直导体外的磁场

直导体外的磁场
直导体外的磁场

实验题目:直导体外的磁场

学号:PB05204044 姓名:张雯 实验组别:20 合作者:张丽娜

实验目的

1、直导体附近磁场的磁感应强度与直导体中电流的函数关系;

2、直导体附近磁场的磁感应强度与距直导体的距离的函数关系。

实验设备

①各种形状导体4套;②大电流变压器;③电源15V AC/12VDC/5A ;④特斯拉表;⑤霍耳元件探针;⑥钳形电流计;⑦万用数字电表;⑧米尺;⑨支撑杆、连接导线等。

实验原理

根据Biot-Savart 定律,一根长AB 的直导线通过的电流强度为I ,直导体外一点Q 处的磁感应强度为:)cos (cos 4210??πμ-=

r

I

B 方向为右手定则或按电流I 方向与矢径r 方向的矢积方向决定。当Q 点距离导线很近时,

r

I B πμ20= (1)

图 求载流直流导线的磁场

实验内容

1、实验设备安装与调节,满足可测的实验要求:实验设备如图安装,注意各个接头一定要接触紧密。调节电源3中心的旋钮,改变通过导体的电流,从钳形电流计6所连接的万用电表(放在交流电压的200mv 档)可直接读出导体内的电流的大小(1mv =1安培)。将霍耳元件探针5(注意不要将其与导线接触)放在距离导线的指定距离处在特斯拉计的显示窗口就可以读出该处的磁感应强度B 。

2、将霍耳元件放在距导线1cm 左右处,从0开始调节导线中的电流,从40安培开始每隔10 安培左右读一次磁感应强度的值,直到100安培。自行设计表格记录下相应实验数据。

3、使电流保持在90安培,改变距离r (从10cm -0.5cm )。

4、作出以上两实验的曲线,用作图法或最小二乘法求出μ0的值(注意单位用SI 国际单位制)

5、改变导线形状,再按上述步骤重复做实验,分析结果得出结论,并用理论拟合来说明结论的正确性。

实验数据和处理 B 与I 之间的关系:(r=1cm )

B 与I 之间的关系:(r=1cm )

0.6

0.8

1.0

1.2

1.4

1.6

Y A x i s T i t l e

X Axis Title

[2006-10-16 14:35 "/Graph1" (2454024)] Linear Regression for Data1_B: Y = A + B * X

Parameter Value Error

------------------------------------------------------------ A 0.03786 0.00838 B 0.01464 1.15175E-4

------------------------------------------------------------

R SD N P

------------------------------------------------------------

0.99985 0.00609 7 <0.0001

------------------------------------------------------------

由公式r

I

B πμ20=

计算得:70

9.19410μ-=?

B 与r 之间的关系:(I=90A )

0.0

0.20.40.60.8

1.01.21.4B

r

0.0

0.20.40.60.81.01.21.4B

1/r

[2006-10-16 14:40 "/Graph1" (2454024)] Linear Regression for Data1_B: Y = A + B * X

Parameter Value Error

------------------------------------------------------------ A -0.004 0.01559 B 1.37205 0.03618

------------------------------------------------------------

R SD N P

------------------------------------------------------------ 0.99827 0.02833 7 <0.0001

------------------------------------------------------------

由公式r

I

B πμ20=计算得:709.57410μ-=?

实验误差分析

1读数的误差,在表的示数还没有完全稳定时候读数,有可能使读出的数据不准确。

2周围环境产生的电磁场引起的噪声对采集实验数据产生影响,例如大功率用电器,开关等使得读数误差。

3 仪器灵敏度较高,使得人为因素引起的误差被放大。

4 周围导线产生的磁场使得读数偏小。

导体棒在磁场中的运动分析

高考试题中的导体棒在磁场中的运动综合分析 高考试题中导体棒在磁场中的运动既是重点又是难点,历年高考中都有体现,现简单举例说明导体棒在磁场中运动问题与力学、能量、图像、函数的结合的试题的解答、希望引起重视。 一、直接考查导体棒切割磁感线和恒定电流综合的问题 1、 (05,辽宁,34)如图1所示,两根相距为l 的平行直导轨a b 、cd 、b 、d 间连有一固定电阻R ,导轨电阻可忽略不计。MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R 。整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(指向图中纸面内)。现对MN 施力使它沿导轨方向以速度v (如图)做匀速运动。令U 表示MN 两端电压的大小,则( ) A .,2 1 vBl U =流过固定电阻R 的感应电流由b 到d B .,21 vBl U =流过固定电阻R 的感应电流由d 到b C .,vBl U =流过固定电阻R 的感应电流由b 到d D .,vBl U =流过固定电阻R 的感应电流由d 到b 该题考查了E=BLV 和闭合电路的欧姆定律,重点是分清楚内外电路以及谁是电源,该题即可以顺利解答。 2、(04,全国,19)一直升飞机停在南半球的地磁极上空。该处地磁场的方向竖直向上,磁感应强度为B 。直升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动。螺旋桨叶片的近轴端为a ,远轴端为b ,如图所示。如果忽略a 到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则 A .ε=πfl 2 B ,且a 点电势低于b 点电势 B .ε=2πfl 2B ,且a 点电势低于b 点电势 C .ε=πfl 2B ,且a 点电势高于b 点电势 D .ε=2πfl 2B ,且a 点电势高于b 点电势 该题考查了右手定则的应用,实质是导体棒切 割磁感线方向的判断。 3、(08,山东,22)两根足够长的光滑导轨竖直放置,间 距为L ,底端接阻值为R 的电阻。将质量为m 的金属棒悬挂 在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在 平面与磁感应强度为B 的匀强磁场垂直,如图所示。除电阻 R 外其余电阻不计。现将金属棒从弹簧原长位置由静止释 B

