一种新型的量子水印策略 英文

一种新型的量子水印策略 英文
一种新型的量子水印策略 英文

一种新型的量子水印策略

张伟伟12,高飞1,刘斌1,贾恒越1,温巧燕1,陈晖3

1北京邮电大学网络与交换技术国家重点实验室,北京 100876

2信息安全国家重点实验室(中国科学院软件研究所),北京100190

3现代通信国家重点实验室,成都,610041

摘要:随着量子计算机和量子网络的发展,量子数据的安全越来越重要。量子水印是一种可以将包括身份信息等的不可见信号嵌入到包括音频,视频和图像等的量子多媒体数据中,起到版权保护的作用。本文提出一种基于灵活量子图像表示的的新型水印策略。之前提出的策略(唯一的一个基于量子图像的策略)只能用来验证载体图像的拥有者是否为所已知的身份。与其相比,本文提出的策略能够找出真正的版权所有者,并且除版权所有者以外的任何人都不能清除或提取除水印图像。

关键词:量子计算,量子图像,量子水印

中图分类号:O59

A Novel Watermark Strategy For Quantum

Images

Wei-Wei Zhang12,Fei Gao1,Bin Liu1,Heng-Yue Jia1,Qiao-Yan Wen1,Hui

Chen3

1the State Key Laboratory of Networking and Switching Technology,Beijing University of

Posts and Telecommunications,Beijing100876

2the State Key Laboratory of Information Security(Institute of Software,Chinese Academy

of Sciences),Beijing100190

3Science and Technology on Communication Security Laboratory,Chengdu,610041 Abstract:With the development of quantum computer and quantum network,the security

of quantum data becomes more and more important.Quantum watermarking is the technique which embeds the invisible quantum signal such as the owner’s identi?cation into quantum multimedia data(such as audio,video and image)for copyright protection.In this paper,a novel watermark strategy for quantum images is proposed based on?exible representation for quantum images(FRQI).Compared with the former strategy(only one based on quantum 基金项目:NSFC(Grant Nos.61170270,61100203,60903152,61003286,60821001),NCET(Grant No.NCET-10-0260),SRFDP(Grant Nos.200800131016,20090005110010),Beijing Natural Science Foundation(Grant No.4112040),

the Fundamental Research Funds for the Central Universities(Grant Nos.BUPT2011YB01,BUPT2011RC0505, 2011PTB-00-29,2011RCZJ15),Science and Technology on Communication Security Laboratory Foundation(Grant No.

9140C110101110C1104).

作者简介:Zhang Wei Wei(1987-),female,Master Student,major research direction:quantum key distribution, quantum secret sharing,and quantum images processing.Correspondence author:Gao Fei(1980-),male,professor,major research direction:quantum key distribution,quantum secret sharing,and quantum secure direct communication.

images)which can only be used to verify the identity of the true owner of a carrier image,the proposed method can also be used to?nd out who is the real owner.And it is impossible for anyone except the copyrighter to clear o?or extract the watermark images.

Key words:Quantum computation,Quantum image,Quantum watermarking.

0Introduction

THE high integration of the traditional computer has resulted in the appearing of quan-tum e?ects which greatly restricts the development of the classic computer.Recently,the quantum computer(QC)and the quantum network are developing rapidly.In2001,IBM de-veloped the world’s?rst7-qubit QC to give a demonstration.In2007,D-wave corporation in Canada announced that they had?nished the16-qubit commercial QC for the?rst time and it was improved to48-qubit in2008.In2011,D-wave announced their achievement of 128-qubit commercial QC.The company had set goals for developing1024-qubit QC and pro-posed QC’s further application(such as releasing the quantum computing software system, providing interface for application program including SQL Prolog Lisp etc,developing the on-line commercial computation service).D-wave’s development implies that the principle of quantum computer has been matured and the practical technology also has made substantial progress.In the meantime,the quantum networks are?ourishing.In2004,Raytheon BBN Technologies and Harvard university cooperatively constructed a quantum cryptography net-work Defense Advanced Research Projects Agency(DARPA)and successfully accomplished the mutual connection using the communication optical?ber.Secure communication based on quantum cryptography(SECOQC)network was accomplished in2008,which was cooperatively ful?lled by41research institutions and enterprises from the European Union,Switzerland and Russia.In2010,based on the latest QKD technology,the Tokyo QKD network making use of JGN2plus(Japan’s Gigabit Network)was con?gured as a star network.This network con-nected the JGN2plus operation center in Otemachi with National Institute of Information and Communications Technology(NICT)’s Headquarter in Koganei as well as Tokyo University in Hongo and NICT’s research facility in Hakusan.

With the development of quantum computer and quantum network,the security of quan-tum data becomes more and more important.Cryptography is the approach to protect data’s secrecy in public environment.As we know,the security of most classical cryptosystems is based on the assumption of computational complexity.But this kind of security is susceptible to the strong ability of quantum computation[1],[2].It means that many existing cryptosys-tems’s security will be threatened by quantum computer.Fortunately,this di?culty can be overcome by quantum cryptography[3],[4].Di?erent from its classical counterpart,the secu-rity of quantum cryptography is assured by physical principles such as Heisenberg uncertainty

principle and quantum no-cloning theorem.Recently,quantum cryptography has obtained a great deal of attentions because it can stand against the threat from an attacker with the abil-ity of quantum computation.Quite a few branches of quantum cryptography develops greatly in recent years,including quantum key distribution(QKD)[5]-[10],quantum secret sharing (QSS)[11]-[13],quantum secure direct communication(QSDC)[14]-[18],quantum identity authentication[19]-[21],and so on.

Di?erent from cryptography,which is used to protect the secrecy of the message’s content, steganography aims at hiding the existence of message.Quantum watermarking is a kind of steganography,which is used to embed some symbolic quantum information into quantum multimedia content.It will not a?ect the usage of multimedia and others cannot feel the watermark’s existence.The watermark in the carrier is used to protect the copyright.

Compared with the?ourishing quantum cryptography,quantum steganography is still in its infancy.Images are good carriers and always used in steganography.Recently,a few strategies for quantum images’storing and retrieving have been proposed[22],[26],[27].Based on the presentations of quantum images,Le et al.proposed the strategies for quantum images’geometric transformations[25],[28]-[30].Besides,some quantum watermarking schemes[23], [24],[25],[32]were proposed,where[24]is the only and?rst one based on quantum images. But a signi?cant limitation is that the proposed schemes in[24]based on quantum images can only be used to vertify the identity of carrier image’s true owner.That means we can only ?nd out someone is using illegal carrier image,but we can not?nd out where his/her images come from.This is a real limitation in practical application.In this paper,we propose a novel quantum watermarking strategy which is more universal,in the sense that it can be used to ?nd out who is the real owner(or who leaks the carrier images to the illegal users)according to the watermark extracted from the carrier image.

The rest of this paper is organized as follows.The next section introduces quantum information[31],the?exible representation of quantum images(FRQI)[27],which will be used in the following sections,and the watermarking scheme proposed by Le et al..In section III,we describe our quantum watermarking strategy detailedly and present the results and analysis of simulation-based experiments to demonstrate the realization of the watermarked carrier image. Finally,a short conclusion is given in Section IV.

1Preliminaries

1.1Quantum information

A quantum computer is a device for computations that makes direct use of quantum mechanical properties.Quantum computation and quantum information are based on the fundamental concept,the quantum bit,or qubit for short.Just like there exist a classical bit

图1:Bloch sphere representation of a qubit|ψ?=cosθ

2|0?+e iφsinθ

2

|1?[31].

either0or1,a qubit also has a state.Their di?erence is that a qubit can be in any linear combinations of state|0?or|1?.It is often called superpositions:|ψ?=α|0?+β|1?.The numberαandβare complex numbers,and satisfy|α|2+|β|2=1.The computational basis states|0?and|1?form an orthonormal basis for a special vector space.We can think the qubit as the following geometric representations,which can be rewrite as the form of qubit as follows:

|ψ?=cosθ

2|0?+e iφsinθ

2

|1?,where theθandφare real numbers and de?ne a point on the

unit three–dimensional sphere,as shown in Fig.1.In principle,there are in?nitely many points on the unit sphere,so that one could store an entire text of Shakespear in the in?nite binary expansion ofθ[31].

