雷达的分类

雷达的分类
雷达的分类

雷达的分类雷达的用途分类

一、预警雷达

二、搜索警戒雷达

三、引导指挥雷达

四、炮瞄雷

五、测高雷达

六、战场监视雷达

七、机载雷达

八、无线电测高雷达

九、雷达引信

十、气象雷达

十一、航行管制雷达

十二、导航雷达

十三、防撞和敌我识别雷达

雷达信号形式分类

一、有脉冲雷达

二、连续波雷达

三、脉部压缩雷达

四、频率捷变雷达

角跟踪方式分类

一、有单脉冲雷达

二、圆锥扫描雷达

三、隐蔽圆锥扫描雷达

目标测量的参数分类

一、有测高雷达

二、二坐标雷达

三、三坐标雷达

四、故我识对雷达

五、多站雷达

雷达采用的技术和信号处理的方式有

一、相参积累

二、非相参积累

三、动目标显示

四、动目标检测

五、脉冲多普勒雷达

六、合成孔径雷达

七、边扫描边跟踪雷达

天线扫描方式分类

一、机械扫描雷达

二、相控阵雷达

雷达频段分类

一、超视距雷达

二、微波雷达

三、毫米波雷达

四、激光雷达

探地雷达在桩基检测中的应用

探地雷达在桩基检测中的应用 于涛 (中铁十九局集团第三工程有限公司) 摘要介绍了探地雷达工作原理与在桩基中的检测方法,探讨了探地雷达在桩基检测中的应用现状。关键词探地雷达桩基 桩基础属隐蔽工程,为了保证桩基础的安全可靠,桩基的质量检查至关重要。常规桩基工程的检测方法如静载荷试验、高应变、低应变等已经日趋完善,但是随着工程目的的多样化和质量要求的提高,许多建筑工程中的桩基设计和施工工艺较为特殊,使得建立在杆状模型的一维波动方程理论基础之上的常规检测手段无能为力[&]。基于以上情况,常使用地质雷达探测作为桩基常规检测方法的有力补充,这正好发挥了其高分辨率、高准确性的特点,同时可以数据处理和图像解释,有其独特的效果。 地质雷达是目前精度最高的物探仪器之一,广泛应用于工程地质、岩土工程、地基处理、道路桥梁、文物考古、混凝土结构探伤等领域[!]。探地雷达能探测#"’(")深度,一般能满足工程勘测的需要[#]。但对于以钢筋混凝土为主要材料的桩基,其电性性质与周围土体有明显差异,而且介质性质较均匀,探测深度可能会增加,另外雷达剖面会有较好的效果。 &探地雷达的基本原理 探地雷达是利用高频电磁波(&*+,’&-+,)以宽频带短脉冲的形式,在地面通过发射天线(!)将信号送入地下,经地层界面或目的体反射后回到地面,再由接收天线(")接收电磁波反射信号,通过对电磁波反射信号的时域特征和振幅特征进行分析来了解地层或目的体特征信息的方法。 当发射天线向地下发射高频宽频带短脉冲电磁波时,遇到不同介电特性的介质就会有部分电磁波能量返回,接收天线接收反射回波并记录反射时间。电磁波在岩土介质中的传播速度为: !#$%" !. 式中:$为电磁波在真空中的传播速度,约为"/#)?01$&;".为相对介电常数。 电磁波在介质中传播时,其路径$波形将随所通过的介质的电性质及几何形态而变化,根据接收到波的旅行时间(亦即双程走时)、幅度、频率与波形变化资料,可以推断介质的内部结构以及目标的深度、形状等,利用电磁波在介质中的波速和旅行时间可以计算介面深度(&2’3(4!)。当发射天线沿欲探测物表面移动时就能得到其内部介质剖面图像,其工作原理见图& 。反射脉冲的信号强度,与界面的波反射系数和穿透介质的波吸收程度有关。 〔收稿日期〕!""#$"#$!%