导体在磁场中的运动专题

导体在磁场中的运动专题 1. 如图1所示,有两根与水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B,一根质量为m的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近 一个最大速度v m,则() A. 如果B增大,v m将变大 B. 如果α增大,v m将变大 C. 如果R增大,v m将变大 D. 如果m减小,v m将变大 2. 如图5所示,三角形导轨COD上放一根导体MN,拉动MN使它以速度v匀速平动。如果导轨与棒都是同种材料同种规格的均匀导体,匀强磁场垂直于轨道平面, 那么棒MN运动过程中,闭合回路的() A. 感应电动势保持不变 B. 感应电流保持不变 C. 感应电动势逐渐增大 D. 感应电流逐渐增大 3.如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R1和R2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab,质量为m,导体棒的电阻与固定电阻R1和R2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab沿导轨向上滑动,当上滑的速度为v时,受到安培力的大小为F.此时() A.电阻R1消耗的热功率为Fv/3 B.电阻R2消耗的热功率为Fv/6 C.整个装置因摩擦而消耗的热功率为μmgv cosθ D.整个装置消耗的机械功率为(F+μmg cosθ)v 4.在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示.当磁场的磁感应强度B随时间t如图2变化时,能正确表示线圈中感应电动势E变化的是() 5.两根足够长的光滑导轨竖直放置,间距为L,底端接阻值为R的电阻.将质量为m的金属

带电粒子在磁场中运动(I)

3.6 带电粒子在磁场中的运动(二) 主编:金生华 主审:张国平 班级 姓名 学号 教学目标: 1.学会寻找带电粒子在匀强磁场中做匀速圆周运动的圆心、半径 2.能够处理带电粒子在匀强磁场中做非完整匀速圆周运动时间 教学重难点: 1.如何确立带电粒子在匀强磁场中做匀速圆周运动的圆心、半径及运动时间 难点解析 1、如何确立带电粒子在匀强磁场中做匀速圆周运动的圆心、半径及 运动时间? (1)圆心的确定。因为洛伦兹力f 指向圆心,根据f ⊥v ,画出粒子运动轨迹上任意两 点(一般是射入和射出磁场的两点)的f 的方向,其延长线的交点即为圆心。 (2)半径的确定和计算。圆心找到以后,自然就有了半径(一般是利用粒子入、出磁 场时的半径)。半径的计算一般是利用几何知识,常用解三角形的方法及圆心角等于圆弧上弦切角的两倍等知识。 (3)在磁场中运动时间的确定。利用圆心角与弦 切角的关系,或者是四边形内角和等于360° 计算出圆心角θ的大小,由公式t=ο360 θ×T 可求出运动时间。有时也用弧长与线速度的比。 如图所示,还应注意到: ①速度的偏向角?等于弧AB 所对的圆心角θ。 ②偏向角?与弦切角α的关系为:?<180°,?=2α;?>180°,?=360°-2α; (4)注意圆周运动中有关对称规律 如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等; 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。 典型例题 【例1】如图所示,一束电子(电量为e)以速度v 垂直射入磁感应强度为B ,宽度为d 的匀强 磁场中,穿过磁场时速度方向与电子原来入射方向的夹角是300,则电子的质量是多少?电子穿过磁场的时间是多少? 【例2】如图所示,匀强磁场的磁感应强度为B ,宽度为d ,边界为CD 和EF 。一电子从 CD 边界外侧以速率V 0垂直射入匀强磁场,入射方向与CD 边界间夹角为θ。已知电子的质量为m ,电荷量为e ,求: (1)为使电子能从磁场的另一侧EF 射出,电子的速率v0至少多大? (2)若电子从磁场的CD 一侧射出, 则电子在磁场中的运动时间是多少? 【例3】如图所示,分布在半径为r 的圆形区域内的匀强磁 场,磁感应强度为B ,方向垂直纸面向里。电量为 q 、质量为m 的带正电的粒子从磁场边缘A 点沿圆 的半径AO 方向射入磁场,离开磁场时速度方向偏 转了60°角。试确定:

带电粒子在磁场中的运动习题(含答案解析)

带电粒子在磁场中的运动习题(含答案) 一、单项选择题:(本大题共8小题,每小题4分。共32分。) 1.发现通电导线周围存在磁场的科学家是( ) A.洛伦兹B.库仑 C.法拉第D.奥斯特 图1 2.如图1所示,一圆形区域存在匀强磁场,AC为直径,O为圆心,一带电粒子从A沿AO方向垂直射入磁场,初速度为v1,从D点射出磁场时的速率为v2,则下列说法中正确的是(粒子重力不计)( ) A.v2>v1,v2的方向必过圆心 B.v2=v1,v2的方向必过圆心 C.v2>v1,v2的方向可能不过圆心 D.v2=v1,v2的方向可能不过圆心图2 3.如图2所示,带负电的金属环绕其轴OO′匀速转动时,放在环顶部的小磁针最后将( ) A.N极竖直向上 B.N极竖直向下 C.N极水平向左 D.小磁针在水平面转动图3

