1.3不共线三点确定二次函数的表达式 教案

1.3不共线三点确定二次函数的表达式  教案
1.3不共线三点确定二次函数的表达式  教案

湘教版九年级下册数学教案

1.3 不共线三点确定二次函数的表达式

教学目标

1.掌握用待定系数法确定二次函数的表达式.

2.知道满足何种条件的三点确定一个二次函数.

重点:用待定系数法确定二次函数的表达式.

难点:知道满足何种条件的三点确定一个二次函数.

教学设计

一.预习导学

学生通过自主预习P21-P23完成下列各题:

1. 二次函数的表达式

一般式:y= ax2+bx+c

顶点式:y= y=a(x-h)2+k

交点式: y=a(x-x1)(x-x2),其中x1,x2是抛物线与 x 轴的两个交点的横坐标.

2.用待定系数法确定二次函数表达式的步骤有哪些?

(1)设出合适的函数表达式;

(2)把已知条件(自变量与函数的对应值)代入函数表达式中,得到关于待定系数的方程(方程组);

(3)解方程(组)求出待定系数的值,从而写出函数表达式.

设计意图:通过学生自主预习教材,初步理解掌握用待定系数法确定二次函数的表达式,知道满足何种条件的三点确定一个二次函数,培养学生的自学能力.

二.探究展示

(一)合作探究

与一次函数相类似,如果已知二次函数图象上三个点的坐标(也就是函数的三组对应值),将它们代入函数表达式,列出一个关于待定系数a,b,c的三元一次方程组,求出a,b,c的值,就可以确定二次函数的表达式.

1.已知一个二次函数的图象经过三点(1,3)(-1,-5),(3,-13 )求这个二次函数

的表达式.

解设该二次函数的表达式为 y=ax2+bx+c

将三个点的坐标(1,3),(-1,-5),(3,-13),分别代入函数表达式,得

到关于a,b,c的三元一次方程组:

因此,所求的二次函数的表达式为 y=-3x 2+4x+2 .

2.已知三个点的坐标,是否有一个二次函数,它的图象经过这三个点?

(1) P (1,-5), Q (-1,3), R (2,-3);

(2) P (1,-5), Q (-1,3), M (2,-9).

解 (1)设有二次函数y=ax 2+bx+c ,它的图象经过 P ,Q ,R 三点,则得到关于a ,b ,c 的三元一次方程组:

解得 a= 2 ,b= -4 ,c= -3 .

因此,二次函数 y=2x 2-4x-3 的图象经过P ,Q ,R 三点.

(2)设有二次函数y=ax 2+bx+c ,它的图象经过 P ,Q ,R 三点,则得到关于a ,b ,c 的三元一次方程组:

解得 a= 0 ,b= -4 ,c= -1 .

因此,一次函数 y=-4x-1 的图象经过P ,Q ,M 三点.这说明没有一个这样的二次函数, 它的图象能经过P ,Q ,M 三点.

例2中, 两点P (1,-5), Q (-1,3)确定了一个一次函数y=-4x-1.点R (2,-3)的坐标不适合y=-4x-1,因此点R 不在直线PQ 上,即P ,Q ,R 三点不共线.

点M ( 2,-9)的坐标适合y=-4x-1,因此点M 在直线PQ 上, 即P ,Q ,M 三点共线. 例2表明:若给定不共线三点的坐标,且它们的横坐标两两不等,则可以确定一个二次函数; 而给定共线三点的坐标,不能确定二次函数.

a+b+c=5

a-b+c=3

4a+2b+c=-3

a+b+c=5 a-b+c=3 4a+2b+c=-9

可以证明:二次函数y=ax2+bx+c(a≠0)的图象上任意三个不同的点都不在一条直线上. 还可以证明:若给定不共线三点的坐标,且它们的横坐标两两不等,则可以确定唯一的一个二次函数,它的图象经过这三点.

设计意图:通过探究,进一步理解掌握用待定系数法确定二次函数的表达式,知道满足何种条件的三点确定一个二次函数.培养学生通过解决问题的能力.

(二)展示提升

1.已知二次函数y=ax2+bx+c的图象经过三点A(0,2), B(1,3),C(-1,-1),

求这个二次函数的表达式.

2.已知二次函数的图象经过A(1,3), B(-4,-12),C(3,-5)三点.

(1)求此抛物线的解析式;

(2)求出这条抛物线与x轴、y轴的交点P、Q、R的坐标.

3.已知二次函数的图象与x轴的交点的横坐标分别是x1=-3,x2=1,且与y轴的交点为

(0,2),求这个二次函数的表达式.

设计意图:可点名展示,也可分组展示,培养学生分析问题的能力;同时增强学生团结协作的精神。老师在此环节准确引导,及时点拨和追问,总结出解决问题的方法和规律。

三.知识梳理

以”本节课我们学到了什么?”启发学生谈谈本节课的收获.