探地雷达在地下管线探测中的应用

探地雷达在地下管线探测中的应用 张进华,马广玲,姚成虎,缪建文 (南京市测绘勘察研究院,江苏南京 210005) 摘 要:探地雷达技术是如今适应快速、准确、无损地探测地下障碍物而迅速发展的电磁技术。本文通过结合工程实例来探讨探地雷达在地下管线探测中的广泛应用。 关键词:探地雷达;地下管线探测;异常反射 1 前 言 探地雷达(Ground Penetrating Radar,简称GPR)是一种对地下或物体内不可见的目标体或界面进行定位的电磁技术。探地雷达以其探测的高分辨率和高工作效率而成为地球物理勘探的一种有力工具。随着信号处理技术和电子技术的不断发展以及工程实践的增多和经验的丰富积累,探地雷达技术进一步发展,仪器不断更新,应用范围逐步扩大,现已被广泛应用于工程地质勘察、建筑结构调查、无损检测、生态环境等众多领域。本文将以探地雷达在地下管线探测中的应用,说明探地雷达可以有效解决工程上的许多疑难问题,并总结了相关经验和应用效果。 2 探地雷达的原理及工作方法 探地雷达由地面上的发射天线将高频带短脉冲形式的高频电磁波定向送入地下,高频电磁波遇到存在电性差异的地下地层或目标体反射后返回地面,由接收天线接收。高频电磁波在传播时,其路径、电磁场强度与波形将随所通过介质的电性及几何形态而变化,故通过对时域波形的采集、处理与分析,可确定地下界面或地质体的空间位置及结构。 探地雷达通常以脉冲反射波的波形形式记录。波形的正负峰分别以黑白表示,或者以灰阶或彩色表示,这样同相轴或等灰线、等色线即可形象地表征出地下反射面或目标体。在波形图上各测点均以测线的铅垂反向记录波形,构成雷达剖面。根据雷达剖面图便可 收稿日期:2003-07-09判断地下不明障碍物。探地雷达在地下介质中的传播遵循波动方程理论。探地雷达的探测效果主要取决于地下目标体与周围介质的电磁性质差异、目标体的深度与介质对电磁波的吸收作用、目标体的几何形态及规模、干扰波的类型、强度及特点等因素。 探地雷达具有不同的野外工作方法,根据工作区的具体情况可选择剖面法、多次覆盖法以及宽角法等测量方式。实际工作中,测量参数(发射接收天线距、时窗、测点点距、天线中心频率、采样率等)可根据不同要求进行选择,从而得到不同分辨率及不同探测精度的雷达剖面。通常在进入工作区前,应有目的地进行类似场地条件的参数选择试验,以达到最佳探测效果。在进入工作区后应根据实际需要布置测线和测点,并让测线和测点尽量通过被测目的物。在不明显的目的物上进行探测时应尽量加密线距和点距,以利于后面的资料处理与解释。 3 探地雷达的数据资料解释处理及在地下管线探测中的应用效果 近几年来,我们采用加拿大生产的pulse EKKO-100A型探地雷达从事了数百次的地下管线探测工作,取得了丰富的探地雷达探测资料及很好的应用效果。 3.1 资料的处理及解释 探地雷达探测资料的解释包括数据处理和图像解释两部分内容。由于地下介质相当于一个复杂的滤波器,介质对电磁波的不同程度吸收及介质的不均匀性, 63城 市 勘 测2004年

图像分类所需知识整理

图像分类 图像分类技术得益于两种技术的发展,一种是数据库技术,另一种是计算机显示技术。从这两种技术角度来看,图像分类技术可以分为基于文本的图像分类系统和基于图像自身内容的分类系统。 基于内容的图像分类系统 为了克服传统图像分类技术的局限性,人们开始寻求新的图像分类检索方法,于是出现了基于内容的图像分类技术,即使用图像本身的颜色、形状、纹理等视觉特征代替传统的手工填加关键字信息进行分类的技术。 基于内容的分类它直接对图像内容进行分析,抽取特征和语义,利用这些特征和语义进行分类并建立索引,进行检索。 人们已经将研究重点转移到从图像的视觉内容中自动提取图像特征用于分类及检索上,并且已经开发了各类基于内容的图像视频分类检索系统。 其中较著名的有QBIC、Photobook、Foureys等。这些系统主要利用了图像的低层次信息,如颜色、形状、布局、纹理等。 近几年来,基于内容的图像分类检索技术有了长足的发展,主要是基于低层次视觉特征的图像分类检索,比较成功的例子有IBM 公司的QBIC系统等。 但是针对高层次语义特征的图像分类检索系统还没有成熟的产品。在基于内容的多媒体信息分类检索技术研究中,基于理解的文本分类检索已经有比较好的研究成果,但基于视觉特征和语义特征的图像、音视频分类检索尚处于研究开始阶段。 目前,在图像分类方面,还没有比较成熟的算法能够对所有的图像类型都进行有效的分类。 因此研究图像分类的有效算法对于图像检索技术发展具有十分重要的意义。 从不同的角度,图像可以分为不同的类别。 本文将图像根据功能不同分为图标类图像和图片类图像。 图片类图像在分类技术上,采用提取图像的颜色数,主体颜色,色彩的饱和度等图像基本特征的方法, 根据图像低层次的可见特征进行分类。这些种类不同的图像在视觉特征上有较大的区别, 结合因特网中网页的相关文本信息可以实现语义级的分类。 图像的合理分类对提高基于内容的图像检索结果的准确性具有十分重要的作用。 万维网上的图像的类别一般如下 照片类图片(Photograph)特点 照片类图片通常指具有纹理或纹理趋势的实物图片或通过某些专门软件(如photoshop、3D Max等)处理产生的图片。 照片类图片包括照片(从自然界采集或通过扫描得到的图片)、类照片(主要指通过某些专门的图片处理软件生成的图片或计算机游戏的屏幕图片)等。 特点为:图片中使用的颜色数多,颜色逼真、鲜艳,颜色层次丰富,并且颜色之间过渡比较缓慢,能够表现出颜色、 阴影的细微层次变化。都有比较明显的纹理或纹理趋势,边缘一般模糊不清晰,且在大小比率(长*高)上差别也较小。 常用来显示真实的场景。 如果从照片内容上分类,照片类图片可以分为自然景物类和人造景物类图片。自然景物类图片一般颜色比较鲜明,但是纹理趋势不明显,而人造景物类图片中一般为城市高楼、宗教庙宇、室内物件之类的图片,图片中包含的线条比较多,有较明显的纹理趋势。 图画类图片(Graphic)特点 图画类图片通常都是具有良好边界的设计图片,它一般是通过绘图软件或是手工绘制而成。 图画类图片主要包括:卡通画、国画、油画、图表、徽标、艺术字等。与照片类图片相比,图画类图片中使用的颜色数较少,但是区域颜色的饱和度通常都比较高,多使用纯色或是饱和度较高的颜色,并且颜色间的过渡也较照片类图片快,颜色层次单薄。图片中纹理趋势不明显,通常有清晰的线条和光滑的边缘。另外图画类图片在大小比率上差别较大。