4.如图3,条形磁铁放在水平桌面上,在其正中央的上方固定一根长直导线,导线与磁铁垂直.给导线通以垂直纸面向里的电流,用F N表示磁铁对桌面的压力,用f表示桌面对磁铁的摩擦力,则导线通电后与通电前相比较( ) A.F N减小,f=0 B.F N减小,f≠0 C.F N增大,f=0 D.F N增大,f≠0 图4 5.每时每刻都有大量宇宙射线向地球射来如图4所示,地磁场可以改变射线多数带电粒子的运动方向,使它们不能到达地面,这对地球上的生命有十分重要的意义.假设有一个带正电的宇宙射线粒子正垂直于地面向赤道射来,在地磁场的作用下,它将( ) A.向东偏转B.向南偏转 C.向西偏转D.向北偏转 图5 6.一个带电粒子沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹如图5所示,径迹上的每一小段可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电荷量不变).从图中可以确定( ) A.粒子从a到b,带正电 B.粒子从b到a,带正电 C.粒子从a到b,带负电

带电粒子在圆形磁场中运动的规律

带电粒子在磁场中的运动 例1.如图所示,在宽度为d 磁感应强度为B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度v 入射,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A.带电粒子的比荷 B.带电粒子在磁场中运动的周期 C.带电粒子的质量 D.带电粒子在磁场中运动的半径 变式.若带电粒子以初速度v 从A 点沿直径入射至磁感应强度为B ,半径为R 的圆形磁场,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 应用1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度 B =0.25T 。一群不计重力、质 量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域 ( ) A .从 Od 边射入的粒子,出射点全部分布在 Oa 边 B .从 aO 边射入的粒子,出射点全部分布在 ab 边 C .从Od 边射入的粒子,出射点分布在Oa 边和 ab 边 D .从aO 边射入的粒子,出射点分布在ab 边和bc 边 应用2.在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图10所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少? 例2.如图所示,一束电子流以不同速率,由边界为圆形的匀强磁场的边界上一点A ,沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( ) A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场 变式.如右图所示,直角三角形ABC 中存在一匀强磁场,比荷相同的两个粒子沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则 A.从P 射出的粒子速度大 B.从Q 射出的粒子速度大 C.从P 射出的粒子,在磁场中运动的时间长 D.两粒子在磁场中运动的时间一样长 例3.如右图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电、电荷量为q 、质量为m 、速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动以下说法正确的是 A.只要对着圆心入射,出射后均可垂直打在MN 上 B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心 C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长 D.只要速度满足m qBR v / ,沿不同方向入射的粒子出射后均可垂直打在MN 上(出射速度有什么关系?)若相同速率平行经过p 点的直径进入磁场,出射点又有什么规律?

《磁场对通电导体的作用力》习题1

《磁场对通电导体的作用力》习题 1、关于通电导线所受安培力F的方向,磁场B的方向和电流I的方向之间的关系,下列说法正确的是( ) A、F、 B、I三者必须保持相互垂直 B、F必须垂直B、I,但B、I可以不相互垂直 C、B必须垂直F、I,但F、I可以不相互垂直 D、I必须垂直F、B,但F、B可以不相互垂直 2、通电矩形线框abcd与长直通电导线MN在同一平面内,如图所示,ab边与MN平行.关于MN的磁场对线框的作用力,下列说法正确的是( ) A、线框有两条边所受的安培力方向相同 B、线框有两条边所受的安培力大小相等 C、线框所受的安培力的合力方向向左 D、线框所受的安培力的合力方向向右 3、在地球赤道上空,沿东西方向水平放置一根通以由西向东的直线电流,则此导线() A、受到竖直向上的安培力 B、受到竖直向下的安培力 C、受到由南向北的安培力 D、受到由西向东的安培力 4、关于通电导线在磁场中所受的安培力,下列说法正确的是( ) A、安培力的方向就是该处的磁场方向 B、安培力的方向一定垂直于磁感线和通电导线所在的平面 C、若通电导线所受的安培力为零.则该处的磁感应强度为零 D、对给定的通电导线在磁场中某处各种取向中,以导线垂直于磁场时所受的安培力最大 5、如下图所示,在匀强磁场中放有下列各种形状的通电导线,电流强度为I,磁感应强度为B,求各导线所受到的安培力。 FA=_______ FB=_______ FC=_______ FD=_______ FE=_______

6、如图所示,长为L的导线AB放在相互平行的金属导轨上, 导轨宽度为d,通过的电流为I,垂直于纸面的匀强磁场的磁感应强 度为B,则AB所受的磁场力的大小为() A、BIL B、BIdcosθ C、BId/sinθ D、BIdsinθ 7、如图所示,在垂直纸面向里的匀强磁场中,有一段弯成直 角的金属导线abc,且ab=bc=L0,通有电流I,磁场的磁感应强度为B,若要使该导线静止不动,在b点应该施加一个力F0,则F0的方向为________;B的大小为________。 感谢您的阅读,祝您生活愉快。

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度) 分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。 分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆 ──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。一群质量为m、带电荷量为-q的粒子(不计重力),

《探究导体在磁场中运动时产生感应电流的条件》实验练习及答案

实验19:探究导体在磁场中运动时产生感应电流的条件 1、探究产生感应电流条件的实验步骤如图甲、乙、丙所示. (1)本实验中,我们通过观察____________________来判断电路中是否有感应电流. (2)通过比较图甲和丙可知,产生感应电流的一个条件是电路要____________;通过比较图________可知,产生感应电流的另一个条件是导体要在磁场中做切割磁感线运动. (3)若图甲中AB棒不动,磁铁左右水平运动,电路____________(选填“有”或“无”)感应电流、. (4)在产生感应电流的实验中,将____________能转化为电能,生活中的____________机就是根据上述原理工作的.2、(2011·广东)在“探究感应电流的产生”的实验中。小明同学的四次实验情况分别如图所示。 (1)有同学说:“只要闭合电路中的一部分导体在磁场中运动,就会产生感应电流。”你认 为他的说法对吗?____,图____可支持你的结论。 (2)为了探究感应电流的方向跟磁场方向和导体运动方向之间的关系。 A.根据图甲和图乙的实验现象可以得出结论:。 B.根据图乙和图丁的实验现象可以得出结论:。 (3)从能量的角度来分析,感应电流的产生过程是______能转化为电能。