1.2Flexible representation of quantum images

Based on the human perception of vision and the classical images’pixel representation, the?exible representation for quantum images(FRQI),a representation for quantum images, was proposed in[27].FRQI contains the color information and corresponding position of every pixel in image.According to the FRQI,a quantum image’s representation can be written as the form shown below.

|c i?=n?1,

where|0?,|1?are2-D computational basis quantum states,(θ0,θ1,...,θ22n?1)is the vector of angles encoding colors,and|i?,for i=0,...,22n?1,are(22n?1)-D computational basis.There

图2:A simple image and its FRQI state:|I?=1

[(cosθ0|0?+sinθ0|1?)?|00?+(cosθ1|0?+

2

sinθ1|1?)?|01?+(cosθ2|0?+sinθ2|1?)?|10?+(cosθ3|0?+sinθ3|1?)?|11?][24]

are two parts in the FRQI of an image:c i and|i?,which encode information about the colors and their corresponding positions in the image,respectively.

For2-D images,the location information encoded in the position qubit|i?includes two parts:the vertical and horizontal coordinates.For preparing quantum images in2n-qubit systems,or n-sized images,the vector

|i?=|y?|x?=|y n?1y n?2...y0?|x n?1x n?2...x0?,

|y i?|x i?∈{0,1},

for every i=0,1,...,n,(y n?1,y n?2,...,y0)encodes the?rst n-qubit along the vertical location and(x n?1,x n?2,...,x0)encodes the second n-qubit along the horizontal axis.An example of a 2×2FRQJ image is shown in Fig.2.

In[27],[28]-[30],[33],the methods for storing and retrieving quantum images are proposed.

1.3Le et al.’s strategy based on restricted geometric transformations

In[24],Le et al.proposed an algorithm for watermarking and authentication of quantum images based on restricted geometric transformations(including two-point swapping,the verti-cal?ip,the horizontal?ip,the coordinate swap operations).It is a great progress for quantum images processing that they utilize the restricted variants(of the quantum versions)[28]of these transformations as the basic resources of the watermark embedding and authentication circuits.These procedures are available for the various stages by the copyright owners and users of the published(watermarked)images.The copyright owner has access to both the classical and quantum versions of the image and watermark signal.The end-users on their parts are

图3:The outline of Le et al.’s watermark authentication procedure[24].

restricted to only the published quantum versions of the watermarked images.

The outline of quantum watermark image’s embedding procedure consists of two parts: the?rst part decides the watermark map with the classical versions of carrier and watermark images as input,the second part transforms the watermark map into quantum circuit accord-ing to a simple mapping between the map’s value(0,1or-1)and the quantum geometric transformations.The watermark authentication procedure,whose outline is shown in Fig.3,is only available to the copyright owner.He/she uses the inverse watermark-embedding circuit (comprising of the same gate sequence as the watermark-embedding circuit but in the reverse order)to authenticate the true ownership of an embedded carrier image.That means if the copyright owner want to authenticate some embedded carrier image,he/she has to know which watermark image is in the carrier image,i.e the unique embedding circuit.Therefore this scheme can only be used to verify the identity of a true owner of the carrier image.In this scheme,the copyrighters can only?nd out someone is using illegal images,but they can not ?nd out where his/her images come from.This is a real limitation in practical application.

2Quantum watermark embedding and extracting procedure

Our watermark embedding procedure is based on the idea that making a subtle change to the carrier image according to the watermarking image.The embedded carrier image and the original carrier image are indistinguishable by naked eyes.The extracting procedure can only be executed by the embedder,because the key used to decide the position of watermark and the original carrier image is only known to the embedder.

2.1The embedding procedure of quantum watermark image

As we known,an image consists of many pixels which are all pure colors.According to the FRQI,a pixel’s color in a quantum image can be written as I(θ)=cosθ|0?+sinθ|1?,where θrepresents the color of the pixel.The outline of the embedding procedure is shown in Fig.4.

图4:The outline of watermark image’s embedding procedure.

The concrete procedure is as following:

(1)If the watermark image’s size is less than the carrier’s image,the embedder should polish it to the size of carrier image.Concretely,the embedder randomly cover the carrier image with the watermark image.The area in watermark image corresponding to the exposed region in carrier image is replenished with the corresponding pixels in the carrier image,thus the watermark image is the same size with the carrier image.Here the white pixels’position are only known to embedder.

(2)The embedder produces a sequence of key k(unique to the carrier image).This key will be used to determine the position that the watermark image’s pixel will be embedded,and it is only known to the embedder.Speci?cally,if k=0the watermark image’s pixel is embedded in the cosine part,otherwise the sine part.

(3)The embedder embeds the watermark image into the carrier image according to the following method,which makes a subtle change to the Taylor series expression of the carrier image’s pixels.

The Taylor series of cos x and sin x is

cos x=1?x2

2!

+

x4

4!

?...+(?1)

k x2k

(2k)!

+...(?∞

sin x=x?x3

3!

+

x5

5!

?...+(?1)

k?1x2k?1

(2k?1)!

+...(?∞

Assume the watermark image’s pixel is cosφ|0?+sinφ|1?.If the key in step(2)is0,the original pixel is approximated withα|0?+β|1?,where

α=cosθ=1?θ2

2!

+

θ4

4!

6

6!

,β=

thus the pixel embedding watermark’s pixel isα′|0?+β′|1?,here

α′=cosθ′=1?θ2

2!

+

θ4

4!

6

6!

,β=

1?α′2

If the key in step(2)is1,the original pixel is approximated withα|0?+β|1?,where

图5:The outline of watermark image’s extracting procedure.

β=sin θ=θ?θ33!+θ55!?θ6

7!

,α=√1?β2thus the embedding watermark’s pixel is α′|0?+β′|1?,here

β′=sin θ′=θ?θ33!+θ55!?φ67!

,α′=√1?β′2(4)Implement the above three steps for every carrier image’s pixel and watermark image’s pixel.

2.2Quantum watermark image’s extracting procedure

In our scheme,the watermark extracting procedure is only available to the copyright owner (the embedder).He/She uses the key and the original carrier image to extract the watermark image from an embedded carrier image according to the extracting procedure (see Fig.5).Assume the color of the original carrier image’s pixel is I (θ)=cos θ|0?+sin θ|1?,the color of the embedded carrier image’s pixel is α′|0?+β′|1?.The concrete steps are as following:

(1)According to the key (unique to the carrier image),the embedder get the position of watermark image’s every pixel.

(2)If the key in step (1)is 0,the extracted watermark pixel is cos φ′|0?+sin φ′|1?,where

φ′

=((1?θ22!+θ44!

?α′)×6!)16If the key in step (1)is 1,the extracted watermark pixel is cos φ′|0?+sin φ′|1?,where φ′=((θ?θ33!+θ55!

?β′)×7!)17(3)Implement the above two steps for every pixel of the embedded carrier image and get every pixel of the watermark image.

2.3Simulations of quantum watermark embedding and extracting pro-

cedure

Due to the condition that the physical quantum hardware is not a?ordable for us to execute our protocol,we just make the simulations of the input quantum carrier images and watermark images.The tools needed and results obtained in our simulation experiments are presented and reviewed in this section.