1. 用待定系数法确定二次函数表达式的步骤:

(1)设出合适的函数表达式;

(2)把已知条件(自变量与函数的对应值)代入函数表达式中,得到关于待定系数的方程(方程组);

(3)解方程(组)求出待定系数的值,从而写出函数表达式.

2. 二次函数y=ax2+bx+c(a≠0)的图象上任意三个不同的点都不在一条直线上.若给定不共线三点的坐标,且它们的横坐标两两不等,则可以确定唯一的一个二次函数,它的图象经过这三点.

四.当堂检测

1.已知二次函数y=ax2+bx+c的图象经过三点A(-1,0),B(0,2),C(2,0),求这个二次函数的表达式.

2.已知二次函数y=ax2+bx+c中的部分自变量x与所对应的函数值y如下表:

3. .已知三个点的坐标,是否有一个二次函数,它的图象经过这三个点?

(1) P(1,6), Q(2,11), R(-1,14);

(2) P(1,6), Q(2,11), M(-1,-4)

五.教学反思

这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识.通过充分的过程探究,学生容易掌握利用待定系数法求二次函数的表达式,知道满足何种条件的三点确定一个二次函数.在教学过程中不断向学生渗透数形结合的方法,让学生在活动中感数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉得运用这些数学思想方法去分析、思考问题.

九年级数学下册26_2_3求二次函数表达式教案新版华东师大版

26.2.3求二次函数表达式 教学内容:课本P21~23 教学目标 1、会用待定系数法求二次函数的表达式; 2、能够利用实际问题中的数量关系求二次函数表达式; 教学重难点: 重点:会用待定系数法求二次函数的表达式; 难点:能够利用实际问题中的数量关系求二次函数表达式; 教学准备:课件 教学方法:讲练法 一、复习 写出二次函数的一般形式和顶点形式; 二、学习 (一)学习问题2 问题2、某建筑物的屋顶设计成横截面为抛物线形(曲线AOB)的薄壳屋顶。它的拱宽AB 为4m,拱高CO为0.8m。施工前要先制造建筑模板。怎样画出模板的轮廓呢? 分析:为了画出符合要求的模板,通常要先建立适当的平面直角坐标系,再写出函数表达式,然后根据这个函数表达式画出图形。 解:以点O为原点,以AB的垂直平分线为y轴,以1m为单位长度,建立平面直角坐标系。设这个二次函数的表达式为y=ax2.把B(2,-0.8)代入,得 -0.8=ax2. a=-0.2 因此,函数表达式是y=-0.2x2. (二)学习例6

例 6 、一个二次函数的图象经过点(0,1),它的顶点坐标为(8,9),求这个二次函数的表达式。 分析:因为这个二次函数的图象的顶点坐标为(8,9),因此,可以设函数的表达式为顶点式。 解:设这个二次函数的表达式为y=a(x-8)2+9.把点(0,1)代入,得 1=a(0-8)2+9 a =1 8 - 因此,这个二次函数的表达式为y=18 - (x-8)2+9. 学生练习:课本P23练习第1题的(1)和(2) (三)学习例7 例7、一个二次函数的图象经过(0,1),(2,4),(3,10),三点,求这个二次函数的表达式。 解:设所求二次函数的表达式为y=ax 2 +bx+c,则 14249310c a b c a b c =??++=??++=? 解得13232 c a b ??=??=???=-?? 因此,所求二次函数解析式为233122 y x x = -+ 学生练习:课本P23第1题(3) 课本P23页第2题。

二次函数的图像及其三种表达式

二次函数的图像及其三种表达式 学生: 时间: 学习目标 1、熟悉常见的二次函数的图像; 2、理解二次函数的三种表达式 知识点分析 1、.二次函数的三种表达式 一般式:y=ax^2+bx+c (a ,b ,c 为常数,a ≠0) 顶点式:y=a(x-h)^2+k [抛物线的顶点P (h ,k )] 交点式:y=a(x-x1)(x-x2) [仅限于与x 轴有交点A (x1,0)和 B (x2,0)的抛物线] 2、一般地,自变量x 和因变量y 之间存在如下关系: y=ax^2+bx+c (a ,b ,c 为常数,a ≠0,且a 决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI 还可以决定开口大小,IaI 越大开口就越小,IaI 越小开口就越大.) 则称y 为x 的二次函数。 二次函数表达式的右边通常为二次三项式。 例题精讲 例题1已知函数y=x 2 +bx +1的图象经过点(3,2). (1)求这个函数的表达式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x >0时,求使y ≥2的x 的取值范围. 例题2、一次函数y=2x +3,与二次函数y=ax 2 +bx +c 的图象交于A (m ,5)和B (3,n )两点,且当x=3时,抛物线取得最值为9. (1)求二次函数的表达式; (2)在同一坐标系中画出两个函数的图象; (3)从图象上观察,x 为何值时,一次函数与二次函数的值都随x 的增大而增大. (4)当x 为何值时,一次函数值大于二次函数值? 随堂练习 1.已知函数y=ax 2 +bx +c (a ≠0)的图象,如图①所示,则下列关系式中成立的是( ) A .0<- a b 2<1 B .0<-a b 2<2 C .1<-a b 2<2 D .-a b 2=1 图① 图② 2.函数y = 21x 2 +2x +1写成y =a (x -h)2+k 的形式是 A.y =21(x -1)2+2 B.y =21(x -1)2+2 1