毕业设计(论文)-基于SVM的图像分类系统设计文档

LANZHOU UNIVERSITY OF TECHNOLOGY 毕业设计 题目基于SVM的图象分类系统 学生姓名 学号 专业班级计算机科学与技术3班 指导教师 学院计算机与通信学院 答辩日期

摘要 支持向量机(SVM)方法是建立在统计学习理论基础之上的,克服了神经网络分类和传统统计分类方法的许多缺点,具有较高的泛化性能。但是,由于支持向量机尚处在发展阶段,很多方面尚不完善,现有成果多局限于理论分析,而应用显得较薄弱,因此研究和完善利用支持向量机进行图像分类对进一步推进支持向量机在图像分析领域的应用具有积极的推动作用。 本文通过支持向量机技术和图像特征提取技术实现了一个图像分类实验系统。文中首先引入了支持向量机概念,对支持向量机做了较全面的介绍;然后,讨论了图像特征的描述和提取方法,对图像的颜色矩特征做了详细的描述,对svm分类也做了详细的说明;最后讨论了由分类结果所表现的一些问题。测试结果表明,利用图像颜色矩特征的分类方法是可行的,并且推断出采用综合特征方法比采用单一特征方法进行分类得到的结果要更令人满意。 关键词:支持向量机图像分类特征提取颜色矩

Abstract The support vector machine (SVM) method is based on statistical learning theory foundation, overcome the neural network classification and traditional statistical classification method of faults, and has high generalization performance. But, because the support vector machine (SVM) is still in the development stage, many still not perfect, the existing results more limited to the theoretical analysis, and the use of appear more weak and therefore study and improve the use of support vector machines to image classification support vector machine to further advance in the application of image analysis play a positive role in promoting. In this paper, support vector machine (SVM) technology and image feature extraction technology implements a image classification experiment system. This paper first introduces the concept of support vector machine (SVM), the support vector machine (SVM) made a more comprehensive introduction; Then, discussed the image characteristics of description and extraction method, the image color moment features described in detail, also made detailed instructions for the SVM classification; Finally discussed the classification results of some problems. Test results show that using the torque characteristics of the image color classification method is feasible, and deduce the comprehensive characteristic method than using single feature method to classify the results are more satisfactory. Keywords: support vector machine image classification feature extraction Color Moment

