing (25,26).In addition,AGO7and ZLL ?AGO10have a function in the transition from juvenile to adult phases of plant growth (27)and meristem maintenance (28,29),respectively.Although a role in sRNA-mediated regulation seems likely,it is not yet supported by evidence.

Freely available online through the PNAS open access option.

Abbreviations:sRNA,short RNA;siRNA,short interfering RNA;miRNA,microRNA;AGO,Argonaute;RNAi,RNA interference;ta-siRNA,transacting siRNA;RISC,RNA-induced si-lencing complex;CMV,Cucumber Mosaic Virus ;GF-IR,GFP inverted repeat;PHV,PHAVOLUTA ;T-DNA,portion of the Ti (tumor-inducing)plasmid that is transferred to plant cells.

*To whom correspondence should be addressed.E-mail:david.baulcombe@https://www.360docs.net/doc/0315990461.html,.

?2005by The National Academy of Sciences of the USA

11928–11933?PNAS ?August 16,2005?vol.102?no.33

https://www.360docs.net/doc/0315990461.html, ?cgi ?doi ?10.1073?

pnas.0505461102

The most studied Arabidopsis AGO protein is AGO1.It is clearly implicated in miRNA silencing because strong ago1 alleles affect miRNA accumulation and miRNAs target regula-tion(24),as do dcl1,hen1,and hyl1(30–33).The ago1mutants are also impaired in spontaneous silencing of a foreign transgene (cosupression)(23)and exhibit hypersusceptibility to Cucumber Mosaic Virus(CMV)(34),suggesting that,in plants,miRNA-mediated silencing,transgene silencing,and virus induced si-lencing share a common AGO factor.However,those observa-tions could be explained equally well if AGO1functions in either the biogenesis of sRNAs or as Slicer.

Here,we investigate the role of AGO1in RNA silencing.We show that affinity-purified AGO1is associated with miRNAs, endogenous ta-siRNAs,and transgene-derived siRNAs but not virus-specific siRNAs or siRNAs involved in chromatin silenc-ing.We also show that,dependent on conserved amino acid residues in the PIWI domain,AGO1mediates the in vitro cleavage of PHAVOLUTA RNA at the mir165target site.It is therefore likely that AGO1is a Slicer that selectively recruits sRNAs.The Slicer activity fractionates in a complex of?150 kDa that likely constitutes the AGO1protein and associated RNA without any other proteins.

Materials and Methods

FLAG-AGO Transgenic Arabidopsis.A FLAG-AGO1construct was generated by fusing the AGO1cDNA to an N-terminal FLAG sequence under the regulation of the AGO1promoter in the binary vector pGreen0229.The construct was transformed into heterozygous ago1-36(Salk?087076)(http:??https://www.360docs.net/doc/0315990461.html,)and homozygous ago1-36transgenic seedlings were identified by PCR.The expression levels of the AGO1gene and transgene were assessed by RT-PCR on2-week-old WT,ago1-36,and FLAG-AGO1seedlings.

Immunoprecipitation and sRNA Analysis.FLAG-AGO1immuno-precipitation from inflorescences of transgenic FLAG-AGO1 plants or WT plants was performed with?-FLAG M2agarose beads(Sigma).RNA extracted either from the immunoprecipi-tate or directly from tissues as control was analyzed by Northern blotting.For analysis of transgene-derived siRNAs,we used F1 plants from crosses between FLAG-AGO1plants and two ge-notypes that were silencing GFP.One of these was an RNAi line in which the transgene expressed a GFP inverted repeat(GF-IR) (35).The second genotype(GF-amp)expressed a viral transgene and exhibited sense RNA silencing(previously described as GxA)(36).Virus infections were performed by rub-inoculation on2-week-old FLAG-AGO1plants.For the RNA methylation test,GFP synthetic unmethylated siRNAs were added to the AGO1-associated RNA sample,and a?-elimination reaction was performed as described in ref.37.

Slicer Assay.PHAVOLUTA(PHV)cleavage assays were per-formed with immunoprecipitated FLAG-AGO1and32P-labeled PHV or phv in vitro transcripts(mMESSAGE mMACHINE T7, Ambion,Austin,TX).As a positive control,20?l of wheat germ extract was used.Cleavage was tested after90min at25°C by extracting and separating the RNA on an8M urea?3%poly-acrylamide gel.

Nicotiana benthamiana Transient Expression.Specific mutations in FLAG-AGO1were introduced by PCR.For transient expression in N.benthamiana,the constructs were transferred into the pBIN61vector(38)and Agro-infiltrated into N.benthamiana leaves.Immunoprecipitations,Slicer assay and sRNA analysis were as described above.

Size Exclusion Chromatography.Immunoprecipitated and eluted FLAG-AGO1were concentrated by ultrafiltration and fraction-ated on a Superose6column(Amersham Pharmacia).Fractions were concentrated again and used for the Slicer assay and western analysis.

A more detailed version of Materials and Methods is available as Supporting Materials and Methods,which is published as supporting information on the PNAS web site.

Results and Discussion

Epitope Tagging of Arabidopsis AGO1.If AGO1is an RNA-silencing Slicer,it would physically interact with miRNAs and siRNAs and would cleave mRNA targets that are complemen-tary to these small RNAs.To test these predictions,we con-structed an N-terminal FLAG-tagged version of the AGO1 cDNA coupled to1,648bp of the AGO1promoter(Fig.1A).The construct was transformed into an ago1mutant(salk?087076, named ago1-36)(Fig.1B)in which a T-DNA[portion of the Ti (tumor-inducing)plasmid that is transferred to plant cells] insertion at the end of the PAZ domain resulted in production of a truncated protein.The ago1-36alleles are likely null because the encoded protein lacked?50%of the protein sequence, including the PIWI domain and because they show a stunted growth phenotype like that of strong ago1alleles(Fig.1C) (39–41).The tagged AGO1transgene(FLAG-AGO1)fully restored a WT phenotype in ago1-36homozygous mutants, indicating that the introduced tag does not interfere with AGO1 function(Fig.1C and D).The expression level of the transgene assessed by RT-PCR was similar to that of the endogenous AGO1gene in WT plants(Fig.1E).

AGO1Interacts Selectively with miRNAs and siRNAs.FLAG-AGO1 could be immunoprecipitated from young inflorescence extracts, thereby demonstrating that the N terminus of the protein is accessible under native conditions(Fig.2A).The AGO1-associated RNA was extracted from immunoprecipitated AGO1, and the presence of siRNAs and miRNAs was assessed by Northern blotting.

All tested miRNA species specifically copurified with FLAG-AGO1and were absent from FLAG immunoprecipitates of nontransformed(WT)extracts(Fig.2B).The associated RNAs include both21-nt(miR160,167,and319)and24-nt(miR163) species.The AGO1-associated miRNAs,in common with the total pool of plant miRNAs,are methylated(42).In a?-elimination test,the miRNAs associated with AGO1remained unmodified,consistent with the presence of an O-methyl group on the3?terminal nucleotide either on the2?or3?carbon of the ribose(37),whereas a synthetic unmethylated siRNA included in the samples as internal control underwent the predicted increase in electrophoretic mobility(Fig.2C).