二次函数表达式三种形式练习题

7.已知二次函数的图象经过点(﹣1,﹣5),( 0, 4)和(1,1),则这二次函数的表达式为( A .y=﹣6x 2+3x+4 B .y=﹣2x 2+3x ﹣4 C .y=x 2+2x ﹣4 D .y=2x 2+3x ﹣4 8.若二次函数 y=x 2﹣2x+c 图象的顶点在 x 轴上,则 c 等于( )A .﹣1 B .1 C . ) D .2 9.如果抛物线经过点A (2,0)和B (﹣1,0),且与y 轴交于点C ,若OC=2.则这条抛物线的解析式是( ) A . 10. A . 11. A . y=x 2﹣x ﹣2 B .y=﹣x 2﹣x ﹣2 或 y=x 2+x+2 C .y=﹣x 2+x+2 D .y=x 2﹣x ﹣2 或 y=﹣x 2+x+2 如果抛物线 y=x 2 ﹣6x+c ﹣2 的顶点到 x 轴的距离是 3,那么 c 的值等于( ) 8 B .14 C .8 或 14 D .﹣8 或﹣14 二次函数 的图象如图所示,当﹣1≤x ≤0 时,该函数的最大值是( ) 3.125 B .4 C .2 D .0 当﹣2≤x ≤1 时,二次函数 y=﹣(x ﹣m )2+m 2+1 有最大值 3,则实数 m 的值为( ) A . 或﹣ B . 或﹣ C .2 或﹣ D . 或﹣ 13.如果一条抛物线经过平移后与抛物线 y=﹣ x 2 +2 重合,且顶点坐标为(4, 的解析式为 . 14.二次函数的图象如图所示,则其解析式为 . 15.若函数 y=(m 2﹣4)x 4+(m ﹣2)x 2的图象是顶点在原点,对称轴是 y 轴的抛物线,则 m= . 16.二次函数图象的开口向上,经过(﹣3,0)和(1,0),且顶点到x 轴的距离为 2, 则该二次函数的解析式为 . 17.如图,已知抛物线 y=﹣x 2+bx+c 的对称轴为直线 x=1,且与x 轴的一个交点为(3,0), 那么它对应的函数解析式是 . 18.二次函数 y=ax 2+bx+c 的图象经过 A (﹣1,0)、 B (0,﹣3)、 C (4,5)三点,求出 抛物线解析式 . 19.二次函数图象过点(﹣3,0)、(1,0),且顶点的纵坐标为 4,此函数关系式为 20.如图,一个二次函数的图象经过点A ,C ,B 三点,点A 的坐标为(﹣1,0),点B 的坐标为 (4,0),点 C 在 y 轴的正半轴上,且 AB=OC .则这个二次函数的解析式是 . 21.坐标平面内向上的抛物线y=a (x+2)( x ﹣8)与x 轴交于A 、B 两点,与y 轴交于C 点,若 1.把二次函数 y=x 2﹣4x+5 化成 y=a (x ﹣h )2+k (a ≠0)的形式,结果正确的是( ) A .y=(x ﹣2)2+5 B .y=(x ﹣2)2+1 C .y=(x ﹣2)2+9 D .y=(x ﹣1)2+1 2.将 y=(2x ﹣1)?(x+2)+1 化成 y=a (x+m )2+n 的形式为( ) D . 3.与 y=2(x ﹣1)2+3 形状相同的抛物线为( )A .y=1+ x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2 4.二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为( A .y=﹣2(x+2)2+4 B .y=﹣2(x ﹣2)2+4 C .y=2(x+2)2﹣4 D .y=2(x ﹣2)2﹣4 5.已知某二次函数的图象如图所示,则这个二次函数的解析式为( ) A .y=﹣3(x ﹣1)2+3 B .y=3(x ﹣1)2+3 C .y=﹣3(x+1)2+3 D .y=3(x+1)2+3 6.顶点为(6,0),开口向下,开口的大小与函数 y= x 2的图象相同的抛物线所对应的函数是( ) A .y= (x+6)2 B .y= (x ﹣6)2 C .y=﹣ (x+6)2 D .y=﹣ (x ﹣6)2 A . B . C . ) 2),则它