MATLAB(MATrix LABoratory)is a useful software tool for matrix manipulations,plot-ting of functions and data,implementation of algorithms,creation of user interfaces,and in-terfacing with programs.It is?exible in the representation and manipulation of large arrays of vectors and matrices.Because it is reasonable to treat the quantum images as large matrices and the transformations as matrix computations.Therefore,MATLAB is suitable to simulate quantum states(such as quantum images),although it has some limitations in simulating the image of huge size.MATLAB’s Image Processing Toolbox provides a comprehensive set of reference-standard algorithms and graphical tools for image processing,analysis,visualisation, and algorithm development.By using MATLAB,quantum images and their transformations can be e?ectively simulated[24].We demonstrate our quantum watermark embedding and ex-tracting procedure with a classical computer with Intel(R)Core(TM)2Duo CPU E75002.93 GHz,1.98GB Ram equipped with the MATLAB2009a environment.The peak-signal-to-noise ratio(PSNR),being one of the most used metrics in classical images for comparing the?delity of a watermarked image with its original version,will be used as our watermarked image eval-uation metric by transforming the quantum images into classical forms,though there may be some in?uence on the results.It is most easily de?ned via the mean squared error(MSE),which for two m×n monochrome images(the original carrier image I and its watermarked version K) is de?ned as

MSE=

1

mn

m?1

i=0

n?1

j=0

[(I(i,j)?K(i,j))2]

The PSNR is de?ned by

P SNR=20log10(MAX I √

MSE

)

Here,MAX I is the maximum possible pixel value of the image[24].

2.3.1Simulation of gray images

In the simulation,we use256×256images of di?erent types as carrier images and water-mark images.In Fig.6,a part of the embedded carrier images are shown at left and the right

图6:The left are embedded carrier images.The right are extracted watermark images from the left.

side is the watermark images extracted from the corresponding left images.And the PSNR is presented in Table I.

表1:gray images’s PSNR

carrier image watermark image PSNR

aerial sailboat50.8418

baboon lena63.4885

boat pepper63.5384

lena baboon64.8810

pepper boat64.2690

sailboat aerial56.3347

2.3.2Simulation of color images

In the simulation,we use756×504and768×512images of di?erent types and colors as carrier images and watermark images.In Fig.7,a part of the embedded carrier images are at left and the right side is the watermark images extracted from the corresponding left images. And the PSNR is presented in Table II.

2.3.3Analysis

From Fig.6,Fig.7,Table I and Table II,we can see that the watermark image’s embedding doesn’t a?ect the carrier image’s visual e?ect.And the PSNR is obviously higher than the

average level of the classical algorithms.

图7:The left are embedded carrier images.The right are extracted watermark images from the left.

表2:color images’s PSNR

carrier image watermark image PSNR

sea lake78.6989

green tree bar57.2443

dancers building68.5769

house boat76.6030

temper huts76.0906

mural wall in?nity

wall mural78.9717

Due to the Minute changes to the original carrier images,users of the carrier images will not feel the exist of watermark images.Because the unique key of carrier image,the original carrier image and the embedding algorithm are only known to the embedder,the illegal operations of clearing away or extracting the watermark image are impossible.

3Conclusion

In this paper,a novel watermarking algorithm for images on quantum computers is pro-posed based on?exible representation for quantum images(FRQI).Compared with the previous strategy[24]which can only be used to verify the identify of true owner of the carrier image, our method is more universal.It can be used to?nd out who is the real owner.And it is impossible for a illegal users to clear o?or extract the watermark images.

Since the quantum computer and the quantum images study is only in their infancy,we

only give a exploratory algorithm.But the results may shine new light in the further research.参考文献(References)

[1]P.W.Shor,Algorithms for quantum computation:Discrete logarithms and factoring,in Proc.

35th https://www.360docs.net/doc/0818893498.html,put.Sci.,Santa Fe,NM,Nov.1994,pp.124-134.

[2]L.K.Grover,A fast quantum mechanical algorithm for database search,in Proc.28th Annu.

ACM Symp.Theory Comput.,Philadelphia,PA,May1996,pp.212-219.

[3]N.Gisin,G.Ribordy,W.Tittel,and H.Zbinden,Quantum cryptography,Rev.Mod.Phys.,

vol.74,no.1,pp.145-195,Mar.2002.

[4]A.Tajima,A.Tanaka,W.Maeda,S.Takahashi,and A.Tomita,Practical quantum cryp-

tosystem for metro area applications,IEEE J.Sel.Topics Quantum Electron.,vol.13,no.

4,pp.1031-1038,Jul.-Aug.2007.

[5]C.H.Bennett and G.Brassard,Quantum cryptography:Public key distribution and coin

tossing,in Proc.IEEE https://www.360docs.net/doc/0818893498.html,put.,Syst.Signal,Bangalore,India,Dec.1984,pp.

175-179.

[6]K.Inoue,Quantum key distribution technologies,IEEE J.Sel.Topics Quantum Electron.,

vol.12,no.4,pp.888-896,Jul.-Aug.2006.

[7]A.Tanaka,W.Maeda,S.Takahashi,A.Tajima,and A.Tomita,Ensuring quality of shared

keys through quantum key distribution for practical application,IEEE J.Sel.Topics Quantum Electron.,vol.15,no.6,pp.1622-1629,Nov.-Dec.2009.

[8]AH.P.Yuen,Key generation:Foundations and a new quantum approach,IEEE J.Sel.

Topics Quantum Electron.,vol.15,no.6,pp.1630-1645,Nov.-Dec.2009.

[9]W.Maeda,A.Tanaka,S.Takahashi,A.Tajima,and A.Tomita,Technologies for quantum

key distribution networks integrated with optical communication networks,IEEE J.Sel.

Topics Quantum Electron.,vol.16,no.6,pp.1591-1601,Nov.-Dec.2009.

[10]F.Xu,W.Chen,S.Wang,Z.Yin,Y.Zhang,Y.Liu,Z.Zhou,Y.Zhao,H.Li,D.Liu,Z.Han,

and G.Guo,Field experiment on a robust hierarchical metropolitan quantum cryptography network,Chin.Sci.Bull.,vol.54,no.17,pp.2991-2997,2009.

[11]R.Cleve,D.Gottesman,and H.-K.Lo,How to share a quantum secret,Phys.Rev.Lett.,

vol.83,no.3,pp.648-651,Jul.1999.

[12]M.Hillery,V.Bu?ek,and A.Berthiaume,Quantum secret sharing,Phys.Rev.A,vol.59,

no.3,pp.1829-1834,Mar.1999.

[13]A.Karlsson,M.Koashi,and N.Imoto,Quantum entanglement for secret sharing and

secret splitting,Phys.Rev.A,vol.59,no.1,pp.162-168,Jan.1999.

[14]G.L.Long and X.S.Liu,Theoretically e?cient high-capacity quantum-key-distribution

scheme,Phys.Rev.A,vol.65,no.3,pp.032302-1-032302-3,Feb.2002.

[15]K.Bostr?m and T.Felbinger,Deterministic secure direct communication using entangle-

ment,Phys.Rev.Lett.,vol.89,no.18,pp.187902-1-187902-4,Oct.2002.

[16]F.-G.Deng,G.L.Long,and X.-S.Liu,Two-step quantum direct communication protocol

using the Einstein-Podolsky-Rosen pair block,Phys.Rev.A,vol.68,no.4,pp.042317-1-042317-6,Oct.2003.

[17]W.Cao,Y.Yang,and Q.Wen,Quantum secure direct communication with cluster states,

Sci.China Phys.Mech.Astron.,vol.53,no.7,pp.1271-1275,2010.

[18]S.Qin,Q.Wen,L.Meng,and F.Zhu,Quantum secure direct communication over the

collective amplitude damping channel,Sci.China Ser.G,Phys.Mech.Astron.,vol.52,no.

