多层PCB的Prepreg和core

多层PCB的Prepreg和core
多层PCB的Prepreg和core

Prepreg&core

Prepreg:半固化片,又称预浸材料,是用树脂浸渍并固化到中间程度(B阶)的薄片材料。半固化片可用作多层印制板的内层导电图形的黏结材料和层间绝缘。在层压时,半固化片的环氧树脂融化、流动、凝固,将各层电路毅合在一起,并形成可靠的绝缘层。

core:芯板,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。

通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的。而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。

通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。

多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。

当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。下面是一个典型的6层板叠层结构

(iMX255coreboard):

PCB的参数:

不同的印制板厂,PCB的参数会有细微的差异,需要与电路板厂的工程师沟通,得到该厂的一些参数数据,主要是介电常数和阻焊层厚度两个参数各个板厂会有差别。

表层铜箔:

可以使用的表层铜箔材料厚度有三种:12um、18um和35um。加工完成后的最终厚度大约是44um、50um和67um,大致相当于铜厚1 OZ、1.5 OZ、2 OZ。注意:在用阻抗计算软件进行阻抗控制时,外层的铜厚没有0.5 OZ的值。

芯板:我们常用的板材是S1141A,标准的FR-4,两面包铜,可选用的规格可与厂家联系确定。

半固化片:

规格(原始厚度)有7628(0.185mm/7.4mil),2116(0.105mm/4.2mil),1080(0.075mm /3mil),3313(0.095mm/4mil),实际压制完成后的厚度通常会比原始值小10-15um左右(即0.5-1mil),因此叠层设计的最小介质层厚不得小于3mil。同一个浸润层最多可以使用3个半固化片,而且3个半固化片的厚度不能都相同,最少可以只用一个半固化片,但有的厂家要求必须至少使用两个。如果半固化片的厚度不够,可以把芯板两面的铜箔蚀刻掉,再在两

面用半固化片粘连,这样可以实现较厚的浸润层。半固化片的介电常数与厚度有关,下表为不同型号的半固化片厚度和介电常数参数:

型号厚度介电常数

1080 2.8mil 4.3

3313 3.8mil 4.3

2116 4.5mil 4.5

7628 6.8mil 4.7 板材的介电常数与其所用的树脂材料有关,FR4板材其介电常数为4.2—4.7,并且随着频率的增加会减小。

阻焊层:

铜箔上面的阻焊层厚度C2≈8-10um,表面无铜箔区域的阻焊层厚度C1根据表面铜厚的不同而不同,当表面铜厚为45um时C1≈13-15um,当表面铜厚为70um时C1≈17-18um,在用SI9000进行计算时,阻焊层的厚度取0.5OZ即可。

导线横截面:

由于铜箔腐蚀的关系,导线的横截面不是一个矩形,实际上是一个梯形。以TOP层为例,当铜箔厚度为1OZ时,梯形的上底边比下底边短1MIL。比如线宽5MIL,那么其上底边约4MIL,下底边5MIL。上下底边的差异和铜厚有关,下表是不同情况下梯形上下底的关系。

线宽铜厚(OZ)上线宽(mil)下线宽(mil)

内层 0.5 W-0.5 W

内层 1 W-1 W

内层 2 W-1.5 W-1

外层 0.5 W-1 W

外层 1 W-0.8 W-0.5

外层 2 W-1.5 W-1

说明:上表中的W表示设计的理想线宽。

通常阻抗计算采用的模型为:

上面两个模型为基本的微带线模型和带状线模型。

在微带线模型中,还有如下几种:

无涂覆层的模型一般不采用。上图右边的模型中的介电常数Er1和Er2根据采用的半固化片的具体型号确定,主要型号已经在上面列出。具体的参数需要向板厂咨询。

下面解释板厂给我们的叠层图的含义:

多层板PCB设计教程完整版

多层线路板设计-适合于初学者 多层PCB层叠结构 在设计多层PCB电路板之前,设计者需要首先根据电路的规模、电路板的尺寸和电磁兼容(EMC)的要求来确定所采用的电路板结构,也就是决定采用4层,6层,还是更多层数的电路板。确定层数之后,再确定内电层的放置位置以及如何在这些层上分布不同的信号。这就是多层PCB层叠结构的选择问题。层叠结构是影响PCB板EMC性能的一个重要因素,也是抑制电磁干扰的一个重要手段。本节将介绍多层PCB板层叠结构的相关内容。 11.1.1 层数的选择和叠加原则 确定多层PCB板的层叠结构需要考虑较多的因素。从布线方面来说,层数越多越利于布线,但是制板成本和难度也会随之增加。对于生产厂家来说,层叠结构对称与否是PCB板制造时需要关注的焦点,所以层数的选择需要考虑各方面的需求,以达到最佳的平衡。 对于有经验的设计人员来说,在完成元器件的预布局后,会对PCB的布线瓶颈处进行重点分析。结合其他EDA工具分析电路板的布线密度;再综合有特殊布线要求的信号线如差分线、敏感信号线等的数量和种类来确定信号层的层数;然后根据电源的种类、隔离和抗干扰的要求来确定内电层的数目。这样,整个电路板的板层数目就基本确定了。 确定了电路板的层数后,接下来的工作便是合理地排列各层电路的放置顺序。在这一步骤中,需要考虑的因素主要有以下两点。 (1)特殊信号层的分布。http://www.pcb.shhttp://www.pcb.sh (2)电源层和地层的分布。 如果电路板的层数越多,特殊信号层、地层和电源层的排列组合的种类也就越多,如何来确定哪种组合方式最优也越困难,但总的原则有以下几条。 (1)信号层应该与一个内电层相邻(内部电源/地层),利用内电层的大铜膜来为信号层提供屏蔽。http://www.pcb.sh (2)内部电源层和地层之间应该紧密耦合,也就是说,内部电源层和地层之间的介质厚度应该取较小的值,以提高电源层和地层之间的电容,增大谐振频率。内部电源层和地层之间的介质厚度可以在Protel的Layer Stack Manager(层堆栈管理器)中进行设置。选择【Design】/【Layer Stack Manager…】命令,系统弹出层堆栈管理器对话框,用鼠标双击Prepreg文本,弹出如图11-1所示对话框,可在该对话框的Thickness选项中改变绝缘层的厚度。

PCB电路板多层印制电路板技术报告

PCB电路板多层印制电路板技术报告

多层印制板设计综合实训 技术报告 组号: 成员姓名: 班级: 指导教师: 课程名称:多层印制电路板设计综合实训 提交日期: 目录 一、2.4GHz通用头端印制电路板设计 1.1 2.4GHz通用头端的原理介绍 1.1.1基本原理 1.1.2基本要求 1.2电路中主要芯片 1.2.1BGA6589芯片 1.2.2BGU2003芯片 1.3电路设计过程 1.4电路图

1.4.1电路原理图 1.4.2电路PCB图 二、基于ISP1521的USB高速转接器印制电路板设计 2.1基于ISP1521的USB高速转接器的原理 2.1.1基本原理 2.1.2基本要求 2.2电路中主要芯片 2.2.1ISP1521芯片 2.2.2NDS9435A芯片 2.2.3PCF8582芯片 2.3电路设计过程 2.4电路图 2.4.1电路原理图 2.4.2电路PCB图 三、实训总结 一、2.4GHz通用头端印制电路板设计 1.1 2.4GHz通用头端的原理介绍 1.1.1基本原理 在用户新片的控制下(SPDT-PIN),在TX时隙,基于结型二极管BAP51-02的头端SPDT