初中数学二次函数复习求函数解析式优质课教案优质课教案教学设计

二次函数专题(一)——求二次函数表达式教学目标 会通过待定系数法求二次函数的关系式; 教学过程 二次函数是初中数学的一个严重内容,也是高中数学的一个严重基础。熟练地求出二次函数的解析式是解决二次函数问题的严重保证。 二次函数的解析式有三种基本形式: 1、大凡式:y=ax2 +bx+c (a≠0)。 2、顶点式:y=a(x-m)2 +k (a≠0),其中点(h,k)为顶点,对称轴为x=h。 3、交点式:y=a(x-x 1)(x-x 2) (a≠0),其中x 1,x 2是抛物线与x轴的交点的横坐标。 求二次函数的解析式大凡用待定系数法,但要根据例外条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设大凡式。 2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。 3、若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式。 探究问题,典例指津:

例1、已知二次函数的图象经过(0,1),(2,4),(3,10)三点,请你用待定系数法求这个函数的解析式。 例2、已知二次函数的图象经过(0,1),它的顶点坐标是(8,9),求这个函数的解析式。 练习、已知抛物线的顶点在原点,且过(2,8),求这个函数的解析式。 例3、已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式. 练习1:根据下列已知条件,求二次函数的解析式: (1)抛物线过点(0,2),(1,1),(3,5) (2)抛物线顶点为M(-1,2)且过点N(2,1) (3)抛物线过原点,且过点(3,-27),(-1,1) (4)已知二次函数的图象经过点(1,0),(3,0),(0,6)求二次函数的解析式。 例4、已知抛物线y=ax2+bx+c与x轴相交于点A(-3,0),对称轴为x=-1,顶点M到x轴的距离为2,求此抛物线的解析式. 练习2:根据下列已知条件,求二次函数的解析式: (1)抛物线y=ax2+bx+c经过(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。 (2)已知当x=2是,函数有最小值为3,且过点(1,5) (3)二次函数的图像经过点(3,-8)对称轴为直线x=2,抛物线与X轴两个交点之间的距离为6课堂小结 本节课是用待定系数法求函数解析式,应注意根据例外的条件选择适合的解析式形式

二次函数表达式、图象、性质及计算(讲义)

二次函数表达式、图象、性质 及计算(讲义) 一、知识点睛 1. 一般地,形如__________________(_______________)的 函数叫做x 的二次函数. 2. 表达式、图象及性质: ①由一般式通过______________可推导出顶点式. 顶点式:________________(其中h =______,k =_________). ②二次函数的图象是_________,是________图形,对称轴是__________,顶点坐标是_____________. ③当a_______时,函数有最_____值,是____________; 当a_______时,函数有最_____值,是____________. ④当a _____时,图象以对称轴为界,当x______时,y 随x 的增大而_______,当x______时,y 随x 的增大而_______;当a_____时,图 象以对称轴为界,当x______时,y 随x 的增大而_______,当x______时,y 随x 的增大而_______. ⑤a ,b ,c 符号与图象的关系: a 的符号决定了抛物线的开口方向,当_____时,开口向____;当_____时,开口向____. c 是抛物线与_______交点的______. b 的符号:与a_____________,根据_____________可推导. 3. 二次函数图象平移: ①二次函数图象平移的本质是__________,关键在______. ②图象平移口诀:________________、________________. 平移口诀主要针对二次函数_________________. 二、精讲精练 1. 下列函数(x ,t 是自变量)是二次函数的有________.(填写序号) ①2132y x x =--;②2123y x x =-+;③21 32 y x =-+; ④2 22y x =+;⑤2y x =-;⑥231252 y x x =-+; ⑦215s t t =++;⑧2 20x y -+=. 2. 若函数7 2 )3(--a x a y =为二次函数,则a =( ) A .-3 B .3 C .±3 D .5 3. 通过配方把221213y x x =-+写成2 ()y a x h k =-+的形式( ) A .2 (3)5y x =-- B .2 (3)5y x =+- C .2 2(3)5y x =-+ D .2 2(3)5y x =--