The ta-siRNA255was also physically associated with AGO1 (Fig.2D),but the24-nt siRNAs produced by DCL3,including siRNAs02,cluster2,and1003,were not(Fig.2E)(43).Thus, AGO1is selective for certain types of endogenous silencing-related sRNAs.We could also demonstrate selectivity of AGO1 with siRNAs of foreign nucleic acids.Transgene-specific siRNAs,either from an inverted repeat transgene(GF-IR)or from a viral amplicon?sense GFP transgene silencing system (GFP-Amp),were associated with AGO1(Fig.2F)but virus-specific siRNAs(CMV,Turnip Crinkle Virus,and crucifer To-bacco Mosaic Virus)were not(Fig.2G).

The AGO1association of GF-IR siRNAs was unexpected because ago1-27plants retain the ability to carry out RNAi from inverted repeat transgenes(44).However,the genetic test might not have been conclusive because ago1-27is a weak allele and might encode a protein still competent for RNAi(34,44). Conversely,we had anticipated that viral siRNAs would be associated with AGO1because Arabidopsis ago1plants were previously reported to be hypersusceptible to CMV(34).This

Baumberger and Baulcombe PNAS?August16,2005?vol.102?no.33?11929P L A N T B I O L O G

Y

phenotype could have been accounted for by the involvement of AGO1in virus-induced silencing.However,it is now unlikely that AGO1is a major cofactor of virus-induced silencing because the viral siRNAs were not associated with AGO1(Fig.2G )and we could not reproduce the hypersusceptibility phenotype even with plant genotype (ago1-27)and strain of CMV (I17F)used previously (34)(data not shown).To reconcile the earlier findings with the results presented here,we propose that there could be subtle environmental factors affecting the experiments.For example,there could be an environmentally influenced miRNA that targets the mRNA of a plant-encoded suppressor of viral defense or there could be an environmentally sensitive ago1phenotype that influences the virulence of CMV.

The Molecular Basis of AGO1Selectivity.The profile of RNA

associated with AGO1implies that there is selectivity in the

mechanism by which this protein recruits sRNA.Among the different factors that might determine this specificity,we have considered sRNA size,subcellular localization,and the effects of virus-encoded suppressors of silencing.Of these factors,sRNA size can be ruled out because 21-and 24-nt sRNAs were present in both the AGO1-associated and AGO1-excluded fractions (Fig.2).Subcellular location may be involved,but it is unlikely to be the sole determining factor in the AGO1selection of sRNA because certain classes of both nuclear (chromatin associated siRNAs)(43,45)and cytoplasmic sRNAs (viral siRNAs)were excluded from AGO1.A third possible factor involves the virus-encoded silencing suppressors produced in virus-infected plants.In principle,the absence of viral siRNAs in the AGO1-associated sRNA could be due to the action of these suppressors.However,this result does not seem likely,because these proteins had no effect on AGO1association with a miRNA (miR167;Fig.2G ).

An attractive alternative mechanism of selectivity involves linking the mode of sRNA biogenesis with particular AGOs.Perhaps different Dicers dock onto specific AGO proteins so that sRNAs are addressed to specialized effector complexes.Consistent with this idea,the Dicers in animal systems not only are required for the processing of sRNAs from their precursors but they also play a role in the assembly of RISC (8,46–48).In addition,there is a direct interaction in vitro between a subregion of the PIWI domain of hAGO2and the RNase III domain of human Dicer (49).Evidence consistent with this channeling model is from the finding that miRNAs and ta-siRNAs associ-ated with AGO1(Fig.2B –D )all require DCL1for their biogenesis (2,4,30)whereas the AGO1excluded 24-nt siRNAs,and viral siRNAs are instead produced by DCL3and possibly DCL2(43).

A prediction from this Dicer-channeling hypothesis is that the Dicer for production of transgene siRNAs would also interact directly with AGO1.In principle,this Dicer could be either DCL1or DCL4,whose function is unknown,that channels transgene sRNAs into AGO1.The finding that RNAi from inverted repeat transgenes functions in dcl1-9plants (50)does not necessarily rule out this prediction.Functional redundancy in the DCL family or residual function of the dcl1-9allele could mask the role of DCL1in production of transgene siRNAs.

FLAG-AGO1Has Slicer Activity and Is Not in a High Molecular Weight RISC.To find out whether AGO1is present in a RISC complex

or is itself Slicer,we first examined the ability of immunopurified FLAG-AGO1to mediate in vitro cleavage of a PHV transcript,a target of miR165(40,51).The results,shown in Fig.3,reveal that PHV 5?and 3?RNA cleavage products were specifically formed in extracts from FLAG -AGO1plants but not from control non transformed plants.No cleavage products were either observed when a G 3A mutation was inserted into the PHV RNA sequence at the residue complementary to positions 6of miR165(phv ,Fig.3).This alteration induces a dominant mutation phenotype in planta by preventing miRNA-mediated clearing of the PHV and PHB transcripts (52,53)and abolishes cleavage in a wheat germ in vitro assay (51).

This miRNA-directed RNA cleavage could result from Slicer activity of either AGO1or other associated proteins.To inves-tigate these possibilities,we modified the core PIWI domain of AGO 1at residues that are conserved in cleavage-competent AGO proteins from animals (Fig.4A ).In AGO1,the aspartate residue at position 760is equivalent to the first metal coordi-nating aspartate D597of hAGO2.Mutation of this residue to alanine in hAGO2abolishes in vitro cleavage activity,and we predicted that a similar mutation in AGO1would yield the same result if AGO1is Slicer.The Gly-758and His-798are also strongly conserved throughout AGOs.Gly-758is mutated to proline in the hypomorphic ago1-25mutant allele (34)

whereas

Fig.1.Generation of epitope-tagged AGO1transgenic Arabidopsis .(A )Diagram of the FLAG -AGO1construct.Positions of the restriction sites used for the cloning are given relative to the start codon.The sequence and position of the FLAG epitope is indicated.Thick lines,regions encoding the PAZ and PIWI domains;thin broken arrow,translation start;black dot,translation stop.(B )Diagram of the AGO1genomic locus.Gray boxes,exons;triangle,T-DNA insertion in ago1mutant Salk ?087076line (ago1-36)with left border (Lb)and right border (Rb)orientation.Other symbols as in A .(C )FLAG -AGO1comple-ments the ago1-36phenotype.Photographs are taken 2weeks postgermina-tion.(D )PCR genotyping of the FLAG -AGO1line.The ago1-36(Upper )and not the WT allele (Lower )is ampli?ed from the selected FLAG -AGO1transgenic line.(E )Expression of FLAG AGO1transcripts.ago1-36mutants produce a truncated transcript comprising the sequence 5?(Middle )but not 3?(Bottom )of the T-DNA insertion.Expression of a full-length AGO1transcript is restored in the selected FLAG -AGO1line.Actin primers (Top )were used to con?rm equal loading,and reactions without reverse transcriptase were performed to exclude DNA contamination.DNA,control PCR with genomic DNA.

11930?https://www.360docs.net/doc/0315990461.html, ?cgi ?doi ?10.1073?pnas.0505461102

Baumberger and

Baulcombe

the H798P mutation in hAGO2(12)results in loss of RNA cleavage activity.

