船舶压载水中海洋微生物的羟基自由基致死特性研究

船舶压载水中海洋微生物的羟基自由基致死特性研究
船舶压载水中海洋微生物的羟基自由基致死特性研究

第33卷第3期

2013年3月

环一境一科一学一学一报一Acta Scientiae Circumstantiae

Vol.33,No.3Mar.,2013

基金项目:国家自然科学基金项目(No.50877005);国家杰出青年科学基金项目(No.61025001);国际科技合作项目(No.2010DFA61470);国家高技术研究发展(863)计划(No.2012AA062609);中央高校基本科研业务费(No.2011QN63,2012QN067)

Supported by the National Natural Science Foundation of China(No.50877005),the National Science Fund for Distinguished Young Scholars(No.61025001),the International Science and Technology Cooperation Project (No.2010DFA61470),the National High-tech R&D Program (No.2012AA062609)and the Central University Basic Scientific Research Operation Cost(No.2011QN63,2012QN067)

作者简介:薛晓红(1979 ),女,E-mail:xiaohong-xue@https://www.360docs.net/doc/0319357941.html,;?通讯作者(责任作者),E-mail:newzhangzhitao@https://www.360docs.net/doc/0319357941.html,

Biography :XUE Xiaohong(1979 ),female,E-mail:xiaohong-xue@https://www.360docs.net/doc/0319357941.html,;?Corresponding author ,E-mail:newzhangzhitao@https://www.360docs.net/doc/0319357941.html,

薛晓红,张芝涛,白敏冬,等.2013.船舶压载水中海洋微生物的羟基自由基致死特性研究[J].环境科学学报,33(3):749-753

Xue X H,Zhang Z T,Bai M D,et al .2013.Treatment characteristics of marine microalgae hydroxyl radicals in ship?s ballast water[J].Acta Scientiae Circumstantiae,33(3):749-753

船舶压载水中海洋微生物的羟基自由基致死特性研究

薛晓红1,张芝涛1,?,白敏冬2,张拿慧1,田一平1

1.大连海事大学高气压强电场电离放电辽宁省重点实验室,大连116026

2.厦门大学环境与生态学院,厦门361005

收稿日期:2012-05-10一一一修回日期:2012-07-04一一一录用日期:2012-07-14

摘要:鉴于当前尚无一种有效治理压载水中外来有害生物入侵的方法,为解决这一难题,本文采用高级氧化技术,即生成高浓度羟基溶液的方法治理船舶压载水中的海洋微生物.研究主要是利用介质阻挡强电离放电的方法,将空气中的O 2和海水中H 2O 电离离解成四OH 等氧化自由基,溶于海水中形成高浓度羟基溶液.同时,实验以羟基致死压载水中的湛江等鞭金藻二牟氏角毛藻和大肠杆菌为例进行了研究.结果表明:羟基致死微生物的阈值为0.6mg 四L -1,主要是破坏了藻类体内的叶绿素,进而导致藻类的死亡.关键词:强电离放电;羟基;压载水;入侵性生物

文章编号:0253-2468(2013)03-749-05一一一中图分类号:X131一一一文献标识码:A

Treatment characteristics of marine microalgae hydroxyl radicals in ship?s ballast water

XUE Xiaohong 1,ZHANG Zhitao 1,?,BAI Mindong 2,ZHANG Nahui 1,TIAN Yiping 1

1.Liaoning Key Laboratory of Strong Electric Field Ionization Discharge,Dalian Maritime University,Dalian 116026

2.College of the Environment and Ecology,Xiamen University,Xiamen 361005

Received 10May 2012;一一一received in revised form 4July 2012;一一一accepted 14July 2012

Abstract :Currently,there is no effective method to treat the introduced algaes and bacteria in the ship?s ballast water.To solve this problem,the method of advanced oxidation technology producing high-concentration hydroxyl radical solution was used to treat marine microorganisms.With strong ionization discharge,O 2in air and H 2O in seawater could be ionized and dissociated into a number of activate particles such as hydroxyl radicals (四OH),which can dissolve into seawater (a part of ballast water)to form the high concentration 四OH solution.With the high reaction rate and broad -spectrum lethal

characteristic,四OH radicals could kill the introduced microorganisms through dissociative radical reactions in the course of both discharging and inputting the ballast water,without the pollution by medicament.In this study,Isochrysis zhanjiangensis ,Chaetoceros muelleri and Escherichia coli in ballast water

were killed by 四OH radicals.Results indicated that the threshold lethal concentration of 四OH radicals for microorganisms in ballast water was 0.6mg 四L -1.A-chlorophyll was damaged by 四OH radicals during the treatment,which resulted in the death of algaes.Keywords :strong ionization discharge;hydroxyl radicals;ballast water;introduced microorganisms

1一引言(Introduction)

外来生物入侵性传播是海洋生态环境面临的威胁之一(全球压载水管理项目中国国家项目实施小组,2001).海洋外来生物在新的适宜生存的环境

中繁殖,会给近岸海域的生态系统带来灾难性破坏,甚至导致土著物种灭绝,进而严重威胁海洋生态系统的安全.船舶压载水的给排过程是造成地理性隔离水体间海洋生物传播的最主要途径,每年全球船舶携带的压载水约有35亿t(Endresen et al .,

环一一境一一科一一学一一学一一报33卷

2004),每天随船舶压载水周游世界的生物约有7000多种(David et al.,2004),并已确认有500多种海洋生物是由船舶压载水传播的(Ruiz et al., 2000;Gross,1999),给全球经济造成的损失以每年近百亿美元的速度递增.2004年2月13日,国际海事组织(IMO)通过了‘国际船舶压载水和沉积物管理与控制公约“,制定了严格的D-2排放标准(Global Ballast Water Management Program,2008. https://www.360docs.net/doc/0319357941.html,),并规定2012年后强制执行.国务院颁布的‘国家中长期科学和技术发展规划纲要“也将 海洋生态与环境保护 列入环境重点领域中的优先主题,因此,如何安全有效治理船舶压载水是目前国际海洋环境研究中的难点和热点之一.

国际海事组织(IMO)认定在‘国际公约“生效之前,采用在航深海更换压载水的方法作为压载水治理方法(Rigby et al.,2002),即在公海将压载水打入500m以下,更换相当于3倍船容量的压载水,但实际只能更换掉95%,且更换过程中会产生剪切弯矩使船体强度降低,造成船体结构损坏;同时,存在消耗能量过高,操作二运行时间过长(一艘30万t 油轮需36h)等问题,运行成本较高,且还是无法达到D-2排放标准.另外,国际上众多企业和学者进行了化学药剂法(氯法二臭氧法二过氧化氢H2O2等)二紫外照射(UV)二生化法二过滤法及加热和电解相结合的方法治理船舶压载水的研究(Debra et al.,2004;Zhang et al.,2003;Rigby et al., 1997;Cooper,2002;Oemcke et al.,2005; Matheickal et al.,2001;Mario et al.,2001),但存在的主要问题是生化反应速率低二杀灭微小生物时间长二设备庞大二处理费用高,残留药剂会严重腐蚀压载水舱二危害海洋生态安全.海上环境保护委员会(MEPC)及全球压载水管理项目小组(Global Ballast Water Management Program,2008.http:// https://www.360docs.net/doc/0319357941.html,)认为当前尚无一种成熟有效的治理压载水方法.

采用高级氧化技术(AOP或AOT)治理压载水,能从源头上解决治理过程中的环境污染问题,且对水环境不会造成二次污染.为此,采用 绿色 强氧化剂羟基自由基(四OH)是首选的方法,四OH(E0= 2.80V)与氟的氧化能力相当,是进攻性最强的化学物质之一,它几乎能与所有的生物大分子二有机物和无机物发生不同类型的化学反应.反应最终降解为CO2二H2O和微量无机盐,剩余的四OH会分解成无公害的H2O二O2.课题组前期在高气压下(P?0.1MPa),在极窄的放电间隙中(0.47mm)获得了电场强度E?100kV四cm-1二电子平均能量?10eV二电子密度?1014个四cm-3二电离占空比?2%的强电场电离放电,将O2二H2O电离离解成O+2二H2O+二H2O?等活性粒子,再以高传质效率溶于海水中(从压载水中取出的一部分),制备出四OH溶液(Bai et al.,2005;Zhang et al.,2004).研究发现,四OH 致死海洋入侵生物的时间是常规化学法(氯法)的1/400,致死浓度是氯法的1/140,每t水的处理费用是国际通用方法(在航更换压载水法)的1/30(Dang et al.,2003).