8,pp.1208-1212,2009.

[19]M.Du?ek,O.Haderka,M.Hendrych,and R.My?ka,Quantum identi?cation system,Phys.

Rev.A,vol.60,no.1,pp.149-156,Jul.1999.

[20]G.Zeng and W.Zhang,Identity veri?cation in quantum key distribution,Phys.Rev.A,

vol.61,no.2,pp.022303-1-022303-5,Jan.2000.

[21]X.Zhang,One-way quantum identity authentication based on public key,Chin.Sci.Bull.,

vol.54,no.12,pp.2018-2021,2009.

[22]S.E.Venegas-Andraca,J.L.Ball,Processing images in entangled quantum systems,Journal

of Quantum Information Processing9(2010)1–11.

[23]J.Gea-Banacloche,Hiding messages in quantum data,Journal of Mathematical Physics

43(4531)(2002)4531–4536.

[24]A.M.Iliyasu et al,Watermarking and authentication of quantum images based on restricted

geometric transformations,Inform.Sci.(2011),doi:10.1016/j.ins.2011.09.028.

[25]A.M.Iliyasu,P.Q.Le,F.Dong,K.Hirota,Restricted geometric transformations and their

applications for quantum image watermarking and authentication,in:Proceedings of the 10th Asian Conference on Quantum Information Science(AQIS2010),2010,pp.212–214.

[26]A.M.Iliyasu,P.Q.Le,F.Dong,K.Hirota,A framework for representing and producing

movies on quantum computers,International Journal of Quantum Information9(6)(2011), doi:10.1142/S0219749911008015.

[27]P.Q.Le,F.Dong,K.Hirota,A?exible representation of quantum images for polynomial

preparation,image compression and processing operations,Journal of Quantum Information Processing(2010),doi:10.1007/s11128-010-0177-y.

[28]P.Q.Le,A.M.Iliyasu,F.Dong,K.Hirota,Fast geometric transformations on quantum

images,IAENG International Journal of Applied Mathematics40(3)(2010)113–123.

[29]P.Q.Le,A.M.Iliyasu,F.Dong,K.Hirota,Strategies for designing geometric transforma-

tions on quantum images,Theoretical Computer Science412(2011)1406–1418.

[30]P.Q.Le,A.M.Iliyasu,F.Dong,K.Hirota,E?cient colour transformations on quantum im-

ages,Journal of Advanced Computational Intelligence and Intelligent Informatics(JACIII), 15(6)(2011)698–706.

[31]M.Nielsen,I.Chuang,Quantum Computation and Quantum Information,Cambridge U-

niversity Press,New York,2000.

[32]D.P.Caetano and P.H.Souto Ribeiro,Quantum image control through polarization en-

tanglement in parametric down-conversion,PHYSICAL REVIEW A68,023805(2003).

[33]S.E.Venegas-Andraca and S.Bose,Storing,Processing and Retrieving an Image using

Quantum Mechanics,Proceedings of the SPIE Conference on Quantum Information and Computation pp.137-147(2003).

量子力学选择题1

量子力学选择题 (1)原子半径的数量级是: A.10-10cm; B.10-8m C. 10-10m D.10-13m (2)若氢原子被激发到主量子数为n的能级,当产生能级跃迁时可能发生的所有谱线总条数应为: A.n-1 B .n(n-1)/2 C .n(n+1)/2 D .n (3)氢原子光谱赖曼系和巴耳末系的系线限波长分别为: A.R/4 和R/9 B.R 和R/4 C.4/R 和9/R D.1/R 和4/R (4)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为: A.3Rhc/4 B. Rhc C.3Rhc/4e D. Rhc/e (5)氢原子基态的电离电势和第一激发电势分别是: A.13.6V和10.2V; B –13.6V和-10.2V; C.13.6V和3.4V; D. –13.6V和-3.4V (6)根据玻尔理论,若将氢原子激发到n=5的状态,则: A.可能出现10条谱线,分别属四个线系 B.可能出现9条谱线,分别属3个线系 C.可能出现11条谱线,分别属5个线系 D.可能出现1条谱线,属赖曼系 (7)欲使处于激发态的氢原子发出Hα线,则至少需提供多少能量(eV)? A.13.6 B.12.09 C.10.2 D.3.4 (8)氢原子被激发后其电子处在第四轨道上运动,按照玻尔理论在观测时间内最多能看到几条线? A.1 B.6 C.4 D.3 (9)氢原子光谱由莱曼、巴耳末、帕邢、布喇开系…组成.为获得红外波段原子发射光谱,则轰击基态氢原子的最小动能为: A .0.66 eV B.12.09eV C.10.2eV D.12.75eV (10)用能量为12.75eV的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能出现几条光谱线(不考虑自旋); A.3 B.10 C.1 D.4 (11)按照玻尔理论基态氢原子中电子绕核运动的线速度约为光速的: A.1/10倍 B.1/100倍 C .1/137倍 D.1/237倍 (12)已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子的结构的

宝洁公司市场营销策略

宝洁公司国际市场分析 一、宝洁公司概况 一九八八年宝洁公司在广州成立了在中国的第一家合资企业——广州宝洁有限公司,从此开始了宝洁投资中国市场的历程。保洁公司自从成立以来就占有市场的大量份额。它一直保留着这个神话,是因为宝洁采用归门别类的营销策略,宝洁公司实施的多品牌战略有助其最大限度的占有市场,根据规律,当单一品牌市场占有率到达一定高度后,要再提高就非常难,但如果另立品牌,获得一定的市场占有率就相对容易,这是单个品牌无法达到的。 二、宝洁公司国际市场细分 高档产品 东方市场中档产品 洗低档产品 发 水 西方市场 宝洁公司在进入中国的洗发水行业,首先对整个中国的洗发水市场划分为多个细分的市场。整个中国的市场可以分为高、中、低档三个部分;同时在每个部分市场又可以根据不同的标准划分出更细的细分市场:如根据适合不同发质的和

不同消费者喜好分成各种专用功能市场;如根据市场的人口密度又可以分为都市、市郊和乡村;根据年龄可分为青年、中年和老年市场等等。 (一)按地理标准细分 宝洁公司的地理细分主要表现在产品技术研究方面。如宝洁经过细心的化验发现东方人与西方人的发质不同,比较硬干,于是宝洁开发了营养头发的潘婷,满足亚洲消费者的需要。针对不同地区,主推的产品也不同,比如在偏远的山村地区,则推出了汰渍等实惠便宜的洗涤产品。对于北京、上海、香港以及更多的国际大都市则主推玉兰油,潘婷等高端产品。 (二)按人口标准细分 青年消费者有着求新、好奇、透支消费、追求名牌、注重自我等比较个性化、先导性的消费习惯,年龄较大的消费者则注重商品的实用性。男性消费者的价格容忍程度高于女性消费者,女性消费者对价格较为敏感。 宝洁广告画面多选用年轻男女的形象,如选取青春偶像倪妮、杨洋做广告代言人。宝洁的市场定位为青年消费群体,其高份额的市场占有率充分证明了定位的正确性。如沙宣主要针对讲究个性的年轻时尚白领一族。收入是进行市场细分的一个常用人口变量,收入水平影响消费者需求并决定他们的购买能力。生活中,男性与女性在某些产品需求和偏好上有很大的不同,那么产品也应该迎合这些差异才能更好地满足消费者的需求,洗发水也分男士和女士洗发水这样更好的满足了不同性别消费者的需求。 三、宝洁公司国际市场定位 (一)国际产品用途定位:宝洁公司在进入中国的洗发水行业后,推出了不同用途的洗发产品。