探地雷达

探地雷达原理及应用读书报告 班级:061094班姓名:洪旭程学号:20091001724 探地雷达探测是一种先进的测试技术,是近十余年发展起来的地球物理高新技术方法,以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图像显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、水文地质调查、矿产资源研究、生态环境检测、城市地下管网普查、文物及考古探测等众多领域,取得了显著的探测效果和社会经济效益,并在工程实践中不断完善和提高,必将在今后的工程探测领域发挥着愈来愈重要的作用。因此,对广大工程技术人员来说,了解和学习探地雷达的原理及应用是非常必要的。 探地雷达探测技术在方法、仪器等方面仍在发展,其分辨率和探测范围也在不断的提高和扩大,比如美国地球物理调查系统公司( Geophysical Survey System Inc. ) 的SIRO10H 仪器,其标称的最小探测深度为4 cm ,最大探测深度为50 m ,最小可探测对象尺度为毫米级。但探地雷达探测技术与其它的地球物理勘查技术一样,其探测效果与其应用条件密切相关。 一、探地雷达的工作原理 探地雷达探测的工作原理,简单地说是通过特定仪器向地下发送脉冲形式的高频、甚高频电磁波。电磁波在介质中传播,当遇到存在电性差异的地下目标体,如空洞、分界面等时,电磁波便发生反射,返回到地面时由接收天线所接收。在对接收天线接收到的雷达波进行处理和分析的基础上,根据接收到的雷达波形、强度、双程时间等参数便可推断地下目标体的空间位置、结构、电性及几何形态,从而达到对地下隐蔽目标物的探测(如图1 所示) 。这是一种非破坏性的探测技术,可以安全地用于城市建设中的工程场地,并具有较高的探测精度和分辨率。 图1 中T 为发射天线, R 为接收天线,电磁波在地下介质中遇到目标体和基岩时发生反射, 信号返回地面由天线R 接收并记录,通过主机的回放处理,就可以得到雷达记录的回波曲线(如图2 所示) 。

探地雷达的发展与现状

探地雷达的发展与现状 探地雷达的历史最早可追溯到20世纪初。1904年,德国人Hülsmeyer首次将电磁波信号应用于地下金属体的探测。1910年,Leimback和L?wy以专利形式提出将雷达原理用于探地,他们用埋设在一组钻孔中的偶极天线探测地下相对高导电性质的区域,正式提出了探地雷达的概念。1926年Hülsenbeck第一个提出应用脉冲技术确定地下结构的思路,他指出介电常数不同的介质交界面会产生电磁波反射。由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,之后二三十年尽管在美国出现过一些相关的专利,这项技术很少被运用到其它领域,直到50年代后期,探地雷达技术才慢慢重新被人们所重视。探地雷达在矿井(1960,J.C.Cook)、冰层厚度(1963,S.Evans)、地下粘土属性(1965,Barringer)、地下水位(1966,Lundien)的探测方面得到了应用。1967年,一个与stern最初用于冰川探测的仪器类似的系统被设计研制出来,1972年Procello将其于探测月球表面结构。同样在1972年,Rex Morcy和Art Drake开创了GSSI(Geophysical Survey Systems Inc.)公司,主要从事商业探地雷达的销售。随着电子技术的发展,数字磁带记录问世,加之现代数据处理技术的应用,特别是拟反射地震处理的应用,探地雷达的实际应用范围在70年代以后迅速扩大,其中有:石灰岩地区采石场的探测(1971,Takazi;1973,kithara;)、淡水和沙漠地区的探测(1974,R.M.Morey;1976,P.K.Kadaba)、工程地质探测(1976,A.P.Annan和J.L.Davis;1978,G.R.Olhoeft,L.T.Dolphin)、煤矿井探测(1975,J.C.Cook)、泥炭调查(1982,C.P.F.Ulriken)、放射性废弃物处理调查(1982,D.L.Wright;1985,O.Olsson)、以及地面和井中雷达用于地质构造填图(1997,M.Serzu )、水文地质调查(1996,A.Chanzy ;1997,Chieh-Hou Yang )、地基和道路下空洞及裂缝调查、埋设物探测、水坝的缺陷检测、隧道及堤岸探测等。 自70年代以来、许多商业化的通用数字探地雷达系统先后问世,其中有代表性的有:美国Geophysical Survey System Inc公司的SIR系统、Microwave Associates 的MK系列,加拿大Sensor & Software的Pulse Ekko系列,瑞典地质公司(SGAB)的RAMAC/GPR系列,日本应用地质株式会社OYO公司的GEORADAR系列及一些国内产品(电子工业部LTD系列,北京爱迪尔公司CR-20、CBS-900等)。这些雷达仪器的基本原理大同小异,主要功能有多通道采集、多维显示、实时处理、变频天线、多次叠加、多波形处理等,另外还有井中雷达系统,多态雷达系统,层析成像雷达系统等。 国内探地雷达的研究始于70年代初。当时,地矿部物探所、煤炭部煤科院,以及一些高校和其他研究部门均做过探地雷达设备研制和野外试验工作,但由于种种原因,这些研究未能正式用于实际。90年代以来,由于大量国外仪器的引进,探地雷达得到了广泛的应用与研究。1990-1993年,中国地质大学(武汉)在国家自然科学基金资助下,开展了大量的理论研究和工程实践,取得了不少成果。探地雷达主要应用领域有隧道(1998,隋景峰;2001,刘敦文等)、水利工程设施(1997,赵竹占等)、混凝土基桩(2000,李梁等)、煤矿(1998,刘传孝等)、公路(1996牛一雄等;1997,沈飚等);岩溶(1994,王传雷,祁明松;1995,李玮,梁晓园);工程地质(1994,胡晓光;1999,刘红军,贾永刚);钻孔雷达(1999,宋雷,黄家会)等。