2002年,实验室的研究人员成功地完成了四OH 快速致死船舶压载水海洋入侵生物的中试试验(处理量20t四h-1),以及快速致死赤潮生物海上(山东龙口海域)围隔中宇宙试验(Bai et al.,2005).基于此,本文在50t四h-1的船舶压载水处理试验系统中,进行四OH致死海洋微藻二细菌实验,并研究湛江等鞭金藻(Isochrysis zhanjiangensis)二牟氏角毛藻(Chaetoceros muelleri)的四OH致死特性.以期为在船上输送压载水过程中快速致死海洋有害生物提供一种 绿色 新方法.

2 材料与方法(Materials and methods)

2.1一实验材料

实验海水为辽宁省水产研究所提供的大连市星海湾的过滤海水,取水时间为2008年2月25日,水温6?.微小生物采用大小为10~50μm的湛江等鞭金藻(Isochrysis zhanjiangensis)二牟氏角毛藻(Chaetoceros muelleri)及大肠杆菌(Escherichia coli),其中,牟氏角毛藻是常见的赤潮藻.

藻种使用前经分离二纯化后,在光照培养箱中进行培养.培养液采用f/2营养盐配方,在培养温度(20?1)?二盐度35?二光照强度8000lx二光暗比= 10h?14h的条件下进行藻类培养,把湛江等鞭金藻二牟氏角毛藻富集到106cells四mL-1.

大肠杆菌(Escherichia coli,编号8099)由中国普通微生物菌种保藏管理中心和中国工业微生物菌种保藏管理中心提供,采用牛肉膏蛋白胨培养基进行培养.分别在3个50mL的牛肉膏蛋白胨培养基中接种大肠杆菌,37?于振荡数显培养箱中培养18~24h.采用平板计数,其菌数大约在每mL109

057

3期薛晓红等:船舶压载水中海洋微生物的羟基自由基致死特性研究个,置于4?冰箱中保存备用.

2.2一实验系统

船舶压载水四OH 处理试验系统如图1所示,外

排的船舶压载水被泵打到主管路中,机械过滤器滤掉?50μm 的浮游生物,其流速为1.5m 四s -1.一部分压载水通入到自制的羟基产生设备中,制备高浓度的四OH 溶液,设备的处理量为50t 四h -1,四OH 溶液浓度10mg 四L -1

.四OH 溶液注入到液液溶解器,充分

混溶稀释,在主管路中得到分布均匀的试验所需的四OH 浓度.在5个取样点中可准确地获得不同时间的浮游生物的杀灭效果.采用该方法剩余的四OH 又分解成H 2O 和O 2,对海洋环境无负面环境效应,符合高级氧化技术(AOT)原则

.

图1一船舶压载水四OH 处理中试试验系统

Fig.1一Ships?ballast water of 四OH processing in a pilot system

2.3一检测方法

藻类及细菌检测:在外排压载水的主管路中,

将羟基自由基浓度准确地调控在0.3~0.6mg 四L -1之间,对于个体大小在10~50μm 的藻类,实验中采取5个藻液浓度梯度,分别为1?103二5?103二1?

104二5?104和9?104cells 四mL -1,用碘液固定后,在显微镜下用血球计数板直接计数.细菌总数用海洋

2216E 培养基平板菌落计数.

光合色素的检测:根据各种光合色素在有机溶剂中的溶解特性,可将它们从细胞中提取出来,并可根据它们在有机溶剂中的最大吸收波长不同,进行分光光度法测定.以丙酮溶液提取浮游植物色素,依次在664二647二630nm 下测定吸光度,按Jeffrey-Humphrey 的方程式计算(国家质量技术监督

局,1998),可以得出叶绿素a 的含量.

四OH 浓度检测:用电化学方法检测,并用苯甲

酸荧光法校定.四OH 溶于水的等离子体化学反应过程是极其复杂的连锁反应,系统以产生四OH 为主,

还存有HO -2二HO 四2二HO 四

3二OH -二O 3OH +二O -四2二

O -四3二O 3二H 2O 2等活性粒子,其浓度根据它们的氧化力折算成四OH 的比值浓度.3一结果(Results)3.1一杀灭海洋微藻实验

在初始藻液浓度为1?104和9?104cells 四mL -1

的条件下考察了四OH 浓度变化与藻类致死率之间的关系,结果如图2所示.从图2可以看出,随着四OH 浓度的不断升高,两种藻类的致死率也随之升高.对于同一种藻类,在相同的四OH 浓度下,藻类的初始浓度越高致死率越低,即越难杀灭.当湛江等鞭金藻和牟氏角毛藻的初始浓度相同时,在相同的四OH 浓度下,总是牟氏角毛藻的致死率较低,说明牟氏角毛藻较难杀灭

.

图2一四OH 浓度与海洋微藻致死率的关系曲线

Fig.2一Relation between 四OH concentration and killing efficiency of

algae

对于处理后致死率达到100%的藻液,稀释1倍后,经48h 培养没有发现再生现象.对于两种藻类5种不同初始浓度的藻液,在致死率100%的条件下,使其完全致死所需的四OH 浓度变化如图3所示.可以看出,同一种藻类随着藻液初始浓度的升高,所需要的羟基致死浓度也随之升高.对于湛江等鞭金藻和牟氏角毛藻来说,在任一相同的初始浓度下,湛江等鞭金藻所需的羟基致死浓度都低于牟氏角毛藻.四OH 对藻类致死阈值浓度的变化说明在相同条件下,四OH 对湛江等鞭金藻的致死效果好于牟氏角毛藻.在实验的藻类浓度数量范围内,试验中两种藻类的最高致死阈值浓度分别为0.55mg 四L -1和0.6mg 四L -1.

1

57

环一一境一一科一一学一一学一一报33

图3一各藻种初始浓度下的四OH 致死浓度比较曲线Fig.3一Relation between algae content and 四OH concentration

3.2一显微镜下藻类细胞形态

本文在显微镜下对羟基处理前后藻类细胞的

形态进行了观察,结果如图4所示.四OH 处理前,各类藻细胞通体周圆,细胞壁光滑完好,胞内细胞物质均匀分布,绿色素鲜亮稠密(图4a,4c).四OH 处理后,藻细胞胞体全都变形二破裂,大量内容物溢出,不能观察到完整细胞(图4b,4d);细胞壁和细胞膜破损,可能发生氨基酸氧化和磷脂过氧化反应,细胞有明显的破裂二缺失二击碎的现象,这些损伤对藻类来说都是致命的.显微镜下的照片证实了四OH 药剂能够破坏二分解二杀死藻细胞

.

图4一四OH 处理前后湛江等鞭金藻(a ,b )和牟氏角毛藻(c ,d )

的照片

Fig.4一Photos of Isochrysis zhanjiangensis (a,b)and Chaetoceros

muelleri (c,d)before and after treatment by 四OH

四OH 致死阈值浓度与藻种及它们的各自形态

结构有关.牟氏角毛藻细胞大小为(4.0~4.9)μm

?(5.5~8.4)μm(环面观),细胞不仅具有硅质细

胞壁,还有圆弧形的角刺,因此,细胞受外界干扰更少,较难杀死.而湛江等鞭金藻大小为(6~7)μm ?(5~6)μm,属于金藻,不具有细胞壁,细胞处于裸露状态,更易受外界毒物影响,因此,完全致死所需的四OH 浓度较低.

3.3一杀灭海洋细菌实验羟基致死海水中细菌实验结果如图5所示,实

验结果表明,随四OH 溶液浓度的上升,大肠杆菌菌落数(C )明显下降.四OH 浓度提高到0.32mg 四L -1时,所有培养基上无菌落长出,灭菌率达到100%.可见与单细胞藻类相比,大肠杆菌对外界毒物的防

护能力更差

.

图5一四OH 浓度与细菌菌落数的关系

Fig.5一Relation between 四OH concentration and kill efficiency of

bacteria一

3.4一羟基对叶绿素的作用

仅仅测定细胞的存活还不能全面说明羟基药

剂对海洋微藻的杀灭效果,为此改进实验方法,在实验中测定了羟基作用后30min,受试混合藻类的叶绿素a 变化,结果如图6所示.由图6可知,随着四OH 溶液浓度的增加,藻液中的叶绿素含量都呈减小的趋势;在四OH 浓度为0.6mg 四L -1的条件下,经过30min 作用,水样中的叶绿素a 含量很低,近似

于0.说明四OH 的作用效果很明显,这与活体计数法的实验结果是一致的.分析其原因是由于叶绿素a 是由单二双键交替的不饱和结构组成的,极易与四OH 反应,发生氧化二断裂二变构和分解等生化反应.随着四OH 溶液浓度的不断增加,不断氧化使细胞膜破裂,叶绿素流出,叶绿素在四OH 溶液的作用下含量不断减少.叶绿素是藻细胞光合作用的重要

2

57

3期薛晓红等:船舶压载水中海洋微生物的羟基自由基致死特性研究组成部分,本实验说明四OH 可以氧化分解叶绿素,破坏其光合作用,导致生物细胞体的死亡

.