开关(Single-PoleDouble-Throw单刀双掷开关)关闭位于天线和功率放大器之间的通道。PA能够被关闭或打开。输出的信号能够通过天线发射入以太空间。以太是无线RF信号从一个接入点到另一个接入点传输的自然环境媒体。由于TX信号通过BGA6589功率放大器放大,因此可以发射更强的功率并能到达更远的地方。RX时隙段是接收信号。在这种工作模式下,天线在SPDT-PIN的控制下切离PA(功率放大器)并被连接到LNA输入端。LNA能够被打开或关闭。对接收机的性能进行系统分析显示,通过减小RX系统噪声的影响,BGU2003低噪声放大器的确能改善接收机的灵敏度。在噪声输入接收IC前设置非常低噪声、合适的增益时是有可能做到的。这将导致接收机能够在接入点完全接收更远距离的信号。其效果可以通过数学的关系描述如下: 普通的噪声图(NF)定义: 当系统工作于华氏0度以上的时候,噪声比率F大于1(F>1或NF>0dB)。叠加LNA 和RX芯片的作用,整个系统噪声比率将为: 说明系统噪声比率(包括LNA和RX芯片)至少为。等式中还包含RX通道芯片引起的二级噪声。但这个噪声将被LNA增益所衰减。采用合适的LNA的确能减小输入芯片的噪声比率。在这种关系中LNA的噪声比率是主要的。 1.1.2基本要求 ⑴学习PCB的电子兼容设计的相关知识; ⑵通过技术文档了解电路的功能; ⑶查阅资料完成设计资料预审。包括电路原理图功能设计要求、结构图分析,学习相关电子技术资料;

多层电路板添加平衡铜块的方法和技巧

多层电路板添加平衡铜块的方法和技巧 考虑到多层电路板的批量可制造性能和电气性能(SI、EMI、ESD和其它)要求之间的均衡,多层PCB设计应根据铜层分布情况,在多层PCB内外层添加相应的铜平衡块,消除各多层电路板制造厂家自行添加引起的PCB外观不一致和对电气性能要求潜在的可能影响。本文适用于EDA设计部设计多层PCB中添加铜平衡块参考使用。 这里先让我们认识一下什么叫平衡铜块(Copper Balancing):为改善多层电路板内层铜层密度分布不均匀而引起的压合中胶体流动和外层铜层密度分布不均匀造成的电镀厚度不一等相关制造工艺问题,而在PCB各层面上添加相应的孤立铜块。该改善铜层密度均一分布的DFM措施一般由多层PCB制造厂家在制造面板层面上进行或原始OEM厂家在原始PCB中添加。 阻流块(Venting):添加在多层PCB内层避免因空白区域胶体流动的非导电性材料和导电材料。 均流块(Copper Thieving):也称电镀块,指添加在多层PCB外层图形区、PCB装配辅条和制造面板辅条区域的铜平衡块。 基材区(Base Material Area):指PCB中完全为树脂和纤维构成的非导电性基体材料平面区域。基材区为铜平衡块添加目标区。由于没有明确的尺寸定义规定,本规定中基材区指面积尺寸在符合下列要求的情况下,都应视作基体区处理: 1.单个PCB平面层中尺寸超出3000mil X3000mil或1000mil X5000mil的 区域。 2.对于Gnd层半数或以上层数图形内含有1″*2″或0.5″*5″的基材区; 3.对于Gnd层半数或以上层数图形内含有靠近铣槽位(或与铣槽相连),且面积超过1″*1″,凡满足①ML排板结构中含单张P片;②内层含铜≥2OZ;任意一个条件的基材区 平衡铜块添加方法 1.PCB面板上PCB区域(不包PCB装配用工艺边)外铜平衡块由各制造厂家根据自身工艺添加,一般不作规定。 2.对于无特殊要求的PCB装配工艺边Shape的添加可由PCB制造厂家进行添加,但对于由特殊测试或装配要求的工艺边,EDA设计部应当根据规则直接添加在PCB中。 3.考虑到设计的多样性,EDA设计部可采用下列规则范围的形状和尺寸: 1)设计者对外层可以添加铜电镀平衡块,要求采用40mil的方形或圆形,间距60mil,中心距离100mil。保持同普通数字信号200mil以上距离,距离高压电源(12V+)或大电流区域(1A以上)600mil以上.具体边缘500mil以上。 2)内层添加阻流块。采用40mil的方形或圆形,心距离100mil,上下可采用半距离间隔保持同普通数字信号100mil 以上距离,距离电源(12V+)或大电流区域(1A以上)400mil以,距离边缘400mil以上. 4)对于严格不许可厂家添加平衡块的区域应在制造图上单独标注出。 5)对于H方向不对称的PCB,为改善均衡性,对于大面积基材区域可以采用更大尺寸的Shape。 平衡铜块添加的步骤