The G758S and H798P mutations were introduced into FLAG -AGO1constructs under the cauliflower mosaic virus (CaMV)35S promoter and expressed transiently in N .benthami-ana leaves,whereas the construct carrying the D760A mutation was transformed stably in Arabidopsis under the AGO1pro-moter.The immunoaffinity-purified FLAG-AGO1mutant pro-teins could be detected by Western blotting,and the WT protein was correctly programmed by endogenous miR165as it cleaved the PHV RNA in vitro into the predicted 5?and 3?fragments (Fig.4B ).The AGO1G758S,was also able to cleave the PHV RNA target,and it is possible that the hypomorphic phenotype of the corresponding Arabidopsis mutant and its impaired cosuppres-sion ability (34)are due to altered kinetic properties of AGO1but not to total inactivity.In contrast,D760A and H798P were totally cleavage-deficient (Fig.4B and C )despite their ability to recruit miRNAs.We interpret the effect of changes at conserved catalytic site residues as a strong indication that AGO1is Slicer.Slicer in animal cells is part of a high molecular weight RISC that includes accessory proteins including TSN nuclease,Gemin,Fragile X syndrome-associated protein,and other proteins (8–10,54–57).However,if such a large complex exists in plants,the accessory proteins are not required for Slicer activity because size exclusion chromatography revealed that the FLAG-AGO1and the associated Slicer activity from Arabidopsis inflorescences eluted together close to the 158-kDa molecular mass standard (Fig.5).The predicted molecular mass of the tagged version of AGO1is 116kDa,the associated siRNA would be ?7kDa and,given the imprecision of size determination by gel filtration,

it

Fig.2.AGO1recruitment of small RNAs.(A )Immunoprecipitation of FLAG-AGO1.FLAG-AGO1was immunoprecipitated from crude in?orescence extract as described in Materials and Methods .Input,crude extract before immuno-precipitation;unbound,supernatant after immunoprecipitation;IP,immuno-precipitate.AGO1(?),FLAG -AGO1transgenic extracts;AGO(-),WT extracts.(B )miRNAs are recruited by AGO1.sRNA blots were hybridized with DNA oligonucleotide probes complementary to the indicated miRNAs.RNAs were either extracted directly from plant material (RNAtot)or from ?-FLAG immu-noprecipitate (?FLAG IP).(C )AGO1-recruited miRNAs are methylated at the 3?terminus.A synthetic unmethylated GFP 21-nt RNA oligomer mixed with the immunoprecipitated RNAs (Upper )displays an increased electrophoretic mo-bility after a ?-elimination reaction (?-El ?)whereas miR167(Lower )does not,indicating that its 3?end is protected by methylation.Both GFP and miR167hybridization were done on the same blot after stripping.(D )ta-siRNAs

are

Fig.3.AGO1copuri?es with Slicer activity.In vitro -labeled WT PHV or mutant G 3A phv target RNAs were incubated with immunoprecipitates from FLAG -AGO1and WT plants or with wheat germ extracts (Wg)as positive control.The sizes of the predicted 5?and 3?PHV RNA cleavage products are indicated.

recruited by AGO1.(E )Endogenous chromatin siRNAs are not recruited by AGO1.In B ,D ,and E ,the IP samples were derived from 7-fold more tissue than directly extracted RNA.(F )Transgene-derived siRNAs are associated with AGO1.FLAG -AGO1plants were crossed with plants coexpressing the GFP together with a GF inverted repeat silencer construct (GF -IR line)or with plants coexpressing the GFP together with a Potato Virus X-GFP silencer construct (GFP -Amp ).Blots show GFP -derived siRNAs (Top )or miR167(Middle )from parent and F 1plants.The IP samples were derived from 20-fold more tissue than directly extracted RNA.(Bottom )A Western blot of FLAG-AGO1.(G )Viral siRNAs are not associated with AGO1.FLAG-AGO1or WT plants were infected with Cucumber Mosaic Virus strain I17F (CMV),Turnip Crinkle Virus (TCV),and Cruciferae Tobacco Mosaic Virus (CrTMV).siRNAs (Upper )were detected by hybridization with an in vitro transcribed sense probe corresponding to the coat protein sequence of the virus (CMV and TCV)or the full-length cDNA (TMV).miR167(Lower )was detected with a complementary DNA oligonucle-otide probe on the same blot after stripping.The IP samples were derived from 10-fold more tissue than directly extracted RNA.

Baumberger and Baulcombe PNAS ?August 16,2005?vol.102?no.33?11931

P L A N T B I O L O G

Y

seems that,as with hAGO2(13,58),the minimal Arabidopsis RISC contains little more than AGO1and an associated sRNA.These findings do not rule out that a high molecular weight complex,for example including Dicer,HYL1,and other pro-teins,such as TSN nuclease,is formed during the assembly of a miRNA ?siRNA-programmed AGO1Slicer.Such a complex could be difficult to detect because it exists only transiently or is

much less stable in vitro than the equivalent complexes in animals.Alternatively,the high molecular weight complex might have a structure that impairs accessibility of the epitope tag on the N terminus of AGO1and prevents the purification of the native complex.However,only a minor fraction of the total AGO1pool would be present in a high molecular weight complex because most AGO1can be immunoprecipitated from a crude extract (Fig.2A ).

Selective sRNA Recruitment and Slicer Activity in Other Arabidopsis AGO Proteins?All of the 10Arabidopsis AGO proteins have PAZ

domains and so are potentially able to recruit siRNAs and miRNAs.All 10also resemble the RNA cleavage-active hAGO2in that they have conserved aspartates as two of the putative metal-coordinating residues in the catalytic site (Fig.4A )(11,12).However,AGO2and -3differ from the other AGOs in that they have an additional aspartate as the third coordinating residues in place of the conserved histidine.This third carboxylic acid residue is not likely to impair Slicer activity because two other related enzymes,RNaseH1and Tn5integrase,can use aspartate efficiently in that position (13,59,60).Most of the AGO proteins,also like hAGO2,have a conserved histidine at the equivalent of AGO1position 798,and it is likely that they selectively recruit siRNAs or a subset of miRNAs and use them as guides in RNA cleavage reactions.The exceptions are AGO4,-6,-8,and -9.AGO6and AGO9have a proline residue aligned with AGO1position 798

and,

Fig.4.Mutations of conserved residues of the AGO1PIWI domain affect Slicer activity.(A )Alignment of the catalytic center of the Arabidopsis and human ARGONAUTE PIWI domains.The positions of the Mg 2?coordinating residues in the DDH catalytic triad are indicated above the alignment (arrows),as well as the mutations introduced in FLAG-AGO1(*).(B and C )Slicer activity of mutant AGO1proteins.FLAG -AGO1,FLAG -AGO1G758S ,and FLAG -AGO1H798P were expressed transiently in N .benthamiana by Agrobacterium in?ltration,and Slicer activity of the immunoprecipitated proteins was assayed in vitro (B top ).FLAG -AGO1D760A could not be assayed because it was unstable in the transient assay,but it did accumulate and its PHV Slicer activity could be assayed in extracts of transgenic Arabidopsis (C Top ).Recruitment of miR165was veri?ed by Northern blotting of sRNAs extracted from immunoprecipitates (Bottom ).The level of immunopuri?ed FLAG-AGO1proteins was tested by Western blotting (Middle

).