图6一四OH 浓度与藻类叶绿素a 含量的关系曲线

Fig.6一Relation between 四OH concentration and content of algae

chlorophyll-a一

4一结论(Conclusions)

1)在实验的藻类浓度范围内,湛江等鞭金藻和

牟氏角毛藻的最高致死阈值浓度分别为0.55mg 四L -1和0.6mg 四L -1,杀灭海洋微生物的浓度为

0.6mg 四L -1.

2)通过显微镜观察,在羟基的作用下,藻类细胞有明显的破裂二缺失二击碎的现象,从而证明了羟基具有杀灭微生物的特性.

3)羟基对大肠杆菌的致死阈值浓度为0.32

mg 四L -1,且羟基可氧化分解藻类的叶绿素,从而杀灭藻类.

责任作者简介:张芝涛(1965 ),男,教授,博导,主要研究方向是等离子体技术及应用,目前在相关领域发表论文50余篇.

参考文献(References ):

Bai M D,Bai X Y,Zhang Z T,et al .2005.Treatment of red tide in

ocean using

non-thermal

plasmas

based

advanced

oxidation

technology[J].Plasma Chemistry and Plasma Processing,25(5):

530-538

Bai X Y,Zhang Z T,Bai M D,et al .2005.Killing of invasive species of

ship?s ballast water in 20t /h system using hydroxyl radicals [J].Plasma Chemistry and Plasma Processing,25(1):15-22

Cooper W J.2002.Ozone seawater and aquatic nonindigenous species:

Testing a full-scale ozone ballast water treatment system on an American oil tanker[A].11th International Conference on Aquatic Invasive Species.Alexandria[C]党坤,王真茂.2003.船舶压载水不同处理方法的经济性分析[J].世

界海运,26(3):46-48

David M,Perkovic M.2004.Ballast water sampling as a critical

component of biological invasions risk man agement [J ].Marine Pollution Bulletin,49:313-318

Debra M W,Chris O,Mike D S,et al .2004.Eradication success down

under:heat treatment of a sunken trawler to kill the invasive seaweed Undaria pinnatifida[J].Marine Pollution Bulletin,49:844-849

Endresen A,Lee Behrens H,Brynestad S,et al .2004.Challenges in

global ballast water management[J].Marine Pollution Bulletin,49:

313-318

Geoff R.2000.From ballast to bouillabaisse[J].Science,289:241-241国家质量技术监督局.1998.海洋监测规范GB 17378.7 1998[S].

北京:中国标准出版社

Gross M.1999.Alien invaders[J].New Scientist,162:18-19Mario N T,Kerstin W,Masayasu M.2002.Ballast water deoxgenation

can prevent aquatic introductions while reducing ship corrosion[J].Biological Conservation,103:331-341

Matheickal J T,Waite T D,Mylvaganan S T.2001.Ballast water

treatment by filtration[C].1st.International Ballast Water Treatment R +D Symposium,IMO.London

Oemcke D J,Leeuwen J V.2005.Ozonation of the marine dinoflagellate

alge Amphidinium sp.-implications for ballast water disinfection[J].Water Research,39:5119-5125

全球压载水管理项目中国国家项目实施小组.2001.全球更换压载水

管理项目[J].交通环保,22(1):1-4

Rigby G R,Hallegraeff G M.1997.Ballast Water Exchange Trials and

Marine Plankton Distribution on the MV Iron Whyalla [M ].Canberra:Australian Government Publishing Service

Rigby G R,Hallegraeff G M.2002.On the nature of ballast tank

sediments and their role in ship?s transport of harmful marine

microorganisms[J].Marine Environ,7:528-536Ruiz G M,Rawlings T K,Dobbs F C,et al .2000.Global spread of microorganisms by ships[J].Nature,408:49-50

Zhang S,Chen X,Yang D.et al .2003.Effects of the chlorination

treatment for ballast water [C ].2nd International Ballast Water

Treatment R&D Symposium IMO.London.21-23

Zhang Z T,Bai M D,Bai X Y,et al.2004.Studies of the effect of

hydroxyl radicals on photosynthesis pigments of phytoplankton in ship?s ballast water[J].Journal of Advanced Oxidation Technologies,

7(2):178-183

3

57

羟基自由基的测定方法

羟基自由基(.OH)是最活跃的一种活性分子,也是进攻性最强的化学物质之一,几乎可以与所有的生物分子、有机物或无机物发生各种不同类型的化学反应,并伴有非常高的反应速率常数和负电荷的亲电性。羟基自由基是目前所知活性氧自由基中对生物体毒性最强、危害最大的一种自由基,可以通过电子转移、加成以及脱氢等方式与生物体内的多种分子作用,造成糖类、氨基酸、蛋白质、核酸和脂类等物质的氧化损伤,使细胞坏死或突变,羟基自由基还与衰老、肿瘤、辐射损伤和细胞吞噬等有关。羟基自由基由于其寿命短,反应活性高,存在浓度低,目前尚未有专一、有效的方法可以精确测定羟基自由基的含量,其测定方法也成为一项国际性的难题。本文对近几年出现的羟基自由基检测方法进行了综述。 1电子自旋共振法 电子自旋共振法或电子顺磁共振法主要研究对象为未成对的自由基或过渡金属离子及其化合物。自旋捕捉(spin trapping)技术的出现为化学反应中自由基中间体及生命活动过程中短寿命自由基的检测开辟了新的检测途径[[1]]。此方法是利用捕捉剂与自由基结合形成相对稳定的自旋加合物(spin adducts),然后进行ESR测定。 2HPLC法 HPLC法可用于间接测定自由基。测定过程中必须先选择合适的化合物捕集被测体系中的自由基,使之生成具有一定稳定性,且能被液相色谱分离与检测的产物,然后用HPLC进行测定。1)、采用二甲基亚砜捕集羟基自由基的HPLC测 2)、采用水杨酸捕集羟基自由基的HPLC测定方法 3化学发光法 化学发光法是一种灵敏、准确的检测自由基的方法,其原理是利用发光剂被活性氧自由基氧化成激发态,当其返回到基态时放出大量光子,从而对发光起放大作用。且自由基产生越多,发光值就越大。通过函数换算间接反应系统中自由基的量。与ESR和HPLC法相比,具有操作简便、设备成本较低、测定快速等优点。4氧化褪色光度法 6极谱法 7毛细管电泳-电化学检测法 8胶束电动毛细管色谱法

羟基自由基发生器复习进程

羟基自由基发生器 说明书 江苏恩飞特环保工程有限公司

目录 一、羟基自由基技术简介 (3) 二、羟基自由基(.OH)产生的方法及其原理 (3) 三、羟基自由基的特点 (5) 四、废水处理效果及能耗 (5) 五、公司信息 (5)

一、羟基自由基技术简介 有机污染物种类繁多,不少难于生化降解,尤其“三致”有机污染物,由于在水体中浓度低至10—9级对人类健康危害仍很大,因此对于这类毒性大,浓度高且难于生化降解的有机废水处理已是当前世界水处理领域的热点。 80年代末,随着有机电化学理论研究的深入,证实不少有机物的氧化还原、加成或分解都可在电极上进行,是去除水中有机污染物很有发展潜力的新方法,并被誉为“清洁处理法”,对一些成份复杂、生物难降解的有机废水,用生物法或一般物理化学方法难于奏效,而电解法则有可能获得较好的结果。 比较国内外有机废水众多的处理技术,从经济和技术统一的观点考虑,认为电解法和催化氧化法均有巨大的潜力。因此,从三维电极的基本原理出发,巧妙配以催化氧化技术,构成一种新的很具特式的羟基絮凝复合床(即多维电极羟基发生器)水处理技术。这种充分利用一些已有的原理和技术进行“巧妙的组合”达到1+1>2的目的,以求获得更佳效果的方法也是当前学术和工业领域的新思想。这种新技术是根据水中需要去除污染物的种类和性质,在两个主电极之间充填高效、无毒的颗粒状专用材料、催化剂(或催化手段)及一些辅助剂、组成去除某种或某一类有机或无机污染物最佳复合填充材料作为粒子电极,将它们置于结构为方型或圆型的复合床内,当需要处理的废水流经羟基絮凝复合床装置时,在一定的操作条件下,装置内便会产生一定数量的羟基自由基和新生态的混凝剂。这样废水中的污染物便会产生诸如催化氧化分解、混凝、吸附、络合、置换等作用,使废水中的污染物迅速被去除。 二、羟基自由基(·OH)产生的方法及其原理 羟基自由基如下表所示,其标准电极电位仅次于F2+2H+/2HF,比O3+2H+/H2O+O2还要高,因此是极强的氧化剂。 表几种氧化剂的电极电位