量子力学考试题

量子力学考试题 (共五题,每题20分) 1、扼要说明: (a )束缚定态的主要性质。 (b )单价原子自发能级跃迁过程的选择定则及其理论根据。 2、设力学量算符(厄米算符)∧ F ,∧ G 不对易,令∧K =i (∧F ∧G -∧G ∧ F ),试证明: (a )∧ K 的本征值是实数。 (b )对于∧ F 的任何本征态ψ,∧ K 的平均值为0。 (c )在任何态中2F +2 G ≥K 3、自旋η/2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为 S H ??ω= ∧ H =ω∧ z S +ν∧ x S (ω,ν>0,ω?ν) (a )求能级的精确值。 (b )视ν∧ x S 项为微扰,用微扰论公式求能级。 4、质量为m 的粒子在无限深势阱(0

(a )能量有确定值。力学量(不显含t )的可能测值及概率不随时间改变。 (b )(n l m m s )→(n’ l’ m’ m s ’) 选择定则:l ?=1±,m ?=0,1±,s m ?=0 根据:电矩m 矩阵元-e → r n’l’m’m s ’,n l m m s ≠0 2、(a )6分(b )7分(c )7分 (a )∧ K 是厄米算符,所以其本征值必为实数。 (b )∧ F ψ=λψ,ψ∧ F =λψ K =ψ∧ K ψ=i ψ∧F ∧ G -∧ G ∧F ψ =i λ{ψ∧ G ψ-ψG ψ}=0 (c )(∧F +i ∧G )(∧F -i ∧G )=∧ F 2 +∧ G 2 -∧ K ψ(∧F +i ∧G )(∧F -i ∧G )ψ=︱(∧ F -i ∧ G )ψ︱2≥0 ∴<∧ F 2 +∧ G 2-∧ K >≥0,即2F +2 G ≥K 3、(a),(b)各10分 (a) ∧ H =ω∧ z S +ν∧ x S =2ηω[1001-]+2ην[0110]=2η[ων ν ω -] ∧ H ψ=E ψ,ψ=[b a ],令E =2η λ,则 [λωννλω---][b a ]=0,︱λων ν λω---︱ =2λ-2ω-2ν=0 λ=±22νω+,E 1=-2η22νω+,E 2=2η 22νω+ 当ω?ν,22νω+=ω(1+22ων)1/2≈ω(1+222ων)=ω+ων22 E 1≈-2η[ω+ων22],E 2 =2η [ω+ων22] (b )∧ H =ω∧z S +ν∧ x S =∧H 0+∧H ’,∧ H 0=ω∧ z S ,∧ H ’=ν∧ x S ∧ H 0本征值为ωη21± ,取E 1(0)=-ωη21,E 2(0) =ωη21 相当本征函数(S z 表象)为ψ1(0)=[10],ψ2(0)=[01 ] 则∧ H ’之矩阵元(S z 表象)为

宝洁公司营销策略分析

宝洁公司营销策略分析 专业市场营销 学号 150298129 姓名王洋 宝洁公司营销策略分析 学号:150289129 姓名:王洋成绩: 目录 一、公司简介 (2) 二、SWOT分析 (2) 三、产品战略 (3) 1、成功经验 (3) (4) 四、定价策略: (4) 1、两种定价方向 (4) 2、定价策略得成功经验 (5) 3、定价策略得不足 (5) 4、针对定价策略得不足提出得对策 (5) 五、销售渠道策略 (5) 1、宝洁公司得渠道模式: (5) 2、宝洁公司销售渠道形式 (6) 3、宝洁公司对分销商管理得不合理性: (6) 4、建议 (6) 六、广告策略 (7) 1、成功经验 (7) 2、宝洁公司销售促进与公关促销策略 (7)

3、宝洁广告策略得不足 (7) 4、宝洁公司促销策略对我国企业得启示 (8) 【摘要】本论文主要针对宝洁公司得市场营销战略得制定进行分析,运用SWOT 分析法,明确宝洁公司所处得外部环境与内部条件,清楚自身定位,并从产品、定价、渠道与促销四个方面来论述其成功经验与存在问题,提出相对得解决方案。关键字:宝洁公司、产品、定价、渠道、促销 一、公司简介 宝洁公司,简称P&G,就是一家美国消费日用品生产商,也就是目前全球最大得日用品公司之一。总部位于美国俄亥俄州辛辛那提,全球员工近110000人。宝洁公司拥有众多深受信赖得优质、领先品牌,其中,包括帮宝适、汰渍、碧浪、飘柔、潘婷、海飞丝、玉兰油、博朗等。2003~2004财政年度,公司全年销售额为514亿美元。2006财政年度,宝洁公司销售额近682亿美元,在全球得“财富五百强”中排名第81位。宝洁公司在全球 80多个国家都设有其工厂及分公司,所经营得300多个品牌得产品畅销160多个国家与地区,其中包括织物及家居护理、美容美发、婴儿及家庭护理、健康护理、食品及饮料等。 二、SWOT分析 宝洁公司能够鹤立鸡群,在日用品方面做到家喻户晓,如此功绩,其优秀得市场营销战略功不可没。现在我们来运用SWOT分析法分析宝洁公司得外部环境与内部条件。 优势:坚持优越得品牌管理制度,创造独特品牌;拥有强势得企业文化——PVP(宗旨、核心价值、原则);强大得营销专业能力;建立有丰沛得世界性组织资源; 劣势:短缺经济环境中发展壮大得团队;缺乏面临产品过剩时代得管理经验;对迅速演进得零售业态、媒体形态认识不够;习惯按西方营销理论,以五星级得方法经营二三成市场。 机会:消费者生活水平提高,趋向个性、新颖、实惠、效果良好得产品;群众普遍户外卫生意识觉醒,纸巾市场迅速形成;消费者日益成熟,知道如何挑选品牌; 互联网得日益普及,使得信息传播渠道扩大。

《学英语》报

《学英语》报大学周刊 ·出版周期:周刊 ·国内统一刊号:CN14-0702(F) ·中国大学生第一份有声中英文报纸 ·中国高校报刊第一品牌 ·全国外语教辅类报纸质检第一名 ·主管单位:山西省教育厅 ·主办单位:山西教育教辅传媒集团 我们历经变革,以智行商,如今矗立于教辅行业之巅;我们严于律己,精益求精,精品意识植根于每个人的心田;我们合纵连横,诚信兴业,始终致力服务于中国教育事业。 《学英语》报大学周刊是由学英语报社于2006年推出的面向全国大学生读者发行的中英文读物。 《学英语》报大学周刊以“中国大学生第一份有声中英文报纸”为核心特色,集知识性、辅导性和娱乐性为一体。 目前,本刊在全国拥有超过100万大学生读者。本刊在提供丰富优质的英文学习资源的基础上,详细解析英语四级真题和PETS3(公共英语三级考试)和AB级考试,精心设计模拟题,同时设有与大学成长相关的中文版块,以满足大学生学习、生活、成长的需要。 本刊力求“丰富的内容、优质的稿源、精美的设计”,真正做到名家专家出精品报纸。 《学英语》报大学周刊采用4开彩色印刷,国内标准刊号为CN14-0702/F内容设有:科学与自然、影视欣赏、文化之旅、学海导航、体育与娱乐、社会广角、四、六级真题演练和模拟训练、四、六级高分策略、经典美文、财富人物、心灵空间、新大学时代等栏目。 “天行健,君子以自强不息。地势坤,君子以厚德载物”,在新世纪的征途上,学英语人将一如既往地不断拼搏、锐意创新,力争把《学英语》打造成全国领先的集教学、教研、培训、出版为一体的现代教育传媒产业基地。 传播知识,传递情感,“学英语”依然持之以恒! 理想?真诚?超越,“学英语”未来更加辉煌!