二次函数的图像及其三种表达式

二次函数的图像及其三种表达式 学生:时间: 学习目标 1熟悉常见的二次函数的图像; 2、理解二次函数的三种表达式 知识点分析 1、?二次函数的三种表达式 一般式:y=ax A2+bx+c (a, b, c 为常数,a老) 顶点式:y=a(x-h)A2+k [ 抛物线的顶点P (h, k)] 交点式:y=a(x-x1)(x-x2)[ 仅限于与x轴有交点A (x1 , 0)和B (x2 , 0)的抛物线] 2、一般地,自变量x和因变量y之间存在如下关系: y=axA2+bx+c (a, b, c为常数,a M),且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,lal还可以决定开口大小,lal越大开口就越小,lal越小开口就越大.) 则称y 为x的二次函数。 二次函数表达式的右边通常为二次三项式。 例题精讲 2 例题1已知函数y=x + bx +1的图象经过点(3, 2). (1)求这个函数的表达式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x > 0时,求使y》2的x的取值范围. 例题2、一次函数y=2x + 3,与二次函数y=ax2+ bx + c的图象交于A ( m 5)和B (3, n)两点,且当x=3时,抛物线取得最值为9. (1)求二次函数的表达式; (2)在同一坐标系中画出两个函数的图象; (3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大. (4)当x为何值时,一次函数值大于二次函数值? 随堂练习 1.已知函数y=ax2+ bx+ c(a M0)的图象,如图①所示,则下列关系式中成立的是( b b b b ——=1

第课时用待定系数法求二次函数的解析式教案

第2课时用待定系数法求二次函数的解析式 教学目标 【知识与技能】 利用已知点的坐标用待定系数法求二次函数的解析式. 【过程与方法】 通过介绍二次函数的三点式,顶点式,交点式,结合已知的点,灵活地选择恰当的解析式求法. 【情感态度】 经历用待定系数法求解二次函数解析式的过程,发现二次函数三点式、顶点式与交点式之间的区别及各自的优点,培养学生思维的灵活性. 教学重点 待定系数法求二次函数的解析式. 教学难点 选择恰当的解析式求法. 教学目标 一、情境导入,初步认识 问题我们知道,已知一次函数图象上两个点的坐标,可以用待定系数法求出它的解析式,试问:要求出一个二次函数的表达式,需要几个独立的条件呢? 【教学说明】对于问题,教师应与学生一起交流,明确确定一个一次函数表达式为什么需要两个独立的条件的原因,进而获得确定一个二次函数表达式需要三个独立的条件. 二、思考探究,获取新知 在前面的情境导入中,同学们已经知道确立一个二次函数需要三个条件.事实上,求二次函数y=ax2+bx+c的解析式,关键是求出待定系数a、b、c的值.由已知条件(如二次函数图象上的三个点的坐标)列出关于a、b、c的方程组,并求出a、b、c,就可以写出二次函数表达式. 回顾前面学过的知识,已知学过y=ax2,y=ax2+k,y=a(x-h)2,y=a(x-h)2+k等几种形式的二次函数,所以在利用待定系数法求二次函数解析式时,一般也可分以下几种情况:

(1)顶点在原点,可设为y=ax2; (2)对称轴是y轴(或顶点在y轴上),可设为y=ax2+k; (3)顶点在x轴上,可设为y=a(x-h)2; (4)抛物线过原点,可设为y=ax2+bx; (5)已知顶点(h,k)时,可设顶点式为y=a(x-h)2+k; (6)已知抛物线上三点时,可设三点式为y=ax2+bx+c; (7)已知抛物线与x轴两交点坐标为(x1,0),(x2,0)时,可设交点式为y=a(x-x1)(x-x2). 【教学说明】教师在教学时,可由浅入深进行讲解.对每一种情形,可先让学生自主思考探索交流想法后,再共同总结出各情况的设法,学生在思考中加深对知识的理解、记忆与掌握. 三、典例精析,掌握新知 例根据下列条件,分别求出对应的二次函数解析式. (1)已知二次函数y=ax2+bx+c的图象过点(1,0),(-5,0),顶点的纵坐标为92,求这个二次函数的解析式. (2)已知二次函数的图象经过(-1,10),(1,4),(2,7); (3)已知二次函数的图象的顶点为(-1,3),且经过点(2,5). 分析: (1)由已知的两点(1,0),(-5,0)的纵坐标知,这两点是关于对称轴对称的两个点,即对称轴为直线x=-2,由此可知顶点坐标为(-2,9/2),可用交点式和顶点式两种方法求解. (2)已知三点坐标,即直接给出了三组对应关系,可通过设三点式用待定系数法求解. (3)由条件初看起来似显不足,因为只给出经过图象上的两点的坐标,但 若注意到顶点坐标实际上存在着两个独立等式,即有 2b a - =-1, 2 4 4 ac b a - =3,因此仍 可求出相应二次函数解析式.这时可利用一般式,代入求值得到结果,也可设这个二次函数解析式为y=a(x-h)2+k,其中h,k可直接由顶点坐标得到,即h=-1,k=3,再把(2,5)代入求出a值,可快速获得该二次函数表达式. 解:(1)方法一:设这个二次函数的解析式为y=a(x-1)(x+5),则