3、(2009?湛江)图是“探究导体在磁场中运动时产生感应电流的条件”的实验装置,闭合开关后,铜棒ab、电流表、开关组成闭合电路.小明将实验中观察到的现象记录在下表中. (1)小明分析得出:闭合电路中的部分导体在磁场里做___________时,导体中就会产生感应电流. (2)比较实验2和3(或6和7)可知:在磁场方向一定时,感应电流的方向与____________________有关. (3)比较实验2和6(或3和7)可知:________________________________________________________________; (4)此实验的研究方法有控制变量法和_________法.在此实验的过程中是_________能转化为___________能,重要的应用是___________。 (5)针对这个实验小明进行了进一步的探究,他提出了“感应电流的大小可能与磁场的强弱有关”的猜想,除此以外你的猜想是:____________________________________________。 ①写出验证你的猜想的主要步骤. ②你怎样对实验结果进行分析判断? 4、(2007?宿迁)法拉第电磁感应现象是指:“闭合电路的一部分导体在磁场里做切割磁感线运动时,导体中就会产生感应电流.”小明和芳芳根据课文中的描述进行了进一步探究. (1)小明同学提出了“感应电流的大小可能与磁场的强弱有关”的猜想.除此以外你的猜想是:__________。

人教版物理选修1-1第二章第三节磁场对通电导线的作用同步训练A卷(新版)

人教版物理选修1-1第二章第三节磁场对通电导线的作用同步训练A卷(新版)姓名:________ 班级:________ 成绩:________ 一、选择题(共15小题) (共15题;共31分) 1. (2分)关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是() A . 安培力的方向可以不垂直于直导线 B . 安培力的方向总是垂直于磁场的方向 C . 安培力的大小与通电直导线和磁场方向的夹角无关 D . 将直导线从中点折成直角,安培力的大小一定变为原来的一半 【考点】 2. (2分)(2020·日照模拟) 如图所示,用电阻率为ρ、横截面积为S、粗细均匀的电阻丝折成平面梯形框架,ab、cd边均与ad边成60°角,ab=bc=cd=L.框架与一电动势为E、内阻忽略不计的电源相连接。垂直于竖直框架平面有磁感应强度大小为B、方向水平向里的匀强磁场,则框架受到安培力的合力的大小和方向为() A . ,竖直向上 B . ,竖直向上 C . ,竖直向下 D . ,竖直向下 【考点】

3. (2分) (2020高二上·常州月考) 一质量 m、电荷量的﹣q 圆环,套在与水平面成θ角的足够长的粗糙细杆上,圆环的直径略大于杆的直径,细杆处于磁感应强度为 B 的匀强磁场中。现给圆环一沿杆左上方方向的初速度 v0 ,(取为初速度 v0 正方向)以后的运动过程中圆环运动的速度图像不可能是() A . B . C . D . 【考点】

4. (2分) (2020高二上·台州月考) 四川省稻城县海子山的“高海拔宇宙线观测站” ,是世界上海拔最高、规模最大、灵敏度最强的宇宙射线探测装置。假设来自宇宙的质子流沿着与地球表面垂直的方向射向这个观测站,由于地磁场的作用(忽略其他阻力的影响),粒子到达该观测站时将() A . 竖直向下沿直线射向观测站 B . 与竖直方向稍偏东一些射向观测站 C . 与竖直方向稍偏南一些射向观测站 D . 与竖直方向稍偏西一些射向观测站 【考点】 5. (2分) (2018高二上·固阳期中) 下列说法正确的是() A . 在匀强电场中,电势降低的方向就是电场强度的方向 B . 根据公式U=Ed可知,匀强电场中任意两点间的电势差与这两点的距离成正比 C . 安培力的方向总是垂直于磁场的方向 D . 一小段通电直导线放在磁场中某处不受磁场力作用,则该处的磁感应强度一定为零 【考点】 6. (2分) (2018高二上·鄂尔多斯月考) 在绝缘圆柱体上a、b两位置固定两个金属圆环,当两环通有如图所示电流时, b处金属圆环受到的安培力为F1;若将b处金属圆环平移到c处,它受到的安培力为F2 .今保持b处金属圆环位置不变,在位置c再放置一个同样的金属圆环,并通有与a处金属圆环同向、大小为I2的电流,则在a位置的金属圆环受到的安培力()