宝洁公司案例分析报告

宝洁公司案例分析报告 一案例综述 宝洁公司创始于1837年,是向杂货零售商和批发商供货的最大的制造商之一,并且在品牌消费品制造商如何进行市场定位的策略设计方面是一个领先者。在1993年,宝洁公司的300亿美元的销售额在美国与世界其他国家各占一半。公司的产品系列包括了许多种类的产品,公司组织成了5大产品部:保健/美容、食品/饮料、纸类、肥皂、特殊产品(如化学品)。 宝洁公司的大多数产品类别的竞争比较及集中,在每一个产品类别中,2个或3个品牌产品生产商控制了总品牌产品销后额度额的50%以上的份额。宝洁公司的产品通过多种渠道进行销售,其中在产品销售数量发面最重要的几个渠道是杂货零售商、批发商、超级市场、和俱乐部商店。尽管公司于零售商和批发商之间的关系并不总是那么的和谐,但是宝洁公司的管理层认识到,为了在市场中获得成功,既要满足消费者的需要,又要满足渠道的需要。保洁工产品的需求主要是由最终消费者的拉动通过渠道的,而不是通过贸易推动的。消费者对宝洁产品的强有力的需求拉动为公司在与零售商和批发商交易过程中提供了优势。 在150多年的经营过程中,宝洁公司已经在积极和成功地进行高质量消费品的“世界级”的开发和营销方面建立了声誉。在公司发展的历史中,宝洁公司强调给消费者提供能带来良好的价值的出色的品牌产品。并且将公司定位于:为忠于品牌的消费者提供根据价值定价的产品的基础上构造公司的未来。

20世界70年代,产品促销显着发展。伴随大量的促销活动,使提前购买成为行业的惯例,而且导致了制造商很难准确的预测需求的变化。各个环节的库存不断扩大来满足消费者的提前购买需求。它不仅提高了库存成本,同时也导致了更高的制造成本和服务成本,也导致了品牌价值和供应链渠道的无效率。 90年代的渠道转变的改革的目标之一,在于开发与渠道中的合作伙伴更加合作和相互有力的关系,用合作来替代谈判,从而有效率地、更好的满足消费者的需要。通过将消费者的忠诚于改进的渠道效率和关系相结合,宝洁公司认为自己产品的市场份额将会增长,而渠道和消费者的服务成本将会下降,使渠道中的所有成员都能够受益。 二问题分析 (1)分销渠道的改革 在20世纪90年代,宝洁对渠道进行了改革。它希望开发与渠道中的合作伙伴更加合作和相互互利的关系,用合作来代替谈判。它的目的是提高渠道的效率和服务水平为此,它有两个项目,第一个项目集中于通过连续补充计划(CRP)来提高供应物流和降低渠道库存。第二个项目是通过订货和开票系统的修改来改善对渠道客户的总订货周期和服务质量。 CRP的实施对各个零售商来说解决了他们最大的问题。不断扩大的顾客需求和有限的仓库容量的矛盾,使零售商不得不通过零担运输的方式来满足需求。零担运输无疑增加了零售商的物流成本,这就会导致价格的上涨。而价格对零售商来说是争取顾客的有利武器。宝洁的这种做法解决了零售商的后顾之忧,使零售商只需要关心他的前台运作了。这种做法虽然在短期由于

英语报纸电子版

Postgrad poisoned by roommate dies A postgraduate student at the medical school of Shanghai Fudan University died Tuesday after drinking water allegedly poisoned by his roommate. Huang Yang, 28, was in his third year at the university. He began violently vomiting and developed a fever after drinking water in his dorm on April 1. He fell into a coma with liver failure after being sent to hospital, according to the university. Initial police investigation on April 11 found that the contents of a water dispenser in Huang's dormitory were contaminated by poisonous compound. But the compound has not yet been identified, police said. Huang's roommate surnamed Lin was identified as a suspect and has been under police custody. Police are continuing to investigate the case . 五十个长大成人的标志(1) Key signs of adulthood are no longer relying on mum and dad for financial decisions, being able to cook an evening meal from scratch and owning a lawn mower according to the Skipton Building Society. Here are the 50 things that prove you are grown-up.1.Having a mortgage 2.Mum and dad no longer make your financial decisions 3.Paying into a pension 4.Conducting a weekly food shop 5.Written a Will 6.Having children 7.Budgeting every month 8.Being able to cook an evening meal from scratch 9.Getting married 10.Having life insurance 11.Recycling 12.Having a savings account 13.Knowing what terms like 'ISA' and 'tracker' mean 14.Watching the news 15.Owning a lawn mower 16.Doing your own washing 17.Taking trips to the local tip 18.Planting flowers 19.Being able to bleed a radiator 20.Having a joint bank account 21.Having a view on politics Editors :艾琳 陈巧玲 刘丙珍 杨晨露

量子力学试题

量子力学试题(一)及答案 一. (20分)质量为m 的粒子,在一维无限深势阱中 ()???><∞≤≤=a x x a x x V ,0 ,0 ,0 中运动,若0=t 时,粒子处于 ()()()()x x x x 3212 1 31210,???ψ+-= 状态上,其中,()x n ?为粒子能量的第n 个本征态。 (1) 求0=t 时能量的可测值与相应的取值几率; (2) 求0>t 时的波函数()t x ,ψ及能量的可测值与相应的取值几率 解:非对称一维无限深势阱中粒子的本征解为 ()x a n a x n n m a E n n π ?πsin 2,3,2,1 ,222 2 2=== (1) 首先,将()0,x ψ归一化。由 12131212222=???? ???????? ??+???? ??+???? ??c 可知,归一化常数为 13 12=c 于是,归一化后的波函数为 ()()()()x x x x 32113 31341360,???ψ++-= 能量的取值几率为 ()()()13 3 ;13 4 ;136321=== E W E W E W 能量取其它值的几率皆为零。 (2) 因为哈密顿算符不显含时间,故0>t 时的波函数为

()()()()?? ? ??-+?? ? ??-+??? ??-= t E x t E x t E x t x 332211i e x p 133i exp 134i exp 136, ???ψ (3) 由于哈密顿量是守恒量,所以0>t 时的取值几率与0=t 时相同。 二. (20分)质量为m 的粒子在一维势阱 ()?? ? ??>≤≤-<∞=a x a x V x x V ,00 ,0 .0 中运动()00>V ,若已知该粒子在此势阱中有一个能量2 V E -=的状态,试确定此势阱的宽度a 。 解:对于02 <- =V E 的情况,三个区域中的波函数分别为 ()()()()??? ??-===x B x kx A x x αψψψexp sin 03 21 其中, E m V E m k 2 ;) (20=+= α 在a x =处,利用波函数及其一阶导数连续的条件 ()()()() a a a a '3 '2 32ψψψψ== 得到 ()() a B ka Ak a B ka A ααα--=-=exp cos exp sin 于是有 α k ka -=tan 此即能量满足的超越方程。 当02 1 V E -=时,由于 1t a n 00 0-=-=??? ? ?? mV mV a mV

八年级上册学英语报纸答案

八年级上册学英语报纸答案八年级上册学英语报纸答案 【篇一:八年级下册英语报纸答案】 txt>1. what ' s lily playing? 2. how many kites does bob have? 3. what are they doing to raise mon ey? 4. what job is ala n in terested in? 5. which is ellen ' s favourite snow globe? 二.听小对话,选择正确的答案(10% ) 听第一段对话,回答6-7小题。 6. when is alan ' s birthday? a. march. 3rd b. march 13th. c. march 20th. 7. how will ala n celebrate his birthday? a. have a try b. go out for dinner. c. see a film