羟基自由基清除注意事项

一般而言,对于Fenton试剂与有机化合物氧化能力的影响因素大致上可分为: A.亚铁离子浓度。 B.过氧化氢浓度。 C.溶液于反应时的反应温度。 D.溶液中的pH值。 以下将对此四项变因做详细的探讨: A.亚铁离子浓度的影响 在Fenton试剂的反应中,亚铁离子主要是扮演着催化过氧化氢的角色。因此,若溶液中没有亚铁离子当触媒,则其溶液可能就没有氢氧自由基的生成。所以,大致上分解反应会随亚铁离子的浓度增加而加快,亚铁添加量会影响脱色效率,亚铁剂量愈高效果愈佳,此原因为增加亚铁剂量将使氧化反应更加完全并且可产生混凝机制而进行脱色(26)。但亚铁离子本身会与有机物形成竞争,亚铁离子浓度过高会增加氢氧自由基的消耗,反而造成处理效果的下降,反应式如下: Fe2+ + ·OH Fe3+ + OH- 故当浓度到达某一定值时,则其分解速率便不会在随着亚铁离子浓度的增加而持续加快,且亚铁离子浓度和生成物的比值也将可能会影响生成物的分布。一般而言,亚铁离子浓度皆维持在亚铁离子与其反应物之浓度比值为1:10-50(wt/wt)。 此外,亚铁在Fenton程序中除了扮演催化过氧化氢的角色外,亦具有混凝的功能,因此过量的铁离子加入将会造成过度的混凝,降低Fenton程序处理的效果,其可能的反应如下所示: B.过氧化氢浓度的影响 反应过程中,过氧化氢的浓度会直接影响氧化有机物的效果。一般而言,随着过氧化氢添加量的增加,有机物的氧化效果亦将随之提升,并且过氧化氢的添加浓度不同,则分解反应生成的产物将会有所差异。大致而言,在过氧化氢浓度越高的情况下,则其氧化反应产物,将会更趋近于最终产物。但是,当溶液中的过氧化氢浓度过高时,反而会使过氧化氢与有机物竞争氢氧自由基,而造成反应速率的结果可能不如预期一般增加。此外,当Fenton试剂系统中过氧化氢浓度远高于亚铁离子浓度时,Fenton法所产生的氢氧自由基会与过氧化氢反应产生perhydroxyl radical (HO2.)及一系列反应,且三价铁离子会与HO2.进行氧化还原反应生成superoxide radical anion (O2.),造成过氧化氢消耗量的增加,过量的过氧化氢加药量并不必然增加氢氧自由基的浓度,氢氧自由基达到稳定浓度所需反应时间随加药量增加而增加(27)。因此,若以连续之方式加入低浓度之过氧化氢,减少因为过氧化氢初始浓度过高所导致的抑制效应,亦可得到较好的氧化效果。 C.温度的影响 根据Arrhennius' Law:k=k0exp(-Ea/RT)可得知温度的改变会影响活化能及反应速率常数,进而影响反应速率。 对于Fenton试剂反应而言,一般若选用的反应温度条件是在小于20℃以下时,其对有机物的氧化速率将会随温度升高而加快。但是,倘若将其反应的温度升高至40-50℃时,其Fenton反应将会可能因为温度过高,进而使过氧化氢自行分解成水与氧(2H2O2 → 2H2O + O2 ),造成Fenton试剂对氧化有机物之反应速率减慢。 因此,当过氧化氢浓度超过10-20 g/L时,在其经济与安全的考量下,应谨慎选择适当的温度。在一般商业应用上,通常皆将其反应的温度设定在20-40℃之间。 D. pH值的影响 于Fenton试剂反应中,其反应溶液之pH值对Fenton法之影响,关系到铁离子错合效应、铁

DPPH自由基清除法

DPPH自由基清除法 李熙灿/Xican Li (广州中医药大学) [文献] Xican Li, Jing Lin, Yaoxiang Gao, Weijuang Han, Dongfeng Chen. Antioxidant activity and mechanism of Rhizoma Cimicifugae. Chemistry Central Journal. 2012; 6(1):140. [原理] DPPH(1,1-Diphenyl-2-picrylhydrazyl radical)即1,1-二苯基-2-苦基肼基自由基。分子中,由于存在多个吸电子的-NO2和苯环的大π键,所以,氮自由基能稳定存在。 N 2 2 当DPPH自由基被清除,其最大吸收波长519nm处的吸光度A值随之减小。DPPH这种稳定的自由基为清除自由基活性的检测提供了一个理想而又简单的药理模型。 [实验步骤] 1.1 DPPH测试液的配制 取DPPH 1mg溶于约20mL溶剂(乙醇、95乙醇或甲醇)中,超声5min,充分振摇,务使上下各部分均匀。取1mL 该DPPH溶液,在519nm处测A值,使A=1.2-1.3之间最佳。该DPPH溶液最好避光保存,3.5小时内用完。 1.2 样品液的配制 样品用合适的溶剂溶解,为便于计算,可配成1mg/mL浓度。溶剂根据样品的极性进行选择,首选95乙醇或无水乙醇,如不溶可用DMSO。 1.3 预试 取DPPH溶液2mL,往其中加少量样品液,加样时,先少后多渐加,边加边混合,并观察溶液的褪色情况,当溶液颜色基本褪去时,记下样品的加样量。 此加样量即为样品的最大用量,在此最大用量的基础上,往前设置5个用量,使之成等差数列。 【如】在预试过程中,发现加样到200μL时,DPPH溶液颜色基本褪去,则100μL为该样品液的最大用量。其用量梯度宜设为40、80、120 、160、200μL。 1.4测量 A0值的测量:取DPPH溶液2 mL加入到小试管(或玻璃瓶)中,加95乙醇(或无水乙醇)1mL,充分混合,测A值(519nm),此A值为A0(A0多在0.7-0.9之间)。 A值的测量:取DPPH溶液2mL加入到小试管(或玻璃瓶)中,加样品液xμL (x是根据1.3 预试结果确定样品液的用量),再加(1000 -x)μL 95乙醇(或无水乙醇),混合,静置30分钟后,测A值(519nm)。如:某样品的用量梯度为40、80、120 、160、200μL,则加样表如下: 表1 加样表 1.5 正式测量

精细化工习题 合成材料助剂

精细化工习题(第三章) 一、填空与选择题: 1. 材料助剂中的合成助剂是用于生产树脂过程,如引发剂、终止剂、乳化剂等;加工助剂 是用于树脂加工过程,如:增塑剂、稳定剂、交联剂等 2.材料加工助剂的耐久性:指助剂在应用过程中的损失程度。损失的途径主要是挥发、被萃取、迁移;分子质量大,挥发性低,耐久性好; 3.制品用途对助剂的制约:指助剂的加入应当不影响制品的最终用途,包括外观、颜色、气味、毒性,以及电性能、热性能、耐候性、污染性。 4.助剂之间的协同作用是一种助剂的存在可使另一种助剂作用增强;抗结作用是一种助剂削弱了另一种助剂的原有效能。 5.引起老化的因素主要是(1)内在因素:材料分子结构、助剂性质;(2)外在因素主要是光、热、氧、应力、微生物。 6.聚合物发生降解和交联反应,破坏高分子材料原有的结构,引起老化。主链断裂降解将使材料的力学性能变坏;交联反应将生成无控制的网状结构,使材料脆化、变硬、强度降低。 7.聚合物吸收光能,分子吸收光能从基态跃迁至激发态。大部分激发态分子通过物理过程的消散(如,发射荧光和磷光;转变激发能为震动热能),回到基态。少部分激发态分子发生光化学反应过程将能量转移给另一个分子,发生光化学反应导致聚合物老化。 8.光屏蔽剂的作用就像在聚合物和光辐射之间设置了一道屏障,吸收紫外光,使光不能直接辐射到聚合物的内部,令聚合物内部不受紫外线的危害,从而有效地抑制光氧化降解。碳黑与硫类抗氧化剂有协同作用;碳黑与胺类抗氧化剂有相抗作用。 9.光稳定剂中的猝灭剂的作用机理是通过分子间作用迅速有效地消除(转移)激发能。 10.光稳定剂中自由基捕获剂的作用机理:通过捕获自由基,分解过氧化物,传递激发态能量等途径使高聚物稳定。这类化合物的结构特征是具有空间位阻效应的受阻胺。 11.增塑剂的作用是通过增塑剂分子克服聚合物内部各种对抗塑化的因素,插入到大分子链之间,将分子链间相互作用减弱,在较低的温度下就可以发生链段和分子链的运动,即使链段开始运动的温度(玻璃化转变温度Tg)和分子链开始运动的温度(粘流化温度Tf)降低,以达到增塑的目的。 12.若是极性聚合物,需选用带极性基团的增塑剂,让其极性基团与聚合物的极性基团作用,代替聚合物极性分子间作用,使增塑剂与聚合物分子间的作用力增大,从而削弱大分子