PADS多层板PCB设计

多层线路板设计-适合于初学者 1.多层PCB 层叠结构 在设计多层PCB 电路板之前,设计者需要首先根据电路的规模、电路板的尺寸和电磁兼容(EMC)的要求来确定所采用的电路板结构,也就是决定采用4 层,6 层,还是更多层数的电路板。确定层数之后,再确定内电层的放置位置以及如何在这些层上分布不同的信号。这就是多层PCB 层叠结构的选择问题。层叠结构是影响PCB 板EMC 性能的一个重要因素,也是抑制电磁干扰的一个重要手段。本节将介绍多层PCB 板层叠结构的相关内容。 1.1 层数的选择和叠加原则 确定多层PCB 板的层叠结构需要考虑较多的因素。从布线方面来说,层数越多越利于布线,但是制板成本和难度也会随之增加。对于生产厂家来说,层叠结构对称与否是PCB 板制造时需要关注的焦点,所以层数的选择需要考虑各方面的需求,以达到最佳的平衡。对于有经验的设计人员来说,在完成元器件的预布局后,会对PCB 的布线瓶颈处进行重点分析。结合其他EDA 工具分析电路板的布线密度;再综合有特殊布线要求的信号线如差分线、敏感信号线等的数量和种类来确定信号层的层数;然后根据电源的种类、隔离和抗干扰的要求来确定内电层的数目。这样,整个电路板的板层数目就基本确定了。确定了电路板的层数后,接下来的工作便是合理地排列各层电路的放置顺序。在这一步骤中,需要考虑的因素主要有以下两点。 1)特殊信号层的分布。 2)电源层和地层的分布。 如果电路板的层数越多,特殊信号层、地层和电源层的排列组合的种类也就越多,如何来确定哪种组合方式最优也越困难,但总的原则有以下几条。 (1)信号层应该与一个内电层相邻(内部电源/地层),利用内电层的大铜膜来为信号层提供屏蔽。 (2)内部电源层和地层之间应该紧密耦合,也就是说,内部电源层和地层之间的介质厚度应该取较小的值,以提高电源层和地层之间的电容,增大谐振频率。内部电源层和地层之间的介质厚度可以在Protel 的Layer Stack Manager (层堆栈管理器)中进行设置。选择【Design】/【Layer Stack Manager…】命令,系统弹出层堆栈管理器对话框,用鼠标双击Prepreg 文本,弹出如图1-1 所示对话框,可在该对话框的Thickness 选项中改变绝缘层的厚度。如果电源和地线之间的电位差不大的话,可以采用较小的绝缘层厚度,例如5mil(0.127mm)。

PCB多层板设计建议及实例

PCB多层板设计建议及实例(4,6,8,10,12层板)说明 -------------------------------------------------------------------------------- PCB多层板设计建议及实例(4,6,8,10,12层板)说明 A. 元件面、焊接面为完整的地平面(屏蔽); B. 无相邻平行布线层; C. 所有信号层尽可能与地平面相邻; D. 关键信号与地层相邻,不跨分割区。 方 案1:在元件面下有一地平面,关键信号优先布在TOP层;至于层厚设置,有以下建议:? 满足阻抗控制 ? 芯板(GND到POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去耦效果。 方案2:缺陷 ? 电源、地相距过远,电源平面阻抗过大 ? 电源、地平面由于元件焊盘等影响,极不完整 ? 由于参考面不完整,信号阻抗不连续 方案3: 同方案1类似,适用于主要器件在BOTTOM布局或关键信号在底层布线的情况。