听第二段对话,回答8-10小题。 8. where is the new sports cen tre? a. on straight road b. on long street. c. beside the school 9. what sport can people play at the sport cen tre? a. basketball b. volleyball c. swimmi ng 10. how much should you pay for a year-ticket if you are 18? a. 40 yua n b. 50 yua n c. 60 yua n 三、听独白,完成信息表(10%)

量子力学第五章习题

第五章 微扰理论 5.1 如果类氢原子的核不是点电荷,而是半径为0r ,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。 解: 这种分布只对0r r <的区域有影响, 对0r r ≥的区域无影响. 根据题意知 ()()0 ?H U r U r '=- 其中()0U r 是不考虑这种效应的势能分布, 即 ()2004ze U r r πε=- ()U r 为考虑这种效应后的势能分布, 在0r r ≥的区域为 ()2 04ze U r r πε=- 在0r r <的区域, ()U r 可由下式 ()r U r e Edr ∞ =-? 其中电场为 () () 3023300000201 4,443434Ze Ze r r r r r r r E Ze r r r ππεπεππε?=≤?? =? ?>? ? 则有: ()()()() 2 2 3 2 000 22222 2200 033000000 1443848r r r r r r U r e Edr e Edr Ze Ze rdr dr r r Ze Ze Ze r r r r r r r r r πεπεπεπεπε∞ ∞ =--=- - =---=--≤??? ? 因此有微扰哈密顿量为 ()()()() 222 200300 031?220s s Ze r Ze r r r r r H U r U r r r ???--+ ≤? ?'=-=????>? 其中s e =类氢原子基态的一级波函数为 ()( 32 10010000032 02exp 2Zr a R Y Z a Zr a Z e a ψ-==-?=?? 按定态微扰论公式,基态的一级能量修正值为 ()()()0 0*0011 11 100100 3 2222222000000?1 31sin 4422Zr r a s s E H H d Z e Ze Z r d d e r dr a r r r ππψψτ?θθπ -''==??????=--+?? ? ????????? ? ???

学英语报答案

学英语报答案 篇一:学英语报纸12期答案 第二版 同步课堂 Unit 1 1 connect; to 2 C 3 B 4 to dray mother ary’s Ⅲ. 1. came 2. him 3. joined 4. Their 5. sent 6. y favorite star is Jackie Chan. He is a great actor. I like him very much. I think his movies are exciting and he is a friendly movie star. Most of his movies are very successful action movies. I like his movies best. Jackie Chan is one of the most popular stars in the ay. B. In March. C. In November. D. In September. 8. A. $30.B. $ 300. .C. $60.D. $ 600. 9. A. Because it's funny.B. Because it’s exciting. C. Because it’s scary. D. Because it’s sad. 10. A. Never. B. Every day. C. Once a ike Green is a special artist. 16. He is from America.

17. He can create art any students c from poor families and they ______ afford school lunches, so the government is trying to help them. A. needn’t B. shouldn't C. can’t D. mustn’t 27. China plans to let tourists ______ the Xisha Islands in the South China Sea this year. A. visit B. visits C. visiting D. visited 28. I asked ti Green an hour to fix up his bicycle yesterday. A. cost B. paid C. spent D. took 30. Breakfast is ______ meal of the day. It provides us r Miller agrees. “It is a41 r Miller noost importantly, I45the classroom. This, of course, r Mendel discovered ost people hope that this r Mendel discover ake better medicine.B. Make them get jobs. C. Make maps for them. D. Make them attractive. 54. e. B. ovie with? C. Yes, you are right D. How wonderful the movie was! E. obile phones. G. So the movie was boring, wasn’t it? (三) 阅读短文,完成第II卷第五大题的66~70小题,

量子力学练习题

第 五 篇 第 一 章 波粒二象性 玻尔理论 一、选择题 1. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0 (使电子从金属逸出需作功eU 0),则此单色光的波长λ必须满足: [ A ] (A) 0eU hc ≤ λ (B) 0 eU hc ≥λ (C) hc eU 0≤λ (D) hc eU 0≥λ 解:红限频率与红限波长满足关系式hv 0= λhc =eU 0,即0 0eU hc = λ 0λλ≤才能发生光电效应,所以λ必须满足0 eU hc ≤ λ 2. 在X 射线散射实验中,若散射光波长是入射光波长的1.2倍,则入射光光子能量0ε与散射光光子能量ε之比ε0 为 [ B ] (A) 0.8 (B) 1.2 (C) 1.6 (D) 2.0 解: λ εhc = ,0 0λεhc = ,02.1λλ= ,所以 2.10 0==λλεε 3. 以下一些材料的功函数(逸出功)为 铍 -----3.9 eV 钯 ---- 5.0 eV 铯 ---- 1.9 eV 钨 ---- 4.5 eV 今要制造能在可见光(频率范围为3.9×1014 Hz ~ 7.5×1014Hz)下工作的光电管,在这些材料中应选 [ C ] (A) 钨 (B) 钯 (C) 铯 (D) 铍 解:可见光的频率应大于金属材料的红限频率0νh , 才会发生光电效应。这些金属的红限频率由A h =0ν可以得到: 1419 34 )(01086.101063.610 6.15.4?=???= --钨ν(Hz) 1419 34 )(01007.121063.610 6.10.5?=???= --钯ν(Hz) 1419 34 ) (01059.41063.610 6.19.1?=???= --铯ν(Hz) 1419 34 )(01041.91063.610 6.19.3?=???= --铍ν(Hz) 可见应选铯

宝洁如何合理定价

如何进行合理地定价 作者:Frank Shen 最近,有关价格竞争的话题经常出现在人们的谈论当中。在与客户的合作中,也频繁地出现关于价格的谈判。客户也许经常会问你:其他商店最近在飘柔,舒肤佳上放了一个很低的价格,我应该怎么办?为什么你不能支持我市场最低价?如果我跟他们在价格上进行竞争,你能不能给我一些其他的钱来保证我的毛利率?、、、 以下是综合了一些有关价格战术的一些理论和观点,希望能够给各位Field的同志们一些提示:首先,我们要对价格,价格形象,价格在零售世界的作用进行分析。 在零售的四大要素中,产品,分销,促销是零售商在市场上创造一种价值,而价格是他们赖以表现这一价值的手段,以此抓住顾客的主要工具,并且保持一定的盈利水平。因此,合理的定价是要基于对购物者的了解,在产品,分销和促销所创造的价值基础上,进行符合预期利润目标的价格制定。 有关价格形象的理论,现在最流行的是Diller模式,如下图所示: 在此我们可以看到,价格形象不仅仅是单纯的低价,或降价,而是三个方面的综合效果:产品的价格水平(包括促销期间和平时),经常性的选择购物者关心的产品进行促销,促销时营造的气氛,