清除自由基能力的研究概况

清除自由基能力的研究概况 陶涛 (西南林业大学林学院农学(药用植物)昆明 650224) 摘要:自由基及其诱导的氧化反应是导致生物衰老和某些疾病如癌症、糖尿病、一心血管疾病等的重要因素。乳酸茵作为一种高效、低毒的生物源天然抗氧化荆,正逐步受到食品、制药、化工等领域的广泛关注。就目前国内外常用的乳酸茵抗氧化活性的筛选方法、乳酸茵抗氧化机理的国内外研究进展及未来的发展趋势作一综述。 关键词:自由基;乳酸茵;抗氧化. Study on the scavenging ability of lactic acid bacteria on free radical bstract:Free radical and its inducing oxiditative reaction may CaUSe biological doat and certain diseases such as Cancers,diabetes and the cat- diovascular.The lactic acid baaeria as one ofbiological SOUrCeS oxidation inhibitor is becoming more and more popular in the fields offood.,drug manufacture and chemical industry.This article mainly reviews the screening methods for antioxidative of lactic add bacteria among domestic and foreign countries,the advance of the research progress in lactic add bacteria antioxidative and r∞earch trends in future. 引言 氧化过程可以提供能量.对大多数生物体来说,是维持生命必不可少的一个能量转化过程。但过多的氧化过程会对生物大分子引起损伤.氧化损伤主要是由于自由基和过氧化产物作用于人体而产生的。 自由基(free radicals)27..称游离基.为人体氧化代谢过程中形成含有一个不成对电子的原子或原子团。人体的自由基主要包括超氧阴离子自由基(o2)、

SOD羟基自由基

SOD,POD,CAT,MDA的活力含量测定方法酶液提取:称取鲜叶样品0.5g于预冷的研钵中,加1ml0.05mol/lpH7.0磷酸缓冲液在冰浴上研磨成浆,加蒸馏水使其在离心管里定容至5ml。将提取液于10000转/分冷冻离心20分钟。上清液用于测定SOD,POD,CAT的活力测定及MDA含量测定。 SOD 测定SOD活性的试剂配制及用量 1.先配制N(根据实验用量确定)倍的混合液,其中一倍的混合液包括: 0.05mol/lPBS(pH7.8):1.5ml 100umol/lEDTA-Na2:0.3ml 0.03721g用PBS定容至1000ml 750mmol/lNBT:0.3ml 0.06133g定容至100ml(避光保存)130mmol/lL-Met:0.3ml 1.9399gMet用PBS定容至100ml 蒸馏水;0.25ml 待试验开始后再加入0.05ml酶液,实验组加入0.3ml20umol/l核黄素,对照组加入等量的磷酸缓冲液(核黄素的配制:0.0753g 用蒸馏水定容至1000ml避光保存)实验组放在光照处,对照组放在黑暗处,20分钟后测定A560的值 SOD总活性(U/gFW)=(Ack-AE)*V/Ack*1/2*W*Vt 其中Ack为照光管的吸光度值,AE为遮光管的吸光度值,V为样品液总体积(ml),W为样品鲜重

POD 在试管中依次加入 4ml0.3%愈创木酚(0.02mol/l pH6PBS配制而成) 50ul酶液 50ul0.3%(2.5ml30%过氧化氢,用0.05mol/lpH7的PBS定容到250ml) 摇匀,立即计时,1分钟后在470nm波长下比色,每一分钟记录一次吸光度值,连续记录5分钟。以每分钟内A470为一个过氧化物酶活性单位(U),用下面公式计算过氧化物酶活性 过氧化物酶活性(U/gFW.min)=ΔA470*Vt/W*Vs*t*0.01 式中ΔA470为反应时间内吸光度的变化,Vt为提取液总体积(ml),W为样品鲜重(g),Vs为测定时取用酶液体积(ml),t为反应时间(min) CAT 取酶提取液50ul 加入3ml0.05mol/lpH7.0PBS 再加入0.3%过氧化氢200ul 迅速摇匀,立即计时,1分钟后在UV-754分光光度计的240nm 波长下比色,每一分钟记录一次吸光度值,连续记录5分钟。以每分钟内A240下降0.01为一个酶活性单位(U),按下式计算 过氧化氢酶活性(U/gFW.min)=ΔA240*Vt/W*Vs*0.01*t 式中ΔA240为反应时间内吸光度的变化,Vt为提取液总体积

自由基及检测方法

ESR 电子顺磁共振(EPR)或称电子自旋共振(ESR)现象最早发现于1944年。它利用具有未成对电子的物质在磁场作用下吸收电磁波的能量使电子发生能级间的跃迁的特征,对顺磁性物质进行检测与分析。 自旋捕集方法是将不饱和的抗磁性化合物(自旋捕集剂)加入反应体系,与反应体系中产生的各种活性高、寿命短的自由基结合形成相对稳定的自旋加合物,以适于ESR检测其原理是利用适当的自旋捕捉剂与活泼的短寿命自由基结合,生成相对稳定的自旋加合物,可以用电子自旋共振波谱法检测自旋加合物的数量,利用自旋加合物的数量来计算原来自由基的多少。 H: V: ESR测自由基是怎么被检测的(细胞,组织,溶液?体内,体外?) (MGD)2 - Fe2 +,是含有10mmol·L- 1MGD 和2mmol·L- 1FeSO4的溶液。 体外捕集:处死后取组织(血液、细胞),加入捕集剂,ESR测定 体内捕集:腹腔注射捕集剂,处死取组织(血液、细胞),ESR测定 腹腔注射几乎没有检测到自由基信号,或者信号很弱,而处死后样品加捕获剂则可以检测到自由基信号。 通用捕获剂 典型的自旋捕捉剂是亚硝基化合物或氮氧化合物,把足够量的自旋捕捉剂加入到产生自由基的体系中,自旋捕获剂就会快速地和任何出现的自由基反应,最后给出稳定的可检测的氮样氧自由基加合物。所形成的自由基加合物的ESR 谱上有被捕自由基基因给出的超精细分裂,可鉴别被捕自由基通用自旋捕获剂所形成的自由基加合物对自由基结构变化相当敏感, ESR 技术检测O-2 O-2可以与1,2-二羟基苯-3,5-二磺酸钠(Tiron)(钛铁试剂)快速反应生成一种称之为“Tiron 半醌自由基”的自旋加合物,比较稳定,可在室温下应用电子顺磁共振波谱仪(EPR)进行检测,从而解决了生理条件下水溶液中寿命极其短暂的O-2·的定性和定量问题 ESR 技术检测·OH DMPO作自由基捕获剂对自由基结构变化相当敏感,可以提供自由基结构的详细信息。它与·OH产生的自旋加合物的ESR谱表现出特别容易识别的特征谱线。在溶液中容易形成的自我捕集产物二聚体自由基不会干扰实验结果。 ESR 技术检测血红蛋白结合的一氧化氮 在组织或血液中,一氧化氮大多与氧或过渡金属反应生成了硝酸盐或亚硝酸盐以及一氧化氮与金属的配合物。一氧化氮与血红蛋白的结合速率常数非常高,而且能够得到有特征的ESR 波谱。利用这一性质,我们可以用血红蛋白作为一氧化氮的捕集剂检测一氧化氮自由基。但是,HbNO 极易氧化,这就限制了这种方法在富氧条件下的应用。 ESR 技术检测生物体系产生的一氧化氮 一氧化氮与含金属蛋白反应产生的亚硝酰的金属配合物,往往会抑制细胞中许多重要的酶,对细胞产生毒害作用。目前应用较多的捕集剂的有Fe2+- (DETC)2,它可与一氧化氮形成稳定的单亚硝酰-铁配合物MNIC,给出特征的ESR 波谱。但由于Fe2+-( DETC)2不溶