方案3:减少了一个信号层,多了一个内电层,虽然可供布线的层面减少了,但是该方案解决了方案1和方案2共有的缺陷。 优点: ? 电源层和地线层紧密耦合。 ? 每个信号层都与内电层直接相邻,与其他信号层均有有效的隔离,不易发生串扰。? Siganl_2(Inner_2)和两个内电层GND(Inner_1)和POWER(Inner_3)相邻,可以用来传输高速信号。两个内电层可以有效地屏蔽外界对Siganl_2(Inner_2)层的干扰和Siganl_2(Inner_2)对外界的干扰。 方案1:采用了4层信号层和2层内部电源/接地层,具有较多的信号层,有利于元器件之间的布线工作。 缺陷: ? 电源层和地线层分隔较远,没有充分耦合。 ? 信号层Siganl_2(Inner_2)和Siganl_3(Inner_3)直接相邻,信号隔离性不好,容易发生串扰。

多层线路板生产制造项目申请报告

多层线路板生产制造项目 申请报告 规划设计/投资分析/产业运营

多层线路板生产制造项目申请报告 多层线路板顾名思议就是两层以上的电路板才能称作多层,比如说四层,六层,八层等等。当然有些设计是三层或五层线路的,也叫多层PCB 线路板。 该多层线路板项目计划总投资5045.68万元,其中:固定资产投资4011.19万元,占项目总投资的79.50%;流动资金1034.49万元,占项目总投资的20.50%。 达产年营业收入8290.00万元,总成本费用6562.05万元,税金及附加90.66万元,利润总额1727.95万元,利税总额2056.95万元,税后净利润1295.96万元,达产年纳税总额760.99万元;达产年投资利润率34.25%,投资利税率40.77%,投资回报率25.68%,全部投资回收期5.39年,提供就业职位144个。 坚持安全生产的原则。项目承办单位要认真贯彻执行国家有关建设项目消防、安全、卫生、劳动保护和环境保护的管理规定,认真贯彻落实“三同时”原则,项目设计上充分考虑生产设施在上述各方面的投资,务必做到环境保护、安全生产及消防工作贯穿于项目的设计、建设和投产的整个过程。 ......

多层板的制作方法一般由内层图形先做,然后以印刷蚀刻法作成单面或双面基板,并纳入指定的层间中,再经加热、加压并予以粘合,至于之后的钻孔则和双面板的镀通孔法相同。是在1961年发明的。

多层线路板生产制造项目申请报告目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

PCB叠层结构知识 多层板设计技巧

PCB叠层结构知识多层板设计技巧 较多的PCB工程师,他们经常画电脑主板,对Allegro等优秀的工具非常的熟练,但是,非常可惜的是,他们居然很少知道如何进行阻抗控制,如何使用工具进行信号完整性分析.如何使用IBIS模型。我觉得真正的PCB高手应该还是信号完整性专家,而不仅仅停留在连连线,过过孔的基础上。对布通一块板子容易,布好一块好难。 小资料 对于电源、地的层数以及信号层数确定后,它们之间的相对排布位置是每一个PCB工 程师都不能回避的话题; 层的排布一般原则: 元件面下面(第二层)为地平面,提供器件屏蔽层以及为顶层布线提供参考平面; 所有信号层尽可能与地平面相邻; 尽量避免两信号层直接相邻; 主电源尽可能与其对应地相邻; 兼顾层压结构对称。 对于母板的层排布,现有母板很难控制平行长距离布线,对于板级工作频率在50MHZ 以上的(50MHZ以下的情况可参照,适当放宽),建议排布原则: 元件面、焊接面为完整的地平面(屏蔽); 无相邻平行布线层; 所有信号层尽可能与地平面相邻; 关键信号与地层相邻,不跨分割区。 注:具体PCB的层的设置时,要对以上原则进行灵活掌握,在领会以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分割情况等,确定层 的排布,切忌生搬硬套,或抠住一点不放。 以下为单板层的排布的具体探讨: *四层板,优选方案1,可用方案3 方案电源层数地层数信号层数 1 2 3 4 1 1 1 2 S G P S 2 1 2 2 G S S P 3 1 1 2 S P G S 方案1 此方案四层PCB的主选层设置方案,在元件面下有一地平面,关键信号优选布TOP 层;至于层厚设置,有以下建议: 满足阻抗控制芯板(GND到POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去藕效果;为了达到一定的屏蔽效果,有人试图把电源、地平面放在TOP、BOTTOM 层,即采用方案2: 此方案为了达到想要的屏蔽效果,至少存在以下缺陷:

多层板PCB层叠设计方案指南.

Page 1 of 2 PCBstandards PCB LAYER CONFIGURATION STACK-UPS Rev A Layer Configurations.doc 3/20/2003 9:44 AM a 2003 PCBstandards, Inc. 3/20/2003 02A 02B 02C Layer 1 Layer 2 (Top) (Bottom) (Top) (GND) (GND) (Bottom) 04A 04B 04C 04D 04E 04F Layer 1 Layer 2 Layer 3 Layer 4 (Top) (GND) (PWR) (Bottom) (Top) (PWR) (GND) (Bottom) (PWR) (Signal) (Signal) (GND) (GND) (Signal) (Signal) (PWR) (GND) (Sig/Pwr) (Sig/Pwr) (GND) (Top) (Signal) (Signal) (Bottom) 06A 06B 06C 06D 06E 06F 06G 06H 06J 06K 06L Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 (Top) (GND) (Signal) (Signal) (PWR) (Bottom) (Top) (PWR) (Signal) (Signal) (GND) (Bottom) (Top) (Signal) (GND) (PWR) (Signal) (Bottom) (Top) (Signal) (PWR) (GND) (Signal) (Bottom) (GND) (Signal) (GND) (PWR) (Signal) (GND) (GND) (Signal) (PWR) (GND) (Signal) (GND) (Top) (GND) (Signal) (PWR) (GND) (Bottom) (Top) (GND) (PWR) (Signal) (GND) (Bottom) (Top) (PWR) (GND) (Signal) (PWR) (Bottom) (Top) (PWR) (Signal) (GND) (PWR) (Bottom) (Top) (Signal) (Signal) (Signal) (Signal) (Bottom) 08A 08B 08C 08D 08E 08F 08G 08H 08J 08K 08L Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 (Top) (Signal) (GND) (Signal) (Signal) (PWR) (Signal) (Bottom) (Top) (Signal) (PWR) (Signal) (Signal) (GND) (Signal) (Bottom) (Top) (GND) (Signal) (GND) (PWR) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (PWR) (GND) (Signal) (GND) (Bottom) (GND) (Signal) (Signal) (GND) (PWR) (Signal) (Signal) (GND) (GND) (Signal) (Signal) (PWR) (GND) (Signal) (Signal) (GND) (PWR) (Signal) (GND) (Signal) (Signal) (PWR) (Signal) (GND) (GND) (Signal) (PWR) (Signal) (Signal) (GND) (Signal) (PWR) (Top) (GND) (Sig/Pwr) (GND) (Sig/Pwr) (GND) (Sig/Pwr) (Bottom) (Top) (GND) (PWR) (Signal) (Signal) (PWR) (GND) (Bottom) (Top) (GND) (PWR) (Signal) (Signal) (GND) (PWR) (Bottom) 10A 10B 10C 10D 10E 10F 10G 10H 10J 10K Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 (Top) (GND) (Signal) (Signal) (PWR) (GND) (Signal) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (Signal) (GND) (PWR) (Signal) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (Signal) (PWR) (GND) (Signal) (Signal) (PWR) (Bottom) (Top) (PWR) (Signal) (Signal) (GND) (PWR) (Signal) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (PWR) (GND) (Signal) (PWR) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (PWR) (Signal) (Signal) (PWR) (Signal) (GND) (Bottom) (GND) (Signal) (Signal) (GND) (Signal) (Signal) (PWR) (Signal) (Signal) (GND) (GND) (Signal) (Signal) (PWR) (Signal) (Signal) (GND) (Signal) (Signal) (GND) (GND) (Signal) (GND) (PWR) (Signal) (Signal) (GND) (PWR) (Signal) (GND) (GND) (Signal) (PWR) (GND) (Signal) (Signal) (GND) (PWR) (Signal) (GND) 12A 12B 12C 12D 12E 12F 12G 12H 12J 12K 12L Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 (Top) (GND) (PWR) (Signal) (Signal) (GND) (PWR) (Signal) (Signal) (GND) (PWR) (Bottom) (Top) (PWR) (GND) (Signal) (Signal) (PWR) (GND) (Signal) (Signal) (PWR) (GND) (Bottom) (Top) (GND) (Signal) (PWR) (Signal) (GND) (PWR) (Signal) (PWR) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (GND) (Signal) (PWR) (GND) (Signal) (PWR) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (Signal) (PWR) (Signal) (Signal) (GND) (Signal) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (Signal) (GND) (Signal) (Signal) (PWR) (Signal) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (Signal) (PWR) (Signal) (Signal) (GND) (Signal) (Signal) (PWR) (Bottom) (Top) (PWR) (Signal) (Signal) (GND) (Signal) (Signal) (PWR) (Signal) (Signal) (GND) (Bottom) (GND) (Signal) (Signal) (PWR) (GND) (Signal) (Signal) (PWR) (GND) (Signal) (Signal) (GND) (Top) (GND) (Signal) (Signal) (PWR) (GND) (Signal) (Signal) (GND) (Signal) (Signal) (GND) (GND) (PWR) (Signal) (Signal) (GND) (Signal) (Signal) (GND) (Signal) (Signal) (GND) (PWR) Note: This document is used for the naming convention of the PowerPCB Start Files, PowerPCB CAM Files, PowerPCB 2D-Line “Below Board Text” items and AutoCAD Lay-up Details.