将一通电的导体放在磁场中

将一通电的导体放在磁场中,若磁场方向与电流方向垂直,那么,在第三个方向上会产生电位差,这种现象称为Hall 效应 行进波因子 表明在晶体中运动的电子已不再局域于某个原子周围,而是可以在整个晶体中运动的,这种电子称为共有化电子。它的运动具有类似行进平面波的形式。Bloch 函 波矢k 物理意义:k 称为简约波矢,是对应于平移对称操作本征值的量子数,其物理意义是表示原胞之间电子波函数位相的变化。不同的k 值表示原胞间的位相差是不同的。光吸收是指原子在光照下会吸收光子的能量,由低能态跃迁到高能态的现象。(光通过固体时,与固体中存在的电子、激子、晶格振动及杂质和缺陷等相互作用而产生光的吸收。) 光发射:固体吸收外界能量,其中一部分能量以可见光或近于可见光的形式发射回来。有关晶格振动及声子 答:声子:晶格振动的简正模式(或格波)的能量的量子称为声子。晶体中原子的热振动称为晶格振动。 能带形成的主要原因 答:电子能带的形成是由于当原子与原子结合成固体时,原子之间存在相互作用的结果,而并不取决于原子聚集在一起是晶态还是非晶态,即原子的排列是否具有平移对称性并不是形成能带的必要条件。 导体:低温下为部分填充的或半满的能带 绝缘体:在T-0K 时价带是满带,其上最低的许可带是空带的是绝缘体。 半导体:在T-0K 的价带是满带,其上最低的许可带全空,但价带上的禁带不如绝缘体宽的是半导体。其T-0K 时的空带称为导带。 费米面:k 空间中能量为EF 的等能面 F (k )=EF 费米面是F-0K 时k 空间占有态与空态的界面,其所包围的体积直接决定于价电子的数密度。 二次电子,透射电子及其应用 二次电子:从距样品表面100A 左右深度范围内激发出来的低能电子(<50ev );主要特点:1、对样品表面形貌敏感;2、空间分辨率高;3、信号收集率高;应用:扫描电子显微镜 透射电子:特点:1、质厚衬度效应;2、衍射效应;3、衍射衬效应。应用:透射电子显微镜(电子束照在单晶上花纹是倒点阵花样,在多晶上是同心圆) Eg 影响因素及其尺寸关系 Eg= 为成键态与反键态之间的能量间隙。 禁带宽度影响因素:其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关。 尺寸减小,带隙变宽。 金属、半导体电导率随T 变化的异同点 电导率: 半导体的本征是电导率随温度升高而迅速上升。 金属电导率随T 升高而升高。低温区,电导率表现出非线性的温度关系;高温区,电导率与温度为线性关系。 紧束缚近似:近自由电子近似方法认为原子实对电子的作用很弱,因而电子的运动基本上是自由的。其结果主要适用于金属的价电子,但对其他晶体中的电子,即使是金属的内层电子也并不适用。在大多数晶体中,电子并不是那么自由的,即使是金属和半导体中,其内层电子也要受到原子实较强的束缚作用。在本节,我们将讨论另一种极端情况:当晶体中原子的间距较大,因而原子实对电子有相当强的束缚作用。因此,当电子距某个原子实比较近时,电子的运动主要受该原子势场的影响,这时电子的行为同孤立原子中电子的行为相似。这时,可将孤立原子看成零级近似,而将其他原子势场的影响看成小的微扰。这种方法称为紧束缚近似 (Tight Binding Approximation)。 近自由电子模型:在周期场中,若电子的势能随位置的变化(起伏)比较小,而电子的平均动能要比其势能的绝对值大得多,这样,电子的运动几乎是自由的。因此,我们可以把自由电子看成是它的零级近似,而将周期场的影响看成小的微扰。 将一通电的导体放在磁场中,若磁场方向与电流方向垂直,那么,在第三个方向上会产生电位差,这种现象称为Hall 效应 行进波因子 表明在晶体中运动的电子已不再局域于某个原子周围,而是可以在整个晶体中运动的,这种电子称为共有化电子。它的运动具有类似行进平面波的形式。Bloch 函 波矢k 物理意义:k 称为简约波矢,是对应于平移对称操作本征值的量子数,其物理意义是表示原胞之间电子波函数位相的变化。不同的k 值表示原胞间的位相差是不同的。光吸收是指原子在光照下会吸收光子的能量,由低能态跃迁到高能态的现象。(光通过固体时,与固体中存在的电子、激子、晶格振动及杂质和缺陷等相互作用而产生光的吸收。) 光发射:固体吸收外界能量,其中一部分能量以可见光或近于可见光的形式发射回来。有关晶格振动及声子 答:声子:晶格振动的简正模式(或格波)的能量的量子称为声子。晶体中原子的热振动称为晶格振动。 能带形成的主要原因 答:电子能带的形成是由于当原子与原子结合成固体时,原子之间存在相互作用的结果,而并不取决于原子聚集在一起是晶态还是非晶态,即原子的排列是否具有平移对称性并不是形成能带的必要条件。 导体:低温下为部分填充的或半满的能带 绝缘体:在T-0K 时价带是满带,其上最低的许可带是空带的是绝缘体。 半导体:在T-0K 的价带是满带,其上最低的许可带全空,但价带上的禁带不如绝缘体宽的是半导体。其T-0K 时的空带称为导带。 费米面:k 空间中能量为EF 的等能面 F (k )=EF 费米面是F-0K 时k 空间占有态与空态的界面,其所包围的体积直接决定于价电子的数密度。 二次电子,透射电子及其应用 二次电子:从距样品表面100A 左右深度范围内激发出来的低能电子(<50ev );主要特点:1、对样品表面形貌敏感;2、空间分辨率高;3、信号收集率高;应用:扫描电子显微镜 透射电子:特点:1、质厚衬度效应;2、衍射效应;3、衍射衬效应。应用:透射电子显微镜(电子束照在单晶上花纹是倒点阵花样,在多晶上是同心圆) Eg 影响因素及其尺寸关系 Eg= 为成键态与反键态之间的能量间隙。 禁带宽度影响因素:其大小主要决定于半导体的能带结构,即与晶体结构和原子的结合性质等有关。 尺寸减小,带隙变宽。 金属、半导体电导率随T 变化的异同点 电导率: 半导体的本征是电导率随温度升高而迅速上升。 金属电导率随T 升高而升高。低温区,电导率表现出非线性的温度关系;高温区,电导率与温度为线性关系。 紧束缚近似:近自由电子近似方法认为原子实对电子的作用很弱,因而电子的运动基本上是自由的。其结果主要适用于金属的价电子,但对其他晶体中的电子,即使是金属的内层电子也并不适用。在大多数晶体中,电子并不是那么自由的,即使是金属和半导体中,其内层电子也要受到原子实较强的束缚作用。在本节,我们将讨论另一种极端情况:当晶体中原子的间距较大,因而原子实对电子有相当强的束缚作用。因此,当电子距某个原子实比较近时,电子的运动主要受该原子势场的影响,这时电子的行为同孤立原子中电子的行为相似。这时,可将孤立原子看成零级近似,而将其他原子势场的影响看成小的微扰。这种方法称为紧束缚近似 (Tight Binding Approximation)。 近自由电子模型:在周期场中,若电子的势能随位置的变化(起伏)比较小,而电子的平均动能要比其势能的绝对值大得多,这样,电子的运动几乎是自由的。因此,我们可以把自由电子看成是它的零级近似,而将周期场的影响看成小的微扰。 i e ?k r i e ?k r