Fig.5.FLAG-AGO1Slicer is present in low molecular weight complexes.FLAG-AGO1was immunopuri?ed and eluted from ?-FLAG M2agarose beads by competition with 3XFLAG peptides.The concentrated eluate was fraction-ated on a Superpose 6column,and the fractions were tested for cleavage of PHV target RNA (Upper )and for presence of AGO1by Western blotting (Lower ).The elution pro?le of the molecular weight markers is indicated.V o ,void volume;In,input;Wg,wheat germ.

11932?https://www.360docs.net/doc/0315990461.html, ?cgi ?doi ?10.1073?pnas.0505461102

Baumberger and

Baulcombe

based on the in vitro phenotype of the H798P mutant,it is probable that they are not active Slicer proteins.Perhaps these more variant AGO proteins recruit siRNAs but regulate their targets by way of translation interference or DNA methylation.For example,AGO4, which has a serine residue at position798,has been implicated in chromatin modification and DNA methylation and so may be directly targeted to DNA(25,26).It will be interesting to find out to what extent selective recruitment of siRNA and miRNA plays a role in the functional diversification of AGO protein function and of RNA silencing pathways.We thank the Salk Institute and the Nottingham Arabidopsis Stock Centre for providing the Salk?087076line and Attila Molnar and Alan Herr for critical reading of the manuscript and fruitful discus-sions.Herve′Vaucheret(Institut National de la Recherche Agronomique,Versaille,France)is thanked for ago1-27mutant plants and CMV I17N.The use of imported strains of virus was under license (DEFRA161A?4391(01?03).This work was partly supported by a European Molecular Biology Organization fellowship and a Swiss National Science Foundation fellowship(to N.B.).We are grateful to the Gatsby Charitable Foundation for supporting the Sainsbury Laboratory.

1.Baulcombe,D.(2004)Nature431,356–363.

2.Vazquez,F.,Vaucheret,H.,Rajagopalan,R.,Lepers,C.,Gasciolli,V.,Mallory,

A.C.,Hilbert,J.-L.,Bartel,D.P.&Crete,P.(2004)Mol.Cell16,69–79.

3.Allen,E.,Xie,Z.,Gustafson,A.M.&Carrington,J.C.(2005)Cell121,

207–221.

4.Peragine,A.,Yoshikawa,M.,Wu,G.,Albrecht,H.L.&Poethig,R.S.(2004)

Genes Dev.18,2368–2379.

5.Schwarz,D.S.,Hutvagner,G.,Du,T.,Xu,Z.,Aronin,N.&Zamore,P.D.

(2003)Cell115,199–208.

6.Khvorova,A.,Reynolds,A.&Jayasena,S.D.(2003)Cell115,209–216.

7.Tomari,Y.,Matrange,C.,Haley,B.,Martinez,N.&Zamore,P.D.(2004)

Science306,1377–1380.

8.Pham,J.W.,Pellino,J.L.,Lee,Y.S.,Carthew,R.W.&Sontheimer,E.J.

(2004)Cell117,83–94.

9.Nykanen,A.,Haley,B.&Zamore,P.D.(2001)Cell107,309–321.

10.Hammond,S.M.,Bernstein,E.,Beach,D.&Hannon,G.(2000)Nature404,

293–296.

11.Song,J.J.,Smith,S.K.,Hannon,G.J.&Joshua-Tor,L.(2004)Science305,

1434–1437.

12.Liu,J.,Carmell,M.A.,Rivas,F.V.,Marsden,C.G.,Thomson,M.,Song,J.J.,

Hammond,S.M.,Joshua-Tor,L.&Hannon,G.J.(2004)Science305, 1437–1441.

13.Rivas,F.V.,Tolia,N.H.,Song,J.J.,Aragon,J.P.,Liu,J.D.,Hannon,G.J.

&Joshua-Tor,L.(2005)Nat.Struct.Mol.Biol.12,340–349.

14.Ma,J.B.,Ye,K.Q.&Patel,D.J.(2004)Nature429,318–322.

15.Song,J.J.,Liu,J.,Tolia,N.H.,Schneiderman,J.,Smith,S.K.,Martienssen,

R.A.,Hannon,G.J.&Joshua-Tor,L.(2003)Nat.Struct.Mol.Biol.10, 1026–1032.

16.Yan,K.S.,Yan,S.,Farooq,A.,Han,A.,Zeng,L.&Zhou,M.-M.(2003)Nature

426,1–5.

17.Lingel,A.,Simon,B.,Izaurralde,E.&Sattler,M.(2003)Nature426,465–469.

18.Carmell,M.A.,Xuan,Z.,Zhang,M.&Hannon,G.J.(2002)Genes Dev.16,

2733–2742.

19.Tabara,H.,Sarkissian,M.,Kelly,W.G.,Fleenor,J.,Grishok,A.,Timmons,L.,

Fire,A.&Mello,C.C.(1999)Cell99,123–132.

20.Grishok,A.,Pasquinelli,A.E.,Conte,D.,Li,N.,Parrish,S.,Ha,I.,Baillie,

D.L.,Fire,A.,Ruvkun,G.&Mello,C.(2001)Cell106,23–34.

21.Okamura,K.,Ishizuka,A.,Siomi,H.&Siomi,M.C.(2004)Genes Dev.18,

1655–1666.

22.Meister,G.,Landthaler,M.,Patkaniowska,A.,Dorsett,Y.,Teng,G.&Tuschl,

T.(2004)Mol.Cell15,185–197.

23.Fagard,M.,Boutet,S.,Morel,J.-B.,Bellini,C.&Vaucheret,H.(2000)Proc.

https://www.360docs.net/doc/0315990461.html,A97,11650–11654.

24.Vaucheret,H.,Vazquez,F.,Crete,P.&Bartel,D.P.(2004)Genes Dev.18,

1187–1197.

25.Zilberman,D.,Cao,X.,Johansen,L.K.,Xie,Z.,Carrington,J.C.&Jacobsen,

S.E.(2004)Curr.Biol.14,1214–1220.

26.Zilberman,D.,Cao,X.&Jacobsen,S.E.(2003)Science299,716–719.

27.Hunter,C.,Sun,H.&Poethig,R.S.(2003)Curr.Biol.13,1734–1739.

28.Moussian,B.,Schoof,H.,Haecker,A.,Jurgens,G.&Laux,T.(1998)EMBO

J.17,1799–1809.

29.Lynn,K.,Fernandez,A.,Aida,M.,Sedbrook,J.,Tasaka,M.,Masson,P.&

Barton,M.K.(1999)Development(Cambridge,U.K.)126,469–481.

30.Park,W.,Li,J.,Song,R.,Messing,J.&Chen,X.(2002)Curr.Biol.12,

1484–1495.31.Chen,X.,Liu,J.,Cheng,Y.&Jia,D.(2002)Development(Cambridge,U.K.)

129,1085–1094.

32.Han,M.-H.,Goud,S.,Song,L.&Fedoroff,N.(2004)https://www.360docs.net/doc/0315990461.html,A

101,1093–1098.