PCB多层板设计建议及实例(4-6-8-10-12层板)说明

PCB多层板设计建议及实例 (4,6,8,10,12层板)说明 设计要求: A. 元件面、焊接面为完整的地平面(屏蔽); B. 无相邻平行布线层; C. 所有信号层尽可能与地平面相邻; D. 关键信号与地层相邻,不跨分割区。 4层板 方案1:在元件面下有一地平面,关键信号优先布在TOP层;至于层厚设置,有以下建议:1: 满足阻抗控制 2: 芯板(GND到POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去耦效果。 方案2:缺陷 1: 电源、地相距过远,电源平面阻抗过大 2: 电源、地平面由于元件焊盘等影响,极不完整 3: 由于参考面不完整,信号阻抗不连续 方案3: 同方案1类似,适用于主要器件在BOTTOM布局或关键信号在底层布线的情况。 6层板

方案3:减少了一个信号层,多了一个内电层,虽然可供布线的层面减少了,但是该方案解决了方案1和方案2共有的缺陷。 优点: 1: 电源层和地线层紧密耦合。 2: 每个信号层都与内电层直接相邻,与其他信号层均有有效的隔离,不易发生串扰。3: Siganl_2(Inner_2)和两个内电层GND(Inner_1)和POWER(Inner_3)相邻,可以用来传输高速信号。两个内电层可以有效地屏蔽外界对Siganl_2(Inner_2)层的干扰和Siganl_2(Inner_2)对外界的干扰。 方案1:采用了4层信号层和2层内部电源/接地层,具有较多的信号层,有利于元器件之间的布线工作。 缺陷: 1: 电源层和地线层分隔较远,没有充分耦合。 2: 信号层Siganl_2(Inner_2)和Siganl_3(Inner_3)直接相邻,信号隔离性不好,容易发生串扰。 8层板 10层板

PCB多层板设计相关技术(6层、10层、多层电源等)