RAMAC探地雷达在地下管线探测中的应用

RAMAC探地雷达在地下管线探测中的应用 冯新,周晶 大连理工大学土木水利学院,大连,116024 摘要:应用RAMAC系列探地雷达进行了地下管线探测的研究。基于对城市地下管线周围介质环境的分析,设计了探地雷达的工作参数,对不同类型的地下管线进行了探测,并就典型的管线异常特征进行了分析。关键词:探地雷达,地下管线,应用 1.引言 地质雷达(Ground Penetrating Radar,简称CPR)是采用无线电波检测地下介质分布和对不可见目标体或地下界面进行扫描,以确定其内部结构形态或位置的电磁技术。其工作原理为:高频电磁波以宽频带脉冲形式通过发射天线发射,经目标体反射或透射,被接收天线所接收。高频电磁波在介质中传播时,其路径、电磁场强度和波形将随所通过介质的电性质及集合形态而变化,由此通过对时域波形的采集、处理和分析,可确定地下界面或目标体的空间位置或结构状态。地质雷达具有分辨率高、无损、操作简便、抗干扰能力强等特点,适用于各种环境条件。 只要地下管线目标与周围介质之间存在足够的物性差异就能被探地雷达发现。探地雷达的管线探测能力弥补了管线探测仪的探测缺陷, 因此在城市地下管线的探测中得到普遍应用。本文采用瑞典玛拉公司(MALA GEOSCIENCE)生产的RAMAC系列探地雷达,对大连市某场地的地下管线进行了探测,以确定地下管线的具体位置和走向。并且根据探测结果和实际开挖的对比研究,对典型的雷达测线平面异常特征进行了分析。 2.方法简介 城市地下管线铺设特点多为地面开槽和机械顶管等方式埋设, 一般埋深较浅, 在0.5m~ 5m 之间。管线周围介质为回填土、砂质土和粘土等, 管道上方铺有压实路面结构层, 如三合土、混凝土、沥青路面、方砖等,需探测的管道一般管径为0.1m~ 1.5m 之间, 管道内的介质为水、空气、可燃气体等, 管体材质为钢、铸铁、水泥、塑料等。 探地雷达应用的前提是,目标管线体与周围介质的介电常数和电磁波传播的波速存在明显差异。金属管线由于金属中电磁波波速为零, 不能传播, 电磁波在金属管道界面上几乎全部反射回来, 因此, 管线与周围介质存在明显的电磁性差异;非金属管线除管线本身材质与周围介质存在一定差异外, 更主要的是管道内介质如水、气体等与周围介质电磁性差异更大。这些性质通常能够满足探地雷达应用的前提条件。 对于管线探测,探地雷达的反射波组主要从两方面进行识别解释。第一, 反射波组的同相性形成同相轴是判别管线空间位置的重要标识, 在管线探测的横向剖面上, 管线作为孤立的埋设物, 其反射波的同相轴为: 当管线为圆形管道时, 为向下开口的抛物线呈伞形状; 当为沟道式或管块时, 同相轴为有限平板, 界面反射的中部为平板状, 两端各为半支下开口的抛物线。第二, 电磁波在介质中传播特性反映了地下界面上下介质的物性差异, 该差异越大, 反射波越强, 振幅越大; 上下介质中波速大小决定了反射波振幅方向, 当波从介电常数小波速大的介质进入到介电常数大、波速小的介质时, 反射系数为负, 即反射波振幅反向; 反之, 从波速小进入波速大的介质时反射系数为正, 反射波幅与入射波同向。地下目标管线一般存在四层介质界面, 即管线的内外各两层。以上层内界面为例, 非金属管线内上界面的反射波振幅较大, 当内介质为水时, 反射系数为负, 反射波为反向; 当内介质为气体时, 反射系数为正, 反射波为正向; 金属管线由于金属内波速近似为零, 反射波自然为反向, 而且反射振幅特别强, 同时反射信号以管线的外层界面为主, 其它

相关文档
最新文档