DPPH抗氧化能力测定

DPPH.法测定绿原酸清除自由基能力 2.1 待测液的制备 将绿原酸(纯度56%)、维生素C 和没食子酸分别配制成体积分数为0.1mg/mL 的无水乙醇溶液。 2.1.1 绿原酸母液的配制 称取 9.0 mg 绿原酸,定容到50ml ,即可得到绿原酸的母液0.1mg/mL 。然后,再将所配制的母液按照要求稀释成不同浓度的溶液。 分别为 mg/ml; mg/ml; mg/ml; mg/ml; mg/ml; mg/ml; mg/ml 。 2.1.2 Vc 母液的配制 称取 mg VC ,定容到100ml ,即可得到VC 的母液。然后,再将所配制的母液按照要求稀释成不同浓度的溶液。 分别为 mg/ml; mg/ml; mg/ml; mg/ml; mg/ml; mg/ml; mg/ml 。 2.1.3 没食子酸母液的配制 称取 mg 没食子酸,定容到100ml ,即可得到没食子酸的母液。然后,再将所配制的母液按照要求稀释成不同浓度的溶液。 分别为 mg/ml; mg/ml; mg/ml; mg/ml; mg/ml; mg/ml 。 2.1.4 DPPH 母液的配制 称取 mg DPPH ,用无水乙醇定容到100ml ,即可得到DPPH 的母液。然后,再将所配制的母液按照要求稀释成至一定浓度的溶液。C DPPH = mg/ml 。(建议用0.025mg/mL ) 2.2 DPPH.溶液的可见光谱 以无水乙醇为对照,在分光光度计上对DPPH.溶液进行在440~600nm 下扫描。A max = nm 2.3 抗氧化活性测定 DPPH.是一种稳定的自由基,它的乙醇溶液呈紫色,在可见光区最大吸收峰为 nm 。当DPPH.溶液中加入自由基清除剂时,溶液颜色变浅,517nm 处的吸光度变小,而吸光度变小的程度与自由基被清除的程度呈线性关系。因此,可用来检测自由基的清除情况,从而评价某物质的抗氧化能力,其能力用清除率(Scavenging Rate,SR)来表示,清除率越大,抗氧化能力越强 [4.5]。 具体实验步骤及方法: 精确吸取的DPPH.溶液2mL 与2ml 无水乙醇混合均匀后,以相对应的溶剂(4mL 无水乙醇)为对照,用分光光度计测定上述溶液在 nm 处的吸光度值(A 0)。 A 0= 2.3.1 绿原酸样品溶液的抗氧化能力测定 精确吸取上述不同浓度的绿原酸溶液2mL ,分别与浓度 mg/ml 的DPPH.溶液2mL 混合,摇匀后放置30min 。以相对应的溶剂(无水乙醇)为对照调零,用分光光度计分别测定上述溶液在 nm 处的吸光度值(A i ),分别测得A i 值。 A 1 ;A 2 ;A 3 ;A 4 ;A 5 ;A 6 ;A 7 。 精确吸取上述不同浓度的绿原酸溶液2mL ,分别与2mL 无水乙醇混合均匀后,以无水乙醇为对照,用分光光度计分别测定各混合液在波长 nm 处的吸光度值(A j ),分别测得A j 值。 A 1 ;A 2 ;A 3 ;A 4 ;A 5 ;A 6 ;A 7 。 将以上数据代入下列公式计算其清除率。 清除率SR(%)=%100A A A 10j i ???? ? ?? -- 其中, A i :为2mL 绿原酸、维生素C 和没食子酸与 2mL 的DPPH.溶液混合后在波长 nm 处的吸光度值; A j :为2mL 绿原酸、维生素C 和没食子酸分别与2mL 无水乙醇溶剂混合后在波长 nm 处的光值; A 0:2mLDPPH.溶液与2mL 无水乙醇溶剂混合后在波长 nm 处的吸光度值。

DPPH和ABTS、PTIO自由基清除实验-操作图解-李熙灿-Xican-Li

DPPH?和ABTS+?自由基清除实验(含PTIO?自由基清除实验):详细说明与疑难解答 李熙灿(广州中医药大学中药学院, 2019.7) (以下内容系来源于实验经验及三个参考文献[1]Li, X., Comparative Study of 1,1-Diphenyl-2-picryl-hydrazyl Radical (DPPH?) Scavenging Capacity of the Antioxidant Xanthones Family. Chemistryselect, 2018. 3,13081-13086. [2]Li, X.; Ouyang, X.; Cai, R.; Chen, D. 3’,8”-Dimerization Enhances the Antioxidant Capacity of Flavonoids: Evid ence from Acacetin and Isoginkgetin. 2019, Molecules. 24, 2039. [3]Li, X.C., 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-Oxid e (PTIO?) Radical Scavenging: A New and Simpl e Antioxidant Assay In Vitro. J. Agric. Food Chem., 2017. 65,6288-6297 【概述】DPPH?、ABTS+?、PTIO?自由基三者,都是常用的自由基。概述如下表: 1

紫色墨绿色蓝紫色 2

3

羟自由基清除率测定

抗氧化活性的测定(参考)——测定活性物质对羟自由基的清除率 (羟自由基清除试验) 采用Fenton 试剂:过氧化氢/亚铁盐。 原理:H 2O 2与亚铁离子反应生成·OH,·OH 自由基一般存活时间比较短,具有较高的反应活性。当在反应体系中添加水杨酸,便能快速的捕捉·OH 而产生紫色化合物(2,3-二羟基苯甲酸),该有色化合物在510nm 处有较大吸收峰,测其吸光度可表示羟自由基(?OH )的多少,吸光度与羟自由基(?OH )的量成正比。反应体系中若加入羟自由基(?OH )清除剂后,被氧化的水杨酸减少,则体系颜色变浅甚至消失,吸光度变小。 操作: 样品处理:蔬菜水果切分,榨汁(切分后可放在2%的盐酸或草酸溶液中护色)。将蔬菜汁或果汁放入50ml 离心管中(如有颜色加适量活性炭或白陶 土),在3000~ 4000rpm 下离心10min~ 20min 后(若样品蛋白含量较高,需加适量乙酸锌,亚铁氰化钾)快速过滤,滤液备用。 取25ml 比色管2支(样品管、空白管),分别加入5ml 1mmol/L 硫酸亚铁溶液、5ml 3mmol/L H2O2溶液,样品管中加入1ml 样品溶液,空白管中加入1ml 蒸馏水,混合均匀后用3mmol/L 水杨酸溶液定容至刻度,在37℃(0.1±℃)的恒温水中反应15min 后,用分光光度计在510nm 的波长下测定各管的吸光度。以3mmol/L 水杨酸溶液调零。 其对?OH 自由基的清除率SA (%),可根据下式进行计算:式中: A0—不加样品的吸光度; A1—加入样品的吸光度 100A0A1-A0= SA(%)?清除率 ###【以往经验,不一定全适用】:若样品不进行脱色处理,则操作如下:在3支25ml 的比色管中(样品管、空白管、样品本底管)依次加入5ml1mmol/L 硫酸亚铁溶液,空白管和样品管中各加入5ml3mmol/L H 2O 2溶液,本底管中H 2O 2溶液用蒸馏水代替。

羟基自由基

羟基自由基(·OH)因其有极高的氧化电位(2.80EV),其氧化能力极强,与大多数有机污染物都可以发生快速的链式反应,无选择性地把有害物质氧化成CO2、H2O或矿物盐,无二次污染。 非净化风在高级氧化机房内,经过净化、稳压等预处理步骤,在活化能发生器中采用电磁波振荡处理,产生有负离子的高级氧化活化气。 活化气进入催化床后与加压回流水混合,再一起进入纳米级催化剂的微晶空穴环境中获得羟基自由基,形成活化溶气水。 活化溶气水经溶气释放系统后产生微气泡的活化气,在浮选中与悬浮物及油类结合后实现气浮分离。 流程概述:一级浮选出水自流进入二级催化气浮催化系统,经电解催化处理

后进入进水间。催化系统电催化反应器风源采用高级氧化活化气,来自配套的高级氧化机房。非净化风在高级氧化机房内,经过净化、稳压等预处理步骤,在活化能发生器中采用电磁波振荡处理,产生有负离子的高级氧化活化气。进水间设加药管线和污泥进料线,配备搅拌机一套,为加药搅拌区。催化气浮主体池体前端配置微风搅拌系统,为微风搅拌区;中段和后段为溶气催化系统,为活化水气浮分离区域。污水在进水间投加絮凝剂或活性污泥后进入主体池体,絮凝剂来自1#或2#浮选加药中心,活性污泥来自氧化沟回流污泥。通过加药搅拌区及微风搅动混合区,使悬浮物及油类混凝,通过活化水气浮分离区实现浮渣分离。活化气进入催化床后与加压回流水混合,再一起进入纳米级催化剂的微晶空穴环境中获得羟基自由基,形成活化溶气水。活化溶气水经溶气释放系统后产生微气泡的活化气,在浮选中与悬浮物及油类结合后实现气浮分离。污水通过溢流堰板进入出水间,出水间设回流溶气水泵P-23/1、2、3和均质罐提升泵P-6/1、2、3、4。微风搅拌系统风源来自MBBR单元配套风机。溶气催化系统溶气水源采用P23泵回流水;气源采用高级氧化活化气。二浮出水间设污泥进料线,可引入活性污泥。二浮出水或混合活性污泥的出水通过P6泵送入均质罐,实现污水进入浮选后工序和均质罐活性污泥供料。二浮出水间设在线液位计,并与变频机泵P-6/1实现连锁。浮渣由刮渣机自池面刮入集渣槽,自管道自流去浮渣池,通过浮渣泵P19/1、2送入三泥处理单元。 浮选池体为封闭形式,设有臭气收集设施。主要机泵开停状态、液位、报警等信号远传污水DCS。 高级氧化单元升级改造工程主要是对污水场原有的高级氧化单元内部分设施根据青岛石化高酸原油适应性改造消缺污水处理场适应性改造的要求进行升级,同时对工艺流程重新优化和设定。 本次升级改造内容包含:OH催化反应器升级2台新增2台、活化能发生器升级3台新增1台、富氧机升级2套、低压配电箱1台,其它原有设施均保留。 高级氧化单元升级改造后工艺流程设定在MBBR工序前,此为优化后主流程。 优化流程概述:监测池污水经出水提升泵提升进入石英砂过滤器,去除悬浮物后进入高级氧化系统的预催化床,在预催化床与活化气混合后流经两级OH催化反应器配合活化气和高频电场对水质进行处理,活化气在两级OH催化床内通过纳米级催化剂的微晶空穴环境获得羟基自由基。其出水经活化能反应器、纳米催化反应器、催化混合器在纳米级催化剂的微晶空穴环境中再次获得羟基自由基用于难降解污染物反应,并从活化气中获得高电位氧化剂,使得污染物得到初步降解。 高级氧化单元出水进入MBBR,进行生化处理后泵送活性炭床,经生物活