PCB多层板设计相关技术 PCB多层板设计相关技术对多层板的分层一直搞的不是很清楚,因这一板的电路比较重要,所以还是决定花点时间学习一下。网上搜了一些资料,整理如下。 多层板层设计的几个原则: 1-每个信号层都与平面相邻; 2-信号层与与相邻平面成对; 3-电源层和地层相邻并成对; 4-高速信号埋伏在平面层中间,减少辐射; 5-使用多个底层,减少地阻抗和共模辐射。 PCB分层堆叠在控制EMI辐射中的作用和设计技巧: 解决EMI问题的办法很多,现代的EMI抑制方法包括:利用EMI抑制涂层、选用合适的EMI抑制零配件和EMI仿真设计等。本文从最基本的PCB布板出发,讨论PCB分层堆叠在控制EMI辐射中的作用和设计技巧。 电源汇流排在IC的电源引脚附近合理地安置适当容量的电容,可使IC输出电压的跳变来得更快。然而,问题并非到此为止。由於电容呈有限频率响应的特性,这使得电容无法在全频带上生成干净地驱动IC输出所需要的谐波功率。除此之外,电源汇流排上形成的瞬态电压在去耦路径的电感两端会形成电压降,这些瞬态电压就是主要的共模EMI干扰源。我们应该怎麽解决这些问题? 就我们电路板上的IC而言,IC周围的电源层可以看成是优良的高频电容器,它可以收集为干净输出提供高频能量的分立电容器所泄漏的那部份能量。此外,优良的电源层的电感要小,从而电感所合成的瞬态信号也小,进而降低共模EMI。 当然,电源层到IC电源引脚的连线必须尽可能短,因为数位信号的上升沿越来越快,最好是直接连到IC电源引脚所在的焊盘上,这要另外讨论。 为了控制共模EMI,电源层要有助於去耦和具有足够低的电感,这个电源层必须是一个设计相当好的电源层的配对。有人可能会问,好到什麽程度才算好?问题的答案取决於电源的分层、层间的材料以及工作频率(即IC上升时间的函

你必须要知道的多层PCB设计布局和布线原则

你必须要知道的多层PCB设计布局和布线原则 随着现代电子技术的发展以及芯片的高速化和集成化,PCB线路板的运用领域也是越来越大了,接下来小编就给大家简析在多层PCB设计布局和布线原则: (1)元器件最好单面放置。若需要双面放置元器件,在底层(Bottom Layer)放置插针式元器件,就可能造成电路板不易安放,也不利于焊接,所以底层(Bottom Layer)最好只放置贴片元器件,类似常见的计算机显卡PCB板上的元器件布置方法。单面放置时只需在电路板的一个面上做丝印层,便于降低成本。 (2)合理安排接口元器件的位置和方向。一般来说,作为电路板和外界(电源、信号线)接的连接器元器件,通常置在电路板的边缘,如串口和并口。放在电路板的中央,不利于接线,也可能因为其他元器件的阻碍而无法连接。另外还要注意接口的方向,使连接线可以顺利地引出,远离电路板。

接口放置后,应当利用接口元器件的String(字符串)清晰地标明接口的种类;对于电源类接口,应当标明电压等级,防止因接线错误导致电路板烧毁。(3)高压元器件和低压元器件之间最好要有较宽的电气隔离带。不要将电压等级相差很大的元器件摆放在一起,这样既有利于电气绝缘,对信号的隔离和抗干扰也有很大好处。 (4)电气连接关系密切的元器件最好放置在一起。这就是模块化的布局思想。 (5)对于易产生噪声的元器件,如时钟发生器和晶振等高频器件,布局时应尽量放在靠近CPU的时钟输入端。大电流电路和开关电路也易产生噪声,这些元器件或模块也应该远离逻辑控制电路和存储电路等高速信号电路,可能的话,尽量采用控制板结合功率板的方式,利用接口来连接,以提高电路板整体的抗干扰能力和工作可靠性。

相关主题
相关文档
最新文档