导体棒在磁场中的运动分析

高考试题中的导体棒在磁场中的运动综合分析 高考试题中导体棒在磁场中的运动既是重点又是难点,历年高考中都有体现,现简单举例说明导体棒在磁场中运动问题与力学、能量、图像、函数的结合的试题的解答、希望引起重视。 一、直接考查导体棒切割磁感线和恒定电流综合的问题 1、 (05,辽宁,34)如图1所示,两根相距为l 的平行直导轨a b 、cd 、b 、d 间连有一固定电阻R ,导轨电阻可忽略不计。MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R 。整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(指向图中纸面内)。现对MN 施力使它沿导轨方向以速度v (如图)做匀速运动。令U 表示MN 两端电压的大小,则( ) A .,21vBl U = 流过固定电阻R 的感应电流由b 到d B .,21vBl U =流过固定电阻R 的感应电流由d 到b C .,vBl U =流过固定电阻R 的感应电流由b 到d D .,vBl U =流过固定电阻R 的感应电流由d 到b 该题考查了E=BLV 和闭合电路的欧姆定律,重点是分清楚内外电路以及谁是电源,该题即可以顺利解答。 2、(04,全国,19)一直升飞机停在南半球的地磁极上空。该处地磁场的方向竖直向上,磁感应强度为B 。直升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动。螺旋桨叶片的近轴端为a ,远轴端为b ,如图所示。如果忽略a 到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则 A .ε=πfl 2 B ,且a 点电势低于b 点电势 B .ε=2πfl 2B ,且a 点电势低于b 点电势 C .ε=πfl 2B ,且a 点电势高于b 点电势 D .ε=2πfl 2B ,且a 点电势高于b 点电势 该题考查了右手定则的应用,实质是导体棒切 割磁感线方向的判断。 3、(08,山东,22)两根足够长的光滑导轨竖直放置,间 距为L ,底端接阻值为R 的电阻。将质量为m 的金属棒悬挂 在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在 平面与磁感应强度为B 的匀强磁场垂直,如图所示。除电阻R 外其余电阻不计。现将金属棒从弹簧原长位置由静止释放.则 B

磁场对通电导体的作用(提高)

磁场对通电导体的作用(提高) 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ●掌握左手定则,理解电流的方向以及磁场对电流的作用力方向三者之间的关系。 ●掌握安培力的计算,能够理解一些安培力作用的现象和应用,能够熟练地计算通电直导体在匀强磁场中受到的安培 力。 ●知道磁电式电表的基本构造以及运用它测量电流大小和方向的基本原理。 重点难点: ●对磁场方向、电流方向和安培力的方向三者关系的理解和运用。 ●安培力大小的计算及应用。 学习策略: ●建立空间位置关系、形成物理图景,是正确理解磁场方向、电流方向和安培力的方向三者关系的重要方法。 ●安培力和力学中的力及电场力一样,同样遵循力学中的有关规律,如遵循力的平行四边形定则,遵循牛顿定律等。 在求解有关问题时思路仍是力学中常用的规律和方法。 二、学习与应用 “凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对性。我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗? 回忆磁场的基本知识,回答下列问题: (一)在磁感应强度的定义中对导体在磁场中受到的力F有什么要求? (二)通电导线在磁场中受力大小与什么因素有关? 知识要点——预习和课堂学习 认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。请在虚线部分填写预习内容,在实线部分填写课堂学习内容。课堂笔记或者其它补 充填在右栏。