33.Vazquez,F.,Gasciolli,V.,Crete,P.&Vaucheret,H.(2004)Curr.Biol.14,

346–351.

34.Morel,J.-B.,Gordon,C.,Mourrain,P.,Beclin,C.,Boutet,S.,Feuerbach,F.,

Proux,F.&Vaucheret,H.(2002)Plant Cell14,629–639.

35.Schwach,F.,Vaistij,F.E.,Jones,L.&Baulcombe,D.(July22,2005)Plant

Physiol.,10.1104?pp.105.063537.

36.Dalmay,T.,Hamilton,A.J.,Mueller,E.&Baulcombe,D.C.(2000)Plant Cell

12,369–379.

37.Alefelder,S.,Patel, B.K.&Eckstein, F.(1998)Nucleic Acids Res.26,

4983–4988.

38.Bendahmane,A.,Querci,M.,Kanyuka,K.&Baulcombe,D.C.(2000)Plant

J.21,73–81.

39.Kidner,C.A.&Martienssen,R.A.(2005)Dev.Biol.280,504–517.

40.Kidner,C.A.&Martienssen,R.A.(2004)Nature428,81–84.

41.Bohmert,K.,Camus,I.,Bellini,C.,Bouchez,D.,Caboche,M.&Benning,C.

(1998)EMBO J.17,170–180.

42.Yu,B.,Yang,Z.,Li,J.,Minakhina,S.,Yang,M.,Padgett,R.W.,Steward,R.

&Chen,X.(2005)Science307,932–935.

43.Xie,Z.,Johansen,L.K.,Gustafson,A.M.,Kasschau,K.D.,Lellis,A.D.,

Zilberman,D.,Jacobsen,S.E.&Carrington,J.C.(2004)PLoS Biol.2,E104.

44.Beclin,C.,Boutet,S.,Waterhouse,P.&Vaucheret,H.(2002)Curr.Biol.12,

684–688.

45.Hamilton,A.J.,Voinnet,O.,Chappell,L.&Baulcombe,D.C.(2002)EMBO

J.21,4671–4679.

46.Lee,Y.S.,Nakahara,K.,Pham,J.W.,Kim,K.,He,Z.,Sontheimer,E.J.&

Carthew,R.W.(2004)Cell117,69–81.

47.Tabara,H.,Yigit,E.,Siomi,H.&Mello,C.C.(2002)Cell109,861–871.

48.Tomari,Y.,Du,T.,Haley,B.,Schwarz,D.S.,Bennett,R.,Cook,H.A.,

Koppetsche,B.S.,Theurkauf,W.E.&Zamore,P.D.(2004)Cell116,831–841.

49.Tahbaz,N.,Kolb,F.A.,Zhang,H.,Jaronczyk,K.,Filipowicz,W.&Hobman,

T.C.(2004)EMBO Rep.5,189–194.

50.Finnegan,E.J.,Margis,R.&Waterhouse,P.M.(2003)Curr.Biol.13,236–240.

51.Tang,G.,Reinhart,B.J.,Bartel,D.P.&Zamore,P.D.(2003)Genes Dev.17,

49–63.

52.Mallory,A.C.,Reinhart,B.J.,Jones-Rhoades,M.W.,Tang,G.,Zamore,P.D.,

Barton,M.K.&Bartel,D.P.(2004)EMBO J.23,3356–3364.

53.McConnell,J.R.,Emery,J.,Eshed,Y.,Bao,N.,Bowman,J.&Barton,M.K.

(2002)Nature411,709–713.

54.Ishizuka,A.,Siomi,M.C.&Siomi,H.(2002)Genes Dev.16,2497–2508.

55.Caudy,A.A.,Myers,M.,Hannon,G.J.&Hammond,S.M.(2002)Genes Dev.

16,2491–2496.

56.Caudy,A.,Ketting,R.F.,Hammond,S.M.,Denli,A.,M.,Bathoorn,A.M.P.,

Tops,B.B.J.,Silva,J.M.,Myers,M.M.,Hannon,G.J.&Plasterk,R.(2003) Nature425,411–414.

57.Mourelatos,Z.,Dostie,J.,Paushkin,S.,Sharma,A.,Charroux,B.,Abel,L.,

Rappsilber,J.,Mann,M.&Dreyfuss,G.(2002)Genes Dev.16,720–728. 58.Rand,T.A.,Ginalski,K.,Grishin,N.V.&Wang,X.(2004)Proc.Natl.Acad.

https://www.360docs.net/doc/0315990461.html,A101,14385–14389.

59.Katayanagi,K.,Okumura,M.&Morikawa,K.(1993)Proteins17,337–346.

60.Peterson,G.&Reznikoff,W.(2003)J.Biol.Chem.278,1904–1909.

Baumberger and Baulcombe PNAS?August16,2005?vol.102?no.33?11933P L A N T B I O L O G

Y

全国翻译价格

全国翻译价格 关于全国各地区翻译价格我们根据客户的不同需求和具体情况,提供多种等级和特色的翻译服务,供客户选择:(注:以下报价均为参考价格,精确报价将根据稿件内容的难度、技术处理的复杂程度和时限要求的缓急而定。

品质控制 坚持高端定位是外语通翻译的核心要素,追求高品质翻译需要译员具备深厚的语言功底和专业背景知 识,更需要严格的质量控制体系来管理这一过程: 外语通六阶梯质量控制体系 第一阶梯:译文评估承接 分析稿件性质、用途要求、商务背景、专业术语、数量和交稿时间等,确定是否有100%的把握承接, 否则坚决放弃,以免因质量或交稿时间耽误客户和影响品牌形象。 第二阶梯:专业译员翻译 专业背景的译员只专注于一个行业领域的精准翻译,项目经理根据译文评估,从外语通全球译员库中 分析挑选多名此行业的专业译员成立项目组,统一专业术语和标准,协同翻译。 第三阶梯:翻译质量监控 项目经理监控翻译进展,每日集中疑难词汇,请签约专家释疑。每日抽查译文质量,及时解决译文质 量问题。 第四阶梯:译文校对排版 汇总所有译文,查错补漏,进一步统一术语,按原文进行排版,形成完整初稿。 第五阶梯:专家译审修改 专家译审对翻译初稿进行翻译准确性审核,确保译稿忠于原文,专业词汇纯正地道。 六阶梯:外籍母语润色第 在华外籍翻译(外译中稿件由中文功底深厚的编辑)对译稿的语法、词汇进行修正和润色,确保译稿 纯正、地道,达到母语品质。 外语通翻译严格执行《ISO译文质量体系》,《翻译质量国家标准GB/T 19682-2005》: 译文质量标准Ⅲ类通用笔译Ⅱ类专业笔译Ⅰ类高级笔译译文用途内容概要、参考资料一般文件和材料正式文件、法律文书、出版物错漏译率小于5‰小于2‰0‰ 译员经验3年以上5年以上8年以上 译员学历硕士以上硕士以上硕士以上 行业背景常识业内资深 海外背景无/短期中期长期 译文校对有有有 专家译审无有有 母语润色无无有 译文排版简单排版详细排版出版级别