确定二次函数的表达式

2.3 确定二次函数的表达式 学习目标: 经历三种方式表示变量之间二次函数关系的过程,体会三种方式之间的联系和各自不同点;掌握变量之间的二次函数关系,解决二次函数所表示的问题;掌握根据二次函数不同的表达方式,从不同的侧面对函数性质进行研究. 学习重点: 能够根据二次函数的不同表示方式,从不同的侧面对函数进行研究.函数的综合题目,往往是三种方式的综合应用,由三种不同方式,都能把握函数性质,才会正确解题. 学习难点: 用三种方式表示二次函数的实际问题时,忽略自变量的取值范围是常见的错误. 学习过程: 一、做一做: 已知矩形周长20cm,并设它的一边长为xcm,面积为ycm2,y随x的而变化的规 律是什么?你能分别用函数表达式,表格和图象表示出来吗?比较三种表示方式, 你能得出什么结论?与同伴交流. 二、试一试: 两个数相差2,设其中较大的一个数为x,那么它们的积y是如何随x的变化而变化的? ?你能分别用函数表达式,表格和图象表示这种变化吗? 表示方法优点缺点 解析法 表格法 图像法 三者关系 【例1】已知函数y=x2+bx+1的图象经过点(3,2). (1)求这个函数的表达式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x>0时,求使y≥2的x的取值范围. 【例2】一次函数y=2x+3,与二次函数y=ax2+bx+c的图象交于A(m,5)和B(3,n)两点,且当x=3时,抛物线取得最值为9. (1)求二次函数的表达式; (2)在同一坐标系中画出两个函数的图象; (3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大. (4)当x为何值时,一次函数值大于二次函数值?

二次函数的三种表达形式.

二次函数的三种表达形式: ①一般式: y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为[,] 把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。 ②顶点式: y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。 有时题目会指出让你用配方法把一般式化成顶点式。 例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。 解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。 注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。 具体可分为下面几种情况: 当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。 ③交点式: y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] . 已知抛物线与x轴即y=0有交点A(x1,0)和B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。 由一般式变为交点式的步骤: 二次函数 ∵x1+x2=-b/a,x1?x2=c/a(由韦达定理得), ∴y=ax2+bx+c =a(x2+b/ax+c/a) =a[x2-(x1+x2)x+x1?x2] =a(x-x1)(x-x2). 重要概念: a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。 a的绝对值越大开口就越小,a的绝对值越小开口就越大。 能灵活运用这三种方式求二次函数的解析式;

二次函数表达式三种形式练习题

二次函数表达式三种形式 一.选择题(共12小题) 1.(2015?永春县校级质检)把二次函数y=x2﹣4x+5化成y=a(x﹣h)2+k(a≠0)的形式,结果正确的是() A.y=(x﹣2)2+5 B.y=(x﹣2)2+1 C.y=(x﹣2)2+9 D.y=(x﹣1)2+1 2.(2014?XX模拟)将y=(2x﹣1)?(x+2)+1化成y=a(x+m)2+n的形式为()A.B. C.D. 3.(2015秋?XX校级期中)与y=2(x﹣1)2+3形状相同的抛物线解析式为() A.y=1+x2B.y=(2x+1)2 C.y=(x﹣1)2D.y=2x2 4.(2015秋?XX校级月考)一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为() A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4 C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣4 5.(2015秋?禹城市校级月考)已知某二次函数的图象如图所示,则这个二次函数的解析式为() A.y=﹣3(x﹣1)2+3 B.y=3(x﹣1)2+3 C.y=﹣3(x+1)2+3 D.y=3(x+1)2+3

6.(2014秋?岳池县期末)顶点为(6,0),开口向下,开口的大小与函数y=x2的图象相同的抛物线所对应的函数是() A.y=(x+6)2B.y=(x﹣6)2C.y=﹣(x+6)2D.y=﹣(x﹣6)2 7.(2014秋?招远市期末)已知二次函数的图象经过点(﹣1,﹣5),(0,﹣4)和(1,1),则这二次函数的表达式为() A.y=﹣6x2+3x+4 B.y=﹣2x2+3x﹣4 C.y=x2+2x﹣4 D.y=2x2+3x﹣4 8.(2013秋?青羊区校级期中)若二次函数y=x2﹣2x+c图象的顶点在x轴上,则c等于()A.﹣1 B.1 C.D.2 9.(2013秋?江北区期末)如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是() A.y=x2﹣x﹣2 B.y=﹣x2﹣x﹣2或y=x2+x+2 C.y=﹣x2+x+2 D.y=x2﹣x﹣2或y=﹣x2+x+2 10.(2014?XX县校级模拟)如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的 值等于() A.8 B.14 C.8或14 D.﹣8或﹣14 11.(2015?XX模拟)二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125B.4 C.2 D.0 12.(2015?宜城市模拟)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值3,则实数m的值为() A.或﹣B.或﹣C.2或﹣D.或﹣