自由基引发剂--偶氮二异丁腈的制备方法、反应机理及常见反应

偶氮二异丁腈(AIBN)是一种常用的自由基引发剂,不溶于水,溶于甲醇、乙醇、丙酮、乙醚、甲苯等有机溶剂和乙烯基单体。AIBN在60℃以上分解形成异丁腈基,从而引发自由基反应。AIBN易燃有毒,当加热至100℃熔融时急剧分解,释放出的有机氰化物,对人体危害较大。 用途 可用作自由基型加聚反应(如醋酸乙烯酯等)引发剂;泡沫橡胶、塑料的发泡剂;及用作有机合成试剂;也用作有机合成试剂。 三丁基氢化锡参与的反应一般用AIBN引发。有机合成中,这两种试剂联用可以完成很多环化、偶联和去卤素反应。推动卤代烃的脱卤素反应在上述条件下发生的动力,可以归结到锡和碳原子分别与氢和卤素原子形成的键之间的键能差异(Sn-H<Sn-Br,但C-H>C-Br)。 除三丁基氢化锡外,其他常与AIBN联用的试剂还有:三(三甲硅基)硅烷、苯硫酚、二苯基膦、三苯基锗烷+加压CO等。 偶氮二异丁腈作为自由基引发剂的优势: * 分解温度(65~85°C)适用于大多数反应; * 一级分解速率对不同的溶剂变化较小;

* 不易受自由基进攻,因此诱导分解和转移反应可以忽略不计; * 能在较低温度下通过光照分解 制备 偶氮二异丁腈可通过丙酮连氮法制备。首先由丙酮与水合肼反应生成丙酮连氮,生成的丙酮连氮与氰氢酸反应生成二异丁腈肼,再经次氯酸氧化生成偶氮二异丁腈,并从乙醚中重结晶获得产物。 反应机理 # 巴顿脱氧反应(Barton-McCombie) 巴顿脱氧反应是一种醇脱氧的方法。首先将醇转化为硫代羰基衍生物,以Bu3SnH作为自由基供体,AIBN 作为自由基引发剂,启动自由基链。反应的驱动力是形成稳定的S-Sn键。硫对Bu3Sn·的攻击引发分解反应,生成烷基自由基。生成的烷基自由基再与Bu3SnH反应,实现醇脱氧。同时,生成的自由基Bu3Sn·作为下一轮循环反应的自由基。 启动: 反应循环:

羟自由基清除率测定

抗氧化活性的测定(参考)——测定活性物质对羟自由基的清除率 (羟自由基清除试验) 采用Fenton 试剂:过氧化氢/亚铁盐。 原理:H 2O 2与亚铁离子反应生成·OH,·OH 自由基一般存活时间比较短,具有较高的反应活性。当在反应体系中添加水杨酸,便能快速的捕捉·OH 而产生紫色化合物(2,3-二羟基苯甲酸),该有色化合物在510nm 处有较大吸收峰,测其吸光度可表示羟自由基(?OH )的多少,吸光度与羟自由基(?OH )的量成正比。反应体系中若加入羟自由基(?OH )清除剂后,被氧化的水杨酸减少,则体系颜色变浅甚至消失,吸光度变小。 操作: 样品处理:蔬菜水果切分,榨汁(切分后可放在2%的盐酸或草酸溶液中护色)。将蔬菜汁或果汁放入50ml 离心管中(如有颜色加适量活性炭或白陶土),在3000~ 4000rpm 下离心10min~ 20min 后(若样品蛋白含量较高,需加适量乙酸锌,亚铁氰化钾)快速过滤,滤液备用。 取25ml 比色管2支(样品管、空白管),分别加入5ml 1mmol/L 硫酸亚铁溶液、5ml 3mmol/L H2O2溶液,样品管中加入1ml 样品溶液,空白管中加入1ml 蒸馏水,混合均匀后用3mmol/L 水杨酸溶液定容至刻度,在37℃(0.1±℃)的恒温水中反应15min 后,用分光光度计在510nm 的波长下测定各管的吸光度。以3mmol/L 水杨酸溶液调零。 其对?OH 自由基的清除率SA (%),可根据下式进行计算:式中: A0—不加样品的吸光度; A1—加入样品的吸光度 ###【以往经验,不一定全适用】:若样品不进行脱色处理,则操作如下:在3支25ml 的比色管中(样品管、空白管、样品本底管)依次加入5ml1mmol/L 硫酸亚铁溶液,空白管和样品管中各加入5ml3mmol/L H 2O 2溶液,本底管中H 2O 2溶液用蒸馏水代替。 本底管和样品管分别加入1ml 样品溶液,空白管中加入1ml 蒸馏水,混合均匀后用3mmol/L 水杨酸溶液定容至刻度。在37℃(0.1±℃)的恒温水中反应15min 100A0A1-A0= SA(%)?清除率

清除自由基研究方法汇总

电子自旋共振法(ESR)、高效液相色谱法、化学发光法、比色法、分光光度法 自由基清除剂也称为抗氧化剂,可清除体内多余的自由基,减轻它们对机体的损伤。目前常用超氧阴离子自由基体系(O2-·)、羟基自由基体系(·OH)、二苯代苦味酰基自由基体系(DPPH·)对某抗氧化剂的体外清除自由基能力进行了研究。 其中ESR法和气相色谱法、HPLC 法对自由基的检测灵敏度高,但对设备要求较高,操作复杂,无法在一般实验室普及。而其中的分光光度法、化学发光法、荧光分析法等不需要昂贵的仪器,易于被一般实验室所采用,但测定过程中的干扰因素较多,容易对测定的准确性和灵敏度造成影响。分光光度法最常用。 原理部分: 1.DPPH·法测试机理 DPPH·(二苯代苦味脐基自由基)的甲醇溶液呈深紫色,可见光区最大吸收峰为492nm。当自由基清除剂加入到DPPH·溶液中时,DPPH·的单电子被配对而使其颜色变浅,在最大吸收波长处的吸光度减少,而且颜色变浅的程度与配电子数成化学计量关系,因此,可通过吸光度减弱的程度来评价自由基被消除的情况。 2. 羟基自由基(·OH) 1)邻二氮菲法[70]

实验原理:邻二氮菲可与Fe2+形成络合物,此络合物在510nm 处有最大吸收峰,是一常用的氧化还原指示剂,其颜色变化可敏锐地反映溶液氧化还原状态的改变。H2O2/ Fe2+体系可通过Fenton 反应产生羟自由基,邻二氮菲-Fe2+水溶液被羟自由基氧化为邻二氮菲-Fe3+后,其510nm 最大吸收峰消失。如果反应体系中同时存在羟自由基清除剂,则Fenton 反应产生的羟自由基将被此清除剂全部或部分清除,邻二氮菲-Fe2+络合物受到的破坏将会随之减少。根据这一原理,可建立以A510变化反映自由基清除剂对羟自由基清除作用的比色测定法。 2)水杨酸法[71] 实验原理:羟自由基易攻击芳环化合物产生羟基化合物,因此可用水杨酸捕集Fenton 反应体系中的·OH,生成的2,3-二羟基苯甲酸用乙醚萃取,用钨酸钠和亚硝酸钠显色,然后用分光光度计测定其在510nm 处的吸光值,此吸光值可反映体系中的羟自由基浓度。 3)甲基紫-Fe2+-H2O2反应体系 测定原理:在Fenton反应的基础上加入甲基紫作显色剂,反应式如下: Fe2++H2O2→Fe3++OH-+·OH 甲基紫在酸性溶液中呈现紫色[9],在578nm 处有强吸收。反应产生的·OH 具有高的反应活性,容易进攻高电子云密度点,会与甲基紫中具有高电子云密度的-C=C-基团发生亲电加成反应,使甲基紫褪色。通过测定甲基紫在578nm 处吸光度值的变化可间接测定出·OH 的生成量。当有清除自由基的物质存在时,会阻断甲基紫与·OH 的反应,从而使得甲基紫的颜色有所加重,因此可利用抗氧化剂加入前后溶液吸光度值的变化来评价物质的抗氧化性强弱。