翻译公司收费标准

翻译公司收费标准 1.客户需要翻译的目标语言的普遍性和稀缺性可能导致非常 不同的费用。英语比较普遍,需求大,市场专业的英语翻译人 才也很多,翻译公司无论是从降价到抢占市场,还是成本核算 来考虑,英语收费都比较合理和透明。 其他诸如法语、德语、日语、俄语排在第二梯队,翻译公司收 费标准一般都是200-280元,视稿件专业度和数量略有调整; 意大利,西班牙,越南,泰文等东南亚语种已经接近稀有语 种了,翻译报价至少300元千字起。 2.根据翻译项目类型 常见的翻译方法主要包括翻译翻译、同声传译、本地翻译、口译翻译等,翻译项目自然是不同的收费。 3.根据翻译项目时长 这一时期的持续时间主要是指项目长度:同声传译、会议翻译、商务洽谈、双语主持人、口译、护送翻译、展览翻译,当然,视频翻译、音频翻译按时间计算的时间和会议类型是一个重要因素,是翻译时间决定翻译价格的一个重要因素。 4.根据翻译项目字数

翻译项目的字数是影响收费的重要因素之一,翻译字数主要对于笔译而言,例如:文件翻译、图书翻译、资料翻译、画册翻译等等,这些文件资料的字数决定了项目的翻译价格和翻译收费标准。 5.根据翻译项目语种 主流语种:英语、日语、韩语等和小语种:阿拉伯语、希腊语、印尼语等的翻译收费标准区别。我们知道:“物以稀为贵,”所以小语种的翻译报价会比主流语种收费要高的。 6.根据翻译项目难易程度 对于翻译公司来说,翻译费在很大程度上取决于翻译的难度程度,不同的行业术语不同,难度不同; 专业翻译公司将根据翻译人员的翻译水平、专业知识、翻译经验等方式来评价自己的翻译团队,高层次的翻译人员当然都是高收费; 如通用翻译、精细翻译、出版层次等不同类型的翻译报价不同,稿件的行业领域、材料难度、选择翻译类型等都是决定翻译公司收费标准的因素。

英文合同翻译价格 英文合同翻译需要多少钱

英文合同翻译价格英文合同翻译需要多少钱 在企业的经营过程中,有时候可能会涉及到翻译这个问题,但是一般的小企业并没有专门的人去做这件事情,大部分都是外包。那么对于企业来讲,翻译一份英文合同需要多少钱呢?作为浙江省最大的翻译公司,以琳翻译就在这里为大家解读一下。 一般来讲,翻译这项服务都是以字数来计价的,市场上的一般的价格是50-80元/千字,这是一个基本的价格。但是不同的公司的专业性质不一样的话,所给出的价格也是不一样的。对于公司的衡量标准来讲,影响价格的因素主要有:公司的资历、翻译人员的专业性、翻译文件的种类、难度等。所以,如果你需要去找翻译公司去服务,那么就需要考虑这些方面的东西。而对于合同这种文件,对于公司来讲是十分重要的,所以也需要去找专业的公司去进行翻译,如果是找一个资质不够的公司或者团队,那么就可能产生一些意想不到的问题,从而影响到公司的最终利益。 下面,我们来看看以琳翻译给出的翻译的价格。 从上面的价格可以看出,以琳翻译给出的价格是高于一般市场上的价格的,最低级别的翻译是160元/千字,然后分为A、B、C三级。C级译稿为普通中籍译员+中籍译员审核,满足客户对译文的普通要求。这是对于一般的合同而言的,但是如果是部分专业性质较强或者要求比较高的译文的话,那么可以选择更高级别的翻译,当然价格还是相对比较高的。 那么以琳翻译的资质是怎么样呢?我们再来看一下。 杭州以琳翻译有限公司是浙江省最大的实体翻译公司、中国翻译协会单位会员、美国翻译协会会员、全国翻译专业硕士研究生教育实习基地、西博会指定合作伙伴、以琳杭州翻译公司翻译团队成员均具有五年以上专业翻译、项目管理经验,绝大部分成员具有十年以上行业翻译经验。翻译服务涵盖英语、法语、韩语、日语、德语、俄语、西班牙语、葡萄牙语、

专业英文翻译中文收费标准

精诚英语翻译报价50-80元千字(市场价格100左右 精诚英语翻译工作室是由众多英语方面精英组成的翻译团队,一直致力于为广大中小企业和个人提供专业低价中英文翻译服务。价格是我们永远的优势!!!!最低价格支付宝担保交易,让你省钱又放心接受试译!!自信源于专业可以百度搜索精诚英语翻译找到我们 选择我们的理由:可以百度搜索精诚英语翻译找到我们 1.保证价格最低,团队网络化运作,无需经营成本,可以通过低价让利于客户。(有些客户看到这么低的价格还不敢相信,但是对于我们来说是完全可以接受的。) 2.保证准时、保密、准确 3.接受淘宝交易,让您没有任何担忧。 4.长期翻译经验,保证质量让您满意。 龚如心遗产案虽然告一段落,「遗产」二字仍然成为近日香港的焦点。新春期间,民政事务局局长曾德成表示,政府将展开全港非物质文化遗产首期普查,希望市民为遗产清单提出建议。 「遗产」是「资产」? 近五、六年间,香港对保护本地小区和文化传统的意识高涨,现在政府带头要列一个「非物质文化遗产」清单,理应是很受欢迎之举。不过普查尚未展开,就引来学者争议,其中单是「非物质文化遗产」这个译名,就引起不少误会。 「非物质文化遗产」的原文是intangible cultural heritage(英文)或patrimoine culturel immateriel (法文),是联合国在1997年以尊重多元文化为大原则而提出的概念,并由联合国教科文组织制定「保护非物质文化遗产公约」,2006年生效。 「非物质文化遗产」是中国大陆的翻译,香港有学者不约而同就「非物质」和「遗产」二字提出质疑。香港城市大学中国文化中心主任郑培凯早在2005年就大声疾呼译名不妥。他认为原文heritage/patrimoine的意义是「传承」而非资产,不容易引发出财产的概念。而现在约定俗成译作「遗产」,容易令人觉得祖宗留下的东西,是可以变卖和投资的生财工具,与联合国提出的文化传承精神背道而驰。郑教授认识,正确的译名是「非物质文化承继」或「非实物文化传承」。另一位民俗学研究者陈云进一步指出,intangible「乃触摸不到的事,无形无相之事」,应用「精神价值」代之,「非物质」有消灭了精神之嫌,所以中国人应堂堂正正将之翻译为「无形文化传承」。 姗姗来迟的「遗产」 不论是「非物质」还是「无形」,「遗产」还是「承传」,即使公约成员国中国曲译甚至错译,香港特区政府还是只能照单全收。而且,随之而来的不止是字面的斟酌,而是「遗产」的搜寻和管理问题。 中国自2005年起,就开始非物质文化遗产(由于这个名称已约定俗成,故下文仍沿用之,并简称为「非遗」)普查,并陆续列出清单。香港也在翌年提出编制非遗清单,但却延至去年才聘专家普查,估计最快要2012年才完成。 非遗普查尚未展开,在国家文化部的再三邀请(或是说催促?)下,去年九月,香港终于申请将长洲太平清醮、大澳端午游涌、大坑舞火龙和香港潮人盂兰胜会列为第三批国家级非遗,预计今年六月有结果。 其实香港已错过了2006和2008年首批和第二批的申报机会,所以,至目前为止,在中国的文化版图上,香港是唯一没有任何有形和无形「遗产」的主要城市/特区,就连比邻的澳门也凭神像雕刻工艺获得2008年国家级非遗之「奖项」。 有人说非遗不过是人有我有,纯粹锦上添花;也有人说,中国在维护主权和领土完整的概念下,又怎能在文化层面少了香港一席?香港能够「出产」一个非遗,中国在全球的文化图谱中就多一个筹码。 姑勿论背后原因为何,由于「保护非物质文化遗产公约」也适用于香港,香港特区政府就有责任找出和保护濒危失传、与社会关系密切及具香港独特性的文化传统。现在起步虽迟,但为时未晚。 「遗产」的管理问题 不过,既然政府要展开普查,另一个问题来了。民间传统应该是属于民间的,并由民间自行发展,还是属于官方,由政府承担保护与管理? 据政府委聘负责首期普查的香港科技大学华南研究中心主任廖迪生表示,政府至今仍未有任何政策配合或承诺给予全面的保护,所以,即使清单出炉,有些遗产仍有可能难逃「破产」的命运。他强调制作非遗清单只是第一步,更重要的是如何保护这些项目。 再问民政事务局,曾德成局长除了曾向立法会议员表示,制定清单是向国家文化部申请列为国家级非遗的第一步,进而再向联合国教科文组织提出申报为世界非物质文化遗产,他所提出的,就是以遗产作招徕吸引外地游客,「以提升香港作为旅游目的地的吸引力」。 这才是令人担心的地方。「非遗」这个金漆招牌在中国许多地方都有点石成金之效。戴上这个冠冕,民俗文化很容易沦为生财工具、游客的消费品,连婚嫁仪式也可用来表演,完全违背了保护非遗的原意。曾德成之言,是否意味着香港也要跟着祖国一起走上同一条路?