要点一、对安培力的理解 1.安培力 通电导线在 中受到的力称为安培力。 2.安培力的方向 在解决有关磁场对电流的作用的问题时,能否正确判断安培力的方向是解决问题的 关键,在判定安培力的方向时要注意以下三点: (1) 安培力的方向总是既与磁场方向_______,又与电流方向______,也就是说 安培力的方向总是垂直于________.因此,在判断时首先确定磁场和电流所确定的平面, 从而判断出安培力的方向在哪一条直线上,然后再根据左手定则判断出安培力 的具体方向. (2)当电流方向跟磁场方向不垂直时,安培力的方向仍垂直电流和磁场所决定的平 面,所以仍可用左手定则来判断安培力的方向,只是磁感线不再垂直穿过手心. (3)注意区别安培力的方向和电场力的方向与场的方向的关系.安培力的方向与磁 场的方向垂直,而电场力的方向与电场的方向平行.现把安培力和电场力做如下比较: 内容 力 项目 电场力 安培力 研究对象 点电荷 电流元 受力特点 正电荷受力方向,与_____相同,沿电场线____方向,与负电荷受力方向______ 安培力方向与磁场方向和电流方向都______ 判断方法 结合电场方向和电荷正、负判断 用____手定则判断 注意:若已知B 、I 方向,则由左手定则得F 安的方向被唯一确定;但若已知B (或I )、F 安的方向,由于B 只要穿过手心即可,则I (或B )的方向不唯一. 3.安培力的大小 (1)计算公式:F _______= (2)对公式的理解:公式F BILsin =θ可理解为F (Bsin ) IL =θ,此时 Bsin θ为B 沿垂直I 方向上的分量,也可理解为F BI(Lsin )=θ,此时Lsin θ为L 沿垂直B 的方向上的投影长度,也叫“有效长度”,公式中的一是B 和I 方向问的夹角. 注意: ①若导线是弯曲的,此时公式F BILsin =θ中的L 并不是导线的总长度,而应是 弯曲导线的“有效长度”.它等于连接导线两端点直线的长度(如图所示),相应的电流方 向沿两端点连线由始端流向末端.

通电导体周围的磁场

通电导体周围的磁场 一、选择题 1、许多物理学家在科学发展的历程中都做出了杰出的贡献,其中首先发现电流磁效应的是() A.沈括 B.法拉第 C.奥斯特 D.汤姆逊 2、如图2所示,小磁针甲、乙处于静止状态。根据标出的磁感线方向,可以判断出 A.螺线管的左端为N极 B.电源的左端为负极 C.小磁针甲的右端为N极 D.小磁针乙的右端为N极 3、一个能绕中心转动的小磁针在图示位置保持静止。某时刻开始小磁针所在区域出现水平向右的磁场,磁感线如图所示,则小磁针在磁场出现后() A.两极所受的力是平衡力,所以不会发生转动 B.两极所受的力方向相反,所以会持续转动 C.只有N极受力,会发生转动,最终静止时N极所指方向水平向右 D.两极所受的力方向相反,会发生转动,最终静止时N极所指方向水平向右 4、如图所示,把螺线管沿东西方向水平悬挂起来,然后给导线通电,会发生的现象是() A.通电螺线管仍保持静止不动 B.通电螺线管能在任意位置静止 C.通电螺线管转动,直至B端指向南,A端指向北 D.通电螺线管转动,直至A端指向南,B端指向北 5、为判断一段导线中是否有直流电流通过,手边若有下列几组器材,其中最为方便可用的是( ) A.小灯泡及导线 B.铁棒及细棉线 C.带电的小纸球及细棉线 D.被磁化的缝衣针及细棉线 7、在地球赤道上空某处有一小磁针处于水平静止状态,突然发现该小磁针的N极向东偏转,可能是( ) A.小磁针正西方向有一条形磁铁的S极靠近小磁针 B.小磁针正北方向有一条形磁铁的S极靠近小磁针 C.小磁针正上方有电子流自东向西水平通过 D.小磁针正上方有电子流自南向北水平通过 8、图中的两个线圈,套在光滑的玻璃管上,导线柔软,可以自由滑动,开关S闭合后则 A. 两线圈左右分开 B. 两线圈向中间靠拢 C. 两线圈静止不动 D. 两线圈先左右分开,然后向中间靠拢 9、如图所示,闭合开关S,将滑动变阻器的滑片P向右移动时,图中的电磁铁() A.a端是N极,磁性减弱 B.b端是S极,磁性增强

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)

分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2 如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN 线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN 上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向

磁场对通电导体的作用力

磁场对通电导体的作用力

磁场对通电导体的作用力 【学习目标】 1.掌握左手定则,理解电流的方向以及磁场对电流的作用力方向三者之间的关系。 2.掌握安培力的计算,能够理解一些安培力作用的现象和应用,能够熟练地计算通电直导体在匀强磁场中受到的安培力。 3.知道磁电式电表的基本构造以及运用它测量电流大小和方向的基本原理。 【要点梳理】 要点一、对安培力的理解 要点诠释: 1.安培力是磁场对电流的作用力,是一种性质力,其作用点可等效在导体的几何中心. 2.安培力的方向 在解决有关磁场对电流的作用的问题时,能否正确判断安培力的方向是解决问题的关键,在判定安培力的方向时要注意以下三点: (1)安培力的方向总是既与磁场方向垂直,又与电流方向垂直,也就是说安培力的方向总是垂直于磁场

和电流所决定的平面.因此,在判断时首先确定磁场和电流所确定的平面,从而判断出安培力的方向在哪一条直线上,然后再根据左手定则判断出安培力的具体方向.(2)当电流方向跟磁场方向不垂直时,安培力的方向仍垂直电流和磁场所决定的平面,所以仍可用左手定则来判断安培力的方向,只是磁感线不再垂直穿过手心. (3)注意区别安培力的方向和电场力的方向与场的方向的关系.安培力的方向与磁场的方向垂直,而电场力的方向与电场的方向平行.现把安培力和电场力做如下比较: 内容 力 项目 电场力安培力研究对象点电荷电流元 受力特点正电荷受力方向,与电 场方向相同,沿电场线 切线方向,与负电荷受 力方向相反安培力方向与磁场方向和电流方向都垂直 判断方法结合电场方向和电荷 正、负判断用左手定则判断 注意:若已知B、I方向,则由左手定则得F 安 的方