羟基自由基发生器(完整资料).doc

【最新整理,下载后即可编辑】 羟基自由基发生器 说明书

江苏恩飞特环保工程有限公司 目录 一、羟基自由基技术简介 (2) 二、羟基自由基(.OH)产生的方法及其原理 (3) 三、羟基自由基的特点 (4) 四、废水处理效果及能耗 (5) 五、公司信息 (5)

一、羟基自由基技术简介 有机污染物种类繁多,不少难于生化降解,尤其“三致”有机污染物,由于在水体中浓度低至10—9级对人类健康危害仍很大,因此对于这类毒性大,浓度高且难于生化降解的有机废水处理已是当前世界水处理领域的热点。 80年代末,随着有机电化学理论研究的深入,证实不少有机物的氧化还原、加成或分解都可在电极上进行,是去除水中有机污染物很有发展潜力的新方法,并被誉为“清洁处理法”,对一些成份复杂、生物难降解的有机废水,用生物法或一般物理化学方法难于奏效,而电解法则有可能获得较好的结果。 比较国内外有机废水众多的处理技术,从经济和技术统一的观点考虑,认为电解法和催化氧化法均有巨大的潜力。因此,从三维电极的基本原理出发,巧妙配以催化氧化技术,构成一种新的很具特式的羟基絮凝复合床(即多维电极羟基发生器)水处理技术。这种充分利用一些已有的原理和技术进行“巧妙的组合”达到1+1>2的目的,以求获得更佳效果的方法也是当前学术和工业领域的新思想。这种新技术是根据水中需要去除污染物的种类和性质,在两个主电极之间充填高效、无毒的颗粒状专用材料、催化剂(或催化手段)及一些辅助剂、组成去除某种或某一类有机或无机污染物最佳复合填充材料作为粒子电极,将它们置于结构为方型或圆型的复合床内,当需要处理的废水流经羟基絮凝复

自由基、活性氧与疾病

自由基、活性氧与疾病 摘要:本文主要介绍了自由基、活性氧与疾病的关系,并简要提出了抑制自由基的办法。 关键词:自由基;活性氧;疾病 Free Radicals, Reactive Oxygen Species and Disease [Abstract] In this article, the interactions of free radicals, reactive oxygen species and disease were mainly introduced. A brief overview of the free radical scavenging capacities is introduced. [Key words] Free Radicals;Reactive Oxygen Species;Disease; 生物体内绝大多数分子是由氢原子和其它基团组成,相互之间常常可以发生解离作用,形成各带一个电子的基团与氢原子,称为自由基(free radicals)。自由基又叫游离基,其性质非常活泼,几乎可以在任何惰性条件下和任何惰性物质发生连锁反应[1],即与其它物质反应生成新的自由基,从而导致基质的大量消耗及多种自由基产物的生成。 人体内的自由基分为氧自由基和非氧自由基。氧自由基占主导地位,大约占自由基总量的95%。氧自由基包括过氧化氢分子、羟自由基、过氧化羟基自由基、烷氧基自由基、超氧阴离子自由基等, 它们统称活性氧(reactive oxygen species,ROS),是人体内最为重要的自由基[2]。 有关氧自由基的报道和发现层出不穷,最重要的发现就是它们对人体健康的危害以及它们和许多疾病有着直接的或潜在的联系[3]。目前,自由基已经成为一个大众性的普及概念[4],人们就像知道细菌、病毒可以通过感染人体而导致疾病一样,知道自由基可以通过对人体内细胞或组织的氧化损伤而在更基础的水平上使人体处于非健康的状态[5]。 1 自由基在机体中的作用 1.1 自由基对机体的损伤 在生理情况下,自由基有增强白细胞对细菌的吞噬和抑制细菌增殖的功能,增强机体抗感染及免疫能力;但在病理情况下,自由基又能对组织产生不可逆的损伤,使组织细胞发生破坏性的化学结构变化,直接导致许多疾病的发生。可见,自由基在机体内的生物活性具有双重性,是个“两面派”。 自由基对机体攻击的途径是多方面的, 既有来自体内的, 也有来自外界的。当机体中的自由基超过一定的量, 并失去控制时,机体就会受到各种各样的伤害, 以致产生各种各样的疑难杂病。下面,简单介绍自由基对机体的损伤作用。(1)自由基在生物体内攻击和破坏生物大分子,引起过氧化变性,产生组织损害和器官退行性变化,导致老年病和衰老的发生。(2)生物体在外界因素如感染、毒物、辐射等作用下,释放自由基,攻击细胞结构,诱发自身抗体,促使自身组织破坏。(3)自由基可能增加毛细血管通透性,使大量血浆渗出,而有效循环血量减少,从而使细胞屏障作用遭到损害,加重休克。(4)自由基是缺血再灌注损伤的一个重要因素,涉及各主要器官组织,因组织缺血、缺氧时细胞内能量分解大于合成,三磷酸腺苷分解产物大量产生,在酶的催化下形成自由基。诸如冠动脉硬化与中风。(5)自由基对视网膜的损伤导致晶状体组织的破坏,从而产生白内障。 值得一提的是,自由基对蛋白质的不利影响是其对生物体危害的最重要方面, 这可从两方面去理解:首先是自由基直接对蛋白质的氧化破坏和因此引起的交联变性,这是衰老形成

(完整版)抗氧化试验方法

一、试验方法 1、DPPH自由基清除率的测定 本实验采用1,1-diphenyl-2-picryhydrazyl(DPPH)法测定样品清除自由基活性。 1.1实验原理 1,1-二苯基-2-苦肼基(1,1-diphenyl-2-picryhydrazyl(DPPH))是一种稳定的以氮为中心的自由基,其乙醇溶液显紫色,最大吸收波长为517nm。当DPPH 溶液中加入自由基清除剂时,其孤对电子被配对时,吸收消失或减弱,导致溶液颜色变浅,显黄色或淡黄色,在517nm处的吸光度变小,其变化程度与自由基清除程度呈线性关系,故该法可用清除率表示,清除率越大,表明该物质清除能力越强。 1.2溶液的配制 0.08mmol/L DPPH溶液的配制:精密称取DPPH8.0mg,用无水乙醇溶解并定容至200ml棕色容量瓶中,得浓度为0.004%的DPPH溶液,避光保存,备用。 1.3实验步骤:分别取不同浓度的各样品溶液(0.24,0.48,0.72,0.96,1.20mg/ml)1.0ml,置10ml离心管中,加入3.0ml的DPPH溶液,室温避光反应30min,同时以无水乙醇为空白,于517nm波长处测定吸光值。按下列公式计算DPPH自由基清除率。 DPPH自由基清除率(%)= A0-(A s-A c)/ A0×100% 公式中,A0—1.0ml蒸馏水+3.0mlDPPH溶液的吸光度值 A s—1.0ml样品溶液+3.0mlDPPH溶液的吸光度值 A c—1.0ml样品溶液+3.0ml无水乙醇的吸光度值

将实验重复三次,求得清除率的平均值。 2、总的抗氧化活性的测定 总的抗氧化活性实验采用改良后的Prieto法。 2.1实验原理:磷钼络合物测定方法的原理是Mo(VI)被抗氧化物质还原成绿色的Mo(V)络合物,其最大吸收波长为695nm。抗氧化物质活性越强,测定的吸光度值越大。此方法操作简单,所用试剂低廉、方法重现性好,非常适合抗氧化性的测定。 2.2溶液的配制 样品液:同上 磷钼试剂:0.6mol/L浓硫酸溶液、28mmol/L磷酸钠溶液和4mmol/L钼酸胺溶液混匀,即得。 2.3实验步骤 分别取不同浓度的各样品溶液(0.24,0.48,0.72,0.96,1.20mg/ml)1.0ml,置10ml 离心管中,加入3.0ml试剂溶液(试剂溶液中包括0.6mol/L的硫酸、28mmol/L 的磷酸钠、4mmol/L的钼酸铵)。混合液于95℃水浴锅中分别水浴30min,60min、90 min、120 min、150 min。 放冷至室温,695nm处测吸光度值。以蒸馏水为空白,吸光度值越大,表明抗氧化能力越强。BHT做为阳性对照。将实验重复三次,求平均值。 三、还原力的测定 3.1 实验原理 以普鲁士蓝[Fe4(Fe(CN)6)3] 之生成量作为指标,将六氰合铁酸钾[K3 Fe(CN)6] 还原成K4Fe(CN)6,再利用Fe3+形成Fe4(Fe(CN)6)3,由700nm处吸光

相关文档
最新文档