英文翻译价格

英文翻译价格 根据以英文作为母语的人数计算,英文是最多国家使用的官方语言,英语也是世界上最广泛的第二语言,也是欧盟,最多国际组织和英联邦国家的官方语言之一。但仅拥有世界第二位的母语使用者,少于标准汉语。上两个世纪英国和美国在文化、经济、军事、政治和科学上的领先地位使得英语成为一种国际语言。如今,许多国际场合都使用英语做为沟通媒介。英语也是与电脑联系最密切的语言,大多数编程语言都与英语有联系,而且随着网络的使用,使英文的使用更普及。英语是联合国的工作语言之一。 为了方便大家了解英文翻译价格,小编在目前汇集最多翻译团队的高校译云上面获得了不同翻译精英团队所展示的价格。 暨南大学翻译中心:中英---普稿---150---千字英中---普稿---250---千字 武汉理工大学-外国语学院MTI翻译中心 :中英互译中英130-150 英中100-130 华中科技大学-翻译研究中心 :中英互译中英120-150 英中100-120 湖南科技大学MTI中心:中英---普稿---150---千字 上海师大外国语学院翻译中心: 中英---普稿---200元---千字英语普通文本译成汉语---120元---千字西南大学翻译中心:中英---普稿----300---千字英中---普稿---200---千字 上海理工大学MTI翻译中心:中英---普稿---100---千字 南京财经大学外国语学院翻译研究中心:中英---普稿---100---千字 一般英文翻译价格是是在100—300元每千字,根据译员质量、翻译内容、需要的时间等都会有一定的波动,所以以上价格供大家参考,具体的可以准备好稿件了去问,这样会更加准确一些。

翻译服务收费标准

翻译服务收费标准 一、笔译人民币元/千字中文( 加急加收30% —70% ,专业加收50% ) 语种中译外外译中外译外 英语170 140 面议 日语170 140 韩语190 160 德语220 180 俄语220 180 法语220 180 意大利语280 250 西班牙语280 250 葡萄牙语290 260 阿拉伯语350 320 越南语430 400 荷兰语510 460 波兰语380-480 360-40 塞尔维亚语370-470 420-530 泰国语260-380 280-520 老挝语320-420 370-480 印度语320-420 370-480 希腊语370-470 420-530 哈萨克语280-380 300-410 瑞典语300-400 340-450 丹麦语320-420 370-470 印度尼西亚语330-450 350-460 蒙古语300-400 350-460 1、字数计算:以中文版稿件在Windows word文档显示的字符数(不计空格)为基准。也即包含了标点符号,因其为理解语义的必需。 2、图表计算:图表按每个A4页面,按页酌情计收排版费用。 3、外文互译:按照中文换算,即每个拉丁单词乘以二等于相应的中文字数。 4、日翻译量:正常翻译量3000-5000字/日/人,超过正常翻译量按专业难易受20%加急费. 5、付款方式:按预算总价的20%收取定金,按译后准确字数计总价并交稿付款。 6、注意事项:出差在原价格上增加20%,客户负责翻译的交通、食宿和安全费用。 二、口译价格: (1) 交传报价(元/人/天,加小时按100-150元/小时加收费用)类型英语德、日、法、俄、韩小语种 一般活动700 800 1500 商务活动500-1200 500-1500 800-3000 中小型会议1200-3000 1500-3000 2500-3000 大型会议1200-4000 2500-6000 4000-9000 (2) 同传报价(元/人/天) 类别中-英互译日、韩、德、俄、法、韩-中互译小语种-中互译 商务会议5000-8000 6000-10000 8000-10000 中小型会议5500-8000 7000-12000 8000-12000 大型国际会议6000-9000 8000-12000 12000-16000

浙江杭州小语种翻译公司报价

加快实施“走出去”战略是适应全球化新形势和我国发展新变化,培育参与和引领国际合作和竞争新优势的重要举措。据预测,今后五年,我国对外投资规模总量超过5000亿美元,并且年增速在10%以上。浙江是外贸大省,境外经贸合作区建设走在全国前列,境外投资一直保持高速增长,《浙江省利用外资和境外投资“十三五”规划》也作出了明确部署。跨境法商论坛拟计划在杭州举办,将促进浙企与马来西亚、新加坡相关机构的直接对话,帮助浙江企业进一步拓展“一带一路”市场,寻找国际合作渠道,促进有效投资。 各式各样大手笔的贸易投资合作,也预示着新的发展机会。对从事语言服务工作的人士无疑是好消息。据中青在线记者报道,在之前“一带一路”国际合作高峰论坛会议中,现场的同传耳机里,18种工作语言分别是:汉语、英语、法语、俄语、西班牙语、柬埔寨语、捷克语、匈牙利语、印度尼西亚语、哈萨克语、老挝语、蒙古语、波兰

语、塞尔维亚语、土耳其语、越南语、日语和韩语。每个座位上都放有一张列举了这些语言的名单,除了标注与同传耳机频道对应的16种语言以外,同传耳机中的第17、第18频道分别是日语和韩语。 这无疑是翻译从业者的一剂强心针,不少小语种从业者和学习者表示,政府、学校、企业等对于小语种的关注度,现在越来越高了。更日常的商务沟通、贸易合作等等势必越来越密集和频繁,毫无疑问,国内的翻译人才供不应求,高质量的翻译人群,已经成为最抢手的人才。 随着翻译需求的不断加大,国内的翻译产业开始蓬勃发展。从2012年到2015年,我国翻译专业硕士(MTI)学位授予点也由2007年的15所大学增加至2016年的215所大学,国内翻译公司数量已达到72,485家。咱们先了解一下市场小语种的翻译报价参考: *以上报价为人民币基准价,不含税金,仅供参考,具体报价根据需译资料数量、领域、难易等具体确定!