导体棒在磁场中运动问题

导体棒在磁场中运动问题 【问题概述】导体棒问题不纯属电磁学问题,它常涉及到力学和热学。往往一道试题包含多个知识点的综合应用,处理这类问题必须熟练掌握相关的知识和规律,还要求有较高的分析能力、逻辑推断能力,以及综合运用知识解决问题的能力等。导体棒问题既是高中物理教学的重要内容,又是高考的重点和热点问题。 1.通电导体棒在磁场中运动:通电导体棒在磁场中,只要导体棒与磁场不平行,磁场对导体棒就有安培力的作用,其安培力的方向可以用左手定则来判断,大小可运用公式F = BIL sinθ来计算,若导体棒所在处的磁感应强度不是恒定的,一般将其分成若干小段,先求每段所受的力再求它们的矢量和。由于安培力具有力的共性,可以在空间和时间上进行积累,可以使物体产生加速度,可以和其它力相平衡。 【基本模型】 说明基本图v–t能量 导体棒以初速度v0向右 开始运动,定值电阻为 R,其它电阻不计。 动能→焦耳热 导体棒受向右的恒力F 从静止开始向右运动,定值电阻为R,其它电阻不计。外力机械能→动能+ 焦耳热 导体棒1以初速度v0向 右开始运动,两棒电阻分别为R1和R2,质量分动能1变化→动能 2变化 + 焦耳热 别为m1和m2,其它电阻 不计。 导体棒1受恒力F从静 止开始向右运动,两棒 电阻分别为R1和R2,质 量分别为m1和m2,其它 电阻不计。 外力机械能→动能 1 + 动能 2 + 焦耳 热 如图1所示,在竖直向下磁感强度为B的匀强磁场中,有两根水平放置相距为L且足够长 的平行金属导轨AB、CD,导轨AC端连接一阻值为R的电阻,一根垂直于导轨放置的金属 棒ab,质量为m,不计导轨和金属棒的电阻及它们 间的摩擦。若用恒力F水平向右拉棒运动 ⑴.电路特点:金属棒ab切割磁感线,产生感应电动 势相当于电源,b为电源正极。当ab棒速度为v时,其产 生感应电动势E=BLv。 ⑵.ab棒的受力及运动情况:棒ab在恒力F作用下向 右加速运动,切割磁感线,产生感应电动势,并形成感应电 流,电流方向由a→b,从而使ab棒受到向左的安培力F安, 对ab棒进行受力分析如图2所示: 竖直方向:重力G和支持力N平衡。 水平方向:向左的安培力F安= 22 B L v R 为运动的阻力 随v的增大而增大。 F安F G N 图2 F a b R A C B D 图1

知识讲解_磁场对通电导体的作用力 基础

磁场对通电导体的作用力 编稿:xxx 审稿:xxx 【学习目标】 1.掌握左手定则,理解电流的方向以及磁场对电流的作用力方向三者之间的关系。 2.掌握安培力的计算,能够理解一些安培力作用的现象和应用,能够熟练地计算通电直导体在匀强磁场中受到的安培力。 3.知道磁电式电表的基本构造以及运用它测量电流大小和方向的基本原理。 【要点梳理】 要点一、对安培力的理解 要点诠释: 1.安培力是磁场对电流的作用力,是一种性质力,其作用点可等效在导体的几何中心. 2.安培力的方向 在解决有关磁场对电流的作用的问题时,能否正确判断安培力的方向是解决问题的关键,在判定安培力的方向时要注意以下三点: (1)安培力的方向总是既与磁场方向垂直,又与电流方向垂直,也就是说安培力的方向总是垂直于磁场和电流所决定的平面.因此,在判断时首先确定磁场和电流所确定的平面,从而判断出安培力的方向在哪一条直线上,然后再根据左手定则判断出安培力的具体方向. (2)当电流方向跟磁场方向不垂直时,安培力的方向仍垂直电流和磁场所决定的平面,所以仍可用左手定则来判断安培力的方向,只是磁感线不再垂直穿过手心. (3)注意区别安培力的方向和电场力的方向与场的方向的关系.安培力的方向与磁场的方向垂直, 内容 力 项目 电场力 安培力 研究对象 点电荷 电流元 受力特点 正电荷受力方向,与电场方向相同,沿电场线切线方向,与负电荷受力方向相反 安培力方向与磁场方向和电流方向都垂直 判断方法 结合电场方向和电荷正、负判断 用左手定则判断 安安于B 只要穿过手心即可,则I (或B )的方向不唯一. 3.安培力的大小 (1)计算公式:F BILsin =θ (2)对公式的理解:公式F BILsin =θ可理解为F (Bsin )IL =θ,此时Bsin θ为B 沿垂直I 方向上的分量,也可理解为F BI(Lsin )=θ,此时Lsin θ为L 沿垂直B 的方向上的投影长度,也叫“有效长度”,公式中的θ是B 和I 方向间的夹角. 注意: ①若导线是弯曲的,此时公式F BILsin =θ中的L 并不是导线的总长度,而应是弯曲导线的“有效长度”.它等于连接导线两端点直线的长度(如图所示),相应的电流方向沿两端点连线由始端流向末端. ②安培力公式一般用于匀强磁场.在非匀强磁场中很短的导体也可使用,此时B 的大小和方向与导体所在处的B 的大小和方向相同.若在非匀强磁场中,导体较长,可将导体分成若干小段,求出各段受到的

相关文档
最新文档