确定二次函数的表达式习题

确定二次函数的表达式习 题 Final revision on November 26, 2020

5.5确定二次函数的表达式 一.选择题: 1.已知抛物线的顶点为(-1,-2),且通过(1,10),则这条抛物线的表达式为() A .y=32(1)x --2 B .y=32(1)x ++2 C .y=32(1)x +-2 D .y=-32(1)x +-2 2.已知二次函数y ax bx c =++2的图象过点(1,-1),(2,-4),(0,4)三点,那么它的对称轴是直线() A .x =-3 B .x =-1 C .x =1 D .x =3 3.一个二次函数的图象过(-1,5),(1,1)和(3,5)三个点,则这个二次函数的关系式为() A .y x x =--+222 B .y x x =-+222 C .y x x =-+221 D .y x x =--222 4.已知:抛物线y x x c =-+26的最小值为1,那么c 的值是() A .10 B .9 C .8 D .7 二.填空题: 5.已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是 6.对称轴是x =-1的抛物线过点M (1,4),N (-2,1),这条抛物线的函数 关系式为________________. 7.已知二次函数y x bx c =++2的图象过点A (1,0),B (0,4),则其顶点坐 标是________________. 8.已知二次函数,当x =0时,y =-3;当x =1时,它有最大值-1,则其函数 关系式为________________. 9.抛物线y x =-+382向右平移5个单位的抛物线的函数关系式是___________. 三.解答题: 10.根据下列条件,分别求出对应的二次函数关系式。已知抛物线的顶点是(―1,―2),且过点(1,10) 11.根据下列条件,分别求出对应的二次函数关系式. (1)已知抛物线的顶点是(-1,-2),且过点(1,10); (2)已知抛物线过三点:(0,-2),(1,0),(2,3).

二次函数的几种解析式及求法教学设计

二次函数的几种解析式及求法教学设计 福泉一中:齐庆方 一、指导思想与理论依据 (一)指导思想:本次课的教学设计以新课程标准关于数学教学的核心理念为基本遵循,坚持以教师为主导,以学生为主体,以培养能力为基准,采取符合学生学习特点的多样式的学习方法,通过教学容和教学过程的实施,帮助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,促进学生学会用数学的思考方式解决问题、认识世界. (二)理论依据:本次课的教学设计以新课程标准关于数学教育的理论为基本依据,主要把握了两个方面的理论: 1、新课程标准关于数学整体性的理论.教学中注意沟通各部分之间的联系,通过类比、联想、知识的迁移和应用等方式,使学生体会知识之间的联系,感受数学的整体性,进一步理解数学的本质,提高解决问题的能力. 2、新课程标准关于教师教学的理论.教师应该更加关注:1)科学的基本态度之一是疑问,科学的基本精神之一是批判.要注意培养学生科学的质疑态度和批判性的思维习惯;2)提出问题是数学学习的重要组成部分,更是数学创新的出发点.要注意培养学生提出问题的能力;3)在教学中更加关注学生知识的储备、能力水平、思维水平等;4)关注学生的学习态度、学习方法、学习习惯,在思维的最近发展区设计教学容.

二、教学背景分析 (一)学习容分析 “待定系数法”是数学思想方法中的一种重要的方法,在实际生活和生产实践中有着广泛的应用.学生对于“待定系数法”的学习渗透在不同的学习阶段,初中阶段要求学生初步学会用待定系数法求函数解析式;因此这节课的学习既是初中知识的延续和深化,又为后面的学习奠定基础,起着承前启后的作用.另外,待定系数法作为解决数学实际问题的基本方法和重要手段,在其他学科中也有着广泛的应用. (二)学生情况分析 对于初三学生来说,在学习一次函数的时候,学生对于用待定系数法求函数解析式的方法已经有所认识,他们已经积累了一定的学习经验.在学习完一次函数后继续学习用待定系数法求函数解析式,学生已经具备了更多的函数知识,同时,初三的学生已经具备了一定的分析问题、解决问题能力和创新意识,这些对本节课的学习都很有帮助.在今后高中的数学学习中,学生还会继续运用待定系数法解决相关问题.新课标对学生在探究问题的能力,合作交流的意识等方面有了更高的要求,在教学中还有待加强相应能力的培养. (三)教学方式与教学手段、技术准备以及前期的教学状况、问题、对策说明