中译英翻译报价单中译英翻译价格

精诚翻译公司五周年五折优惠中5年经验!先翻译后付费学生客户送50元优惠券,可以搜索精诚翻译公司者50元翻译找到我们 The book of“Chinese Language" aims at improving students' Chinese accomplishment and emphasizes on humanity, instead of literature or humanism. The book mainly consists of literary works, and also involves philosophy, history, art, science and technology, so as to interest students of different majors and help broaden their vision. 1Ancient literature 2 Modern literature 3 English-Chinese translation In the textbook of Public English, one third of contents have been updated, therefore, the contents become more interesting, comprehensive and practical. The attached vocabularies enable students to master the law of learning vocabularies, and the actual use of English sentences help improve their ability of using English. "Fundamentals of Management" is a subject which discusses basic theories, principles, management functions and general method of management activities, it also combines theories with practice closely. Through studying this course, students should be familiar with basic concept of management, relevant knowledge system and thoughts by various management school; understanding basic management theories and relevant principles in depth, as well as planning, decision-making, organization, leadership, motivation, control, communication and other basic management functions and methods. "The History of Chinese Culture" The book' author is an contemporary Chinese culture expert who has published many cultural works. This book focuses on evolution of academic thought and culture, at the same time, it also consider behavior, system,

山东青岛小语种翻译公司报价

“一带一路”倡议提出五年来,青岛市紧紧围绕“新亚欧大陆桥经济走廊主要节点城市”和“海上合作战略支点”功能定位,积极融入大局,深入贯彻国家政策,在经贸合作、外事外宣、金融保障、海洋科技合作等领域着力打造对外开放新高地。对“一带一路”沿线国家累计投资69.8亿美元,承包工程完成营业额130.6亿美元。全市银行机构累计为“一带一路”沿线国家和地区有投资项目的84家大型企业授信860.3亿元,贷款余额445.1亿元,支持3000余家企业与“一带一路”沿线61个国家开展贸易投资与建设合作。市级领导出访沿线国家达50余批次;接待国外重要来宾、团组来访530余批次,友城总数达到70个,遍及全球37个国家。 各式各样大手笔的贸易投资合作,也预示着新的发展机会。对从事语言服务工作的人士无疑是好消息。据中青在线记者报道,在之前“一带一路”国际合作高峰论坛会议中,现场的同传耳机里,18种工作语言分别是:汉语、

英语、法语、俄语、西班牙语、柬埔寨语、捷克语、匈牙利语、印度尼西亚语、哈萨克语、老挝语、蒙古语、波兰语、塞尔维亚语、土耳其语、越南语、日语和韩语。每个座位上都放有一张列举了这些语言的名单,除了标注与同传耳机频道对应的16种语言以外,同传耳机中的第17、第18频道分别是日语和韩语。 这无疑是翻译从业者的一剂强心针,不少小语种从业者和学习者表示,政府、学校、企业等对于小语种的关注度,现在越来越高了。更日常的商务沟通、贸易合作等等势必越来越密集和频繁,毫无疑问,国内的翻译人才供不应求,高质量的翻译人群,已经成为最抢手的人才。 随着翻译需求的不断加大,国内的翻译产业开始蓬勃发展。从2012年到2015年,我国翻译专业硕士(MTI)学位授予点也由2007年的15所大学增加至2016年的215所大学,国内翻译公司数量已达到72,485家。咱们先了解一下市场小语种的翻译报价参考: *以上报价为人民币基准价,不含税金,仅供参考,具体报价根据需译资料数量、领域、难易等具体确定! 尽管翻译人才输出与翻译机构成立都发展迅速,但真正能满足企业发展需求的高质量翻译机构却并不好找。一方面是因为从事翻译行业的,不少都是翻译新手,没有行业经验和过硬实力,另一方面,也是因为翻译机构资质参差不齐,没有统一的规范,翻译价格和翻译质量也受到影响。怎么选择靠谱的翻译机构就成为企业的困惑点。

小语种翻译现状

小语种翻译现状 目前很多大城市会出现一种奇怪的现象,当小众语种国家人代表在我国开会发言演讲时,台下的大家只能眼巴巴的望着他却不知所云,居然没人能翻译,这种现象引起了各相关部门的广泛关注。翻译达人表示说,我国很多二三线城市同声传译人才缺乏,翻译机构规模档次不够。面对二三线城市建设步伐的加快以及国际性会议的增多,高端翻译市场亟待提升档次。 国际会议尴尬 西安高新区工作的张先生讲述到,某次会议当天,来自亚洲的一些国家的部门代表轮流发言,参与会议的也都是来自周边国家的企业以及政府代表。每人配备同声传译设备,并且有同传人员现场翻译,一切看上去井井有条。可当轮到格鲁吉亚一位代表发言时,同传人员却“撤退”了。说着格鲁吉亚语的这位代表只好自顾自说了半天,下面参会人员看上去一片茫然。 人才严重匮乏 目前大多二三线城市的小语种翻译人员都是从北京、上海、广州这些大城市请过来的,并且价格不菲!同声传译人才对翻译水平的要求最高,不仅要具备良好的口语功底,还要对当地的文化有所了解,一般都需要有国外生活几年的经历才能胜任。大多二三线城中外语翻译人才还仅仅停留在英语方面,小语种翻译人才严重匮乏。而能提供大多小语种翻译的,一般只有像翻译达人这样的翻译平台。 小语种翻译专业开设少 导致小语种翻译人才稀缺的因素有很多,其中有一个因素就是开设小语种专业的高校少。比如小语种罗马尼亚语,全国仅有1所大学开设了这个专业,即北京外国语大学。还有上文提到的格鲁吉亚语,目前在我国还没有一所大学开设了

这个专业。曾经北大给俄语专业的学生开设了这个课程,请的格鲁吉亚的外教讲授的,但是因为外教的变动,这课程现在也没有了。因为开设小语种的学校少,学习该语种的人自然也少。随之就是翻译的价格水涨船高。可以说,翻译人才越难找,收费也就越贵。 翻译市场亟待壮大 人才的匮乏会明显的限制整个翻译市场的壮大与发展,国际性会议的大幅度增多,更导致了小语种人才严重稀缺。而懂得小语种的翻译人才,目前正在成为各大公司热捧的对象。甚至因为人才稀缺,企业在招聘标准上也低出不少,如某些公司招聘负责商务谈判及日常翻译工作的俄语翻译,已经打出“应届毕业生也可”的条件。所以,目前我国的小语种翻译市场亟待扩大,也需要更多的小语种翻译人才。

相关文档
最新文档