家乐福/ C A R R E F O U R 好又多/ T R U S T M A R T 农工商/ N O N G G O N G S H A N G 大润发/R t - M a r t 联华/L I A N H U A 华联/H U A L I A N 麦德龙/ M E T R O 易初莲花/ L O T U S 欧尚/ A u c h a n 以及促销形式的选择(单纯降价或组合降价,或买送结合),等等组成了价格优势;而购物环境, 产品组合,产品陈列等附加服务价值提高了性价比;至于价格透明度则包括明确的价格标识,以 及稳定的价格。而且,在商店的运作中,要不断地表现和宣传三方面的优势。 举一个例子,在上海各零售商关于价格形象的调查如下: 70 60 50 40 30 20 Price Advantage Price Honesty Price Quality 10 可以看到家乐福在建立价格形象上是非常成功的,而实际上家乐福很少是真正的市场价格最低的 零售商。我个人认为促销形式,商场气氛的营造,商场陈列等对于促销的宣传是真正的原因,他 营造的气氛使购物者认为价格优惠,并且所有的价格都有十分明显的标识,使购物者买得开心, 买得放心。当然可能还包括其目标商品如生鲜食品的低价。 其次,在市场竞争当中,特别在一些成熟的市场,价格是一个重要的因素,但不是唯一的手段。 在 Percy 的一个邮件当中就有十分详细的表述:北美的商店致力于建立与其他竞争者不同的优势, 从店内装修与布置到开店时间,从产品选择到货架安排,从销售不同的产品到不同的包装大小, 从商店品牌到以提供消费者解决方案为促销目的,等等、、、他们在尽量避免直接的价格竞争,而 是通过其他方式如包装来使消费者很难进行价格比较。当然,在北美,价格竞争仍然存在,消费 者也追求低价,但价格形象的建立并不是一朝一夕的事情,一旦建立了良好的价格形象,别人也 很难仿效。比如 Wal -Mart ,天天低价的形象已深入人心,其他竞争对手也很难动摇这样的优势, 所以他们多数采用 High -Low 的价格策略,通过每周直邮促销广告致力于宣传促销价格,也有一 些商店定位于吸引高收入消费者,他们从来不宣传低价,而是突出良好的购物环境以及服务。总 之,在市场发展到一定程度,竞争已经转化成对细分市场的占领,提供特有的产品或服务来吸引 不同的细分市场,抓住不同的购物者,这就是所谓的”Differentiation” 。 因此,在 MRC 的各个客户经理,可以考虑采取以下的措施来帮助进行合理的定价: 1. 与商店一起讨论有关市场定位的问题,希望吸引什么样的购物者,竞争对手是谁,然后再决 定价格策略,只有清晰的市场定位,才会有合理的价格策略。常见的价格策略有: 每日低 价(EDLP 〕,每日合理价格(EDFP 〕,平时正常价促销超低价(HIGH -LOW 〕、、、容易引起 误解的地方是 EDLP 并不意味着任何时候都比 HIGH -LOW 价格低,因为 HIGH -LOW 的

量子力学知识点小结(良心出品必属精品)

第一章 ⒈玻尔的量子化条件,索末菲的量子化条件。 ⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 ⒎普朗克量子假说: 表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。 表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=hν。 表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。 ⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 ⒐光电效应有两个突出的特点: ①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。 ②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 ⒑爱因斯坦光量子假说: 光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出

现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程 ⒒光电效应机理: 当光射到金属表面上时,能量为 E= h ν 的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。 ⒓解释光电效应的两个典型特点: ①存在临界频率v 0:由上式明显看出,当h ν- W 0 ≤0时,即ν≤ν0 = W 0 / h 时,电子不能脱出金属表面,从而没有光电子产生。 ②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。 ⒔康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律: ①散射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ; ②波长增量Δλ=λ-λ随散射角增大而增大。 ⒖量子现象凡是普朗克常数h 在其中起重要作用的现象 ⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性 ⒘与运动粒子相联系的波称为德布罗意波或物质波。 ???? ? ???? ======n k h k n h P h E λππλων2 ,2

八年级上册学英语报纸答案

八年级上册学英语报纸答案

八年级上册学英语报纸答案 【篇一:八年级下册英语报纸答案】 txt>1. what’s lily playing? 2. how many kites does bob have? 3. what are they doing to raise money? 4. what job is alan interested in? 5. which is ellen’s favourite snow globe? 二. 听小对话,选择正确的答案(10%) 听第一段对话,回答6-7小题。 6. when is alan’s birthday? a. march. 3rd b. march 13th. c. march 20th. 7. how will alan celebrate his birthday? a. have a try b. go out for dinner. c. see a film 听第二段对话,回答8-10小题。 8. where is the new sports centre? a. on straight road b. on long street. c. beside the school 9. what sport can people play at the sport centre? a. basketball b. volleyball c. swimming 10. how much should you pay for a year-ticket if you are 18? a. 40 yuan b. 50 yuan c. 60 yuan 三、听独白,完成信息表(10%)

量子力学选择题库

量子力学选择题 1.能量为100ev 的自由电子的DeBroglie 波长是A A.1.2 A 0.B.1.5A 0.C.2.1A 0.D.2.5A 0 . 2.能量为0.1ev 的自由中子的DeBroglie 波长是 A.1.3 A 0 .B.0.9A 0 .C.0.5A 0 .D.1.8A 0 . 3.能量为0.1ev ,质量为1g 的质点的DeBroglie 波长是 A.1.4A 0 .B.1.9?10 12 -A 0 .?1012-A 0 .D.2.0A 0 . 4.温度T=1k 时,具有动能E k T B =32(k B 为Boltzeman 常数)的氦原子的DeBroglie 波长是 A.8 A 0.B.5.6A 0.C.10A 0.D.12.6A 0 . 5.用Bohr-Sommerfeld 的量子化条件得到的一维谐振子的能量m 为( ,2,1,0=n )A A.E n n = ω. B.E n n =+()1 2 ω .C.E n n =+()1 ω.D.E n n =2 ω. 6.在0k 附近,钠的价电子的能量为3ev ,其DeBroglie 波长是 A.5.2 A 0.B.7.1A 0.C.8.4A 0.D.9.4A 0 . 7.钾的脱出功是2ev ,当波长为3500 A 0 的紫外线照射到钾金属表面时,光电子的最大能量为 A. 0.25?1018-J. B.1.25?1018-J. C.0.25?1016-J. D.1.25?1016 -J. 8.当氢原子放出一个具有频率ω的光子,反冲时由于它把能量传递给原子而产生的频率改变为 A. 2μc .B. 22μc .C. 22 2μc .D. 22μc . https://www.360docs.net/doc/0818893498.html,pton 效应证实了 A.电子具有波动性. B.光具有波动性. C.光具有粒子性. D.电子具有粒子性. 10.Davisson 和Germer 的实验证实了 A.????电子具有波动性. B.光具有波动性. C.光具有粒子性. D.电子具有粒子性. 11.粒子在一维无限深势阱 U x x a x x a (),,,=<<∞≤≥???000中运动,设粒子的状态由ψπ()sin x C x a =描写,其归一化常数C 为B A.1a . B.2a . C.12a . D.4 a . 12.设ψδ()()x x =,在dx x x +-范围内找到粒子的几率为D A.δ()x . B.δ()x dx . C.δ 2 ()x .D.δ2()x dx . 13.设粒子的波函数为ψ(,,)x y z ,在dx x x +-范围内找到粒子的几率为C A. ψ(,,)x y z dxdydz 2 .B.ψ(,,)x y z dx 2 .C.dx dydz z y x )),,((2 ??ψ.D.dx dy dz x yz ψ(,) ???2 . 14.设ψ1()x 和ψ2()x 分别表示粒子的两个可能运动状态,则它们线性迭加的态c x c x 1122ψψ()()+的几率分布为D

量子力学周世勋习题解答第五章范文

第五章习题解 5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。 解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。据题意知 )()(?0 r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 r ze r U 02 4πε- =)( )(r U 为考虑这种效应后的势能分布,在0r r ≥区域, r Ze r U 02 4)(πε-= 在0r r <区域,)(r U 可由下式得出, ?∞ -=r Edr e r U )( ??? ????≥≤=??=)( 4 )( ,4344102 00300330420r r r Ze r r r r Ze r r Ze r E πεπεπππε ??∞ --=0 )(r r r Edr e Edr e r U ?? ∞ - - =00 20 2 3 002 144r r r dr r Ze rdr r Ze πεπε )3(84)(82 203 020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ?? ???≥≤+--=-=')( 0 )( 4)3(8)()(?00022 2030020r r r r r Ze r r r Ze r U r U H πεπε 由于0r 很小,所以)(2??022)0(r U H H +?-=<<'μ ,可视为一种微扰,由它引起的一级修正为(基态r a Z e a Z 02/130 3) 0(1)(-=πψ)

相关文档
最新文档