二次函数表达式三种形式的联系与区别

二次函数表达式三种形式的联系与区别 二次函数的表达式有三种形式,即一般式、顶点式、交点式。它们之间各不相同,而又相互联系。 一、一般式:)0(2≠++=a c bx a y x 优点:二次项系数a ,一次项系数b ,常数项c ,三系数一目了然。 缺点:不容易看出顶点坐标和对称轴 二、顶点式:)0(4422)2(≠-+=+a a ac a y b a b x 优点:很容易看出顶点坐标和对称轴 缺点:不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 三、交点式:))((2 1x x x x a y --= 优点:很容易看出图像与x 轴的交点坐标(x 1,0)和(x 2 ,0) 缺点:(1)不容易看出二次项系数a ,一次项系数b ,常数项c 各是多少。 (2)当图像不与x 轴相交时,此式不成立。 四、三种表达式之间的联系 (1)一般式转化为顶点式 利用配方法转化(一提、二配、三整理) a ac a a ac a a c a x a b a x a b a x a b a c bx a y b a b x b a b x a b a b x x x x 44444][[)2222222222)2()2()2()2(-+=+-=+-++=++ =+ =++=++(

(2)顶点式转化为一般式 展开整理即可 c bx a a ac bx a a ac a bx a a ac x a b a a a ac a y x x b b x b a b x b a b x ++=++=-+++=-+++=≠-+=+222222222224444444)4()0(44)2( (3)交点式转化为一般式 展开,利用韦达定理整理可得 二次函数)0(2≠++=a c bx a y x 与x 轴有两交点(x 1,0)和(x 2,0) 则x 1 和x 2为方程02=++c bx a x 的两个根 ] )([)())((212122121221x x x x x x x x x x x x x a x x a x x a y ++-=+--=--= 由韦达定理得: a c a b x x x x =-=+2121 代入得: c bx a a c x a b a x a y x x x x x x x ++=+--=++-=2221212])([] )([ 三种表达式视情况而定; (1)不知道特殊点的坐标时,常用一般式来表示; (2)知道顶点坐标,常用顶点式来表示; (3)如果知道图像与x 轴的交点坐标,常用交点式来表示。 上述三种情况要灵活运用才能更好地理解二次函数的解析式。

05二次函数三种表达式

用待定系数法求二次函数的表达式 年级 九年级 学校 讲义编号 学生 老师 周老师 授课时间 2017..(:00——:00) 教学目标 用待定系数法求二次函数的表达式; 重 点 用待定系数法求二次函数的表达式; 难 点 用待定系数法求二次函数的表达式; 教学内容 【用待定系数法求二次函数表达式的方法】 (1)设:根据条件设函数表达式; (2)列:把已知点的坐标代入表达式,得到方程或方程组; (3)解:解方程或方程组,求出未知系数; (4)答:写出函数表达式,注意最后结果一般要化成一般式c bx ax y ++=2 二次函数解析式的表示方法 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 顶点式:k m x a y +-=2 )((a ,h ,k 为常数,0a ≠, 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 二次函数各种形式之间的变换 二次函数c bx ax y ++=2 用配方法可化成:()k m x a y +-=2 的形式,其中a b a c k a b 442m 2 -=-=,. 求抛物线的顶点、对称轴的方法 公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. 配方法:运用配方的方法,将抛物线的解析式化为k m x a y +-=2 )(的形式,得到顶点为(m,k ),对称轴是直线m x =. 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.

用待定系数法求二次函数解析式教学设计及反思

用待定系数法求二次函数解析式教学设计及反思 胡可 一、知识目标 通过用待定系数法求二次函数解析式的探究,让学生掌握求二次函数解析式的方法。 二、能力目标 能灵活的根据条件恰当地选择解析式的模式,体会二次函数解析式之间的转化。 三、情感价值观 从学习过程中体会学习函数知识的价值,从而提高学习函数知识的兴趣。四、教学重点 会根据不同的条件,利用待定系数法求二次函数的函数关系式 五、教学难点 在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质解决生活中的实际问题 六、教学过程 1、情境导入 我们前面几节课学习了二次函数(抛物线)图形及性质,主要有那两种形式:一般式:_______________ (a≠0)顶点式:_______________ (a≠0) 在函数关系式中有几个独立的系数,需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数的关系式时,通常需要两个独立的条件,在确立正比例函数的解析式时,也只要一个条件就行了,下面我们来探讨,要确定二次函数的解析式,需要几个条件? 2、新知探索 例1.根据下列条件,分别求出对应的二次函数的关系式 (1)已知二次函数的图象经过点A(-1,10),B(1,4),C(2,7)。 (设为三点式可解) (2)已知抛物线的顶点为(2,-4),且与y轴交于点(0,3); (设为顶点式可解) 3、练一练 根据下列条件求二次函数解析式 (1)已知二次函数的图象过A(0,-5),B(5,0)两点,它的对称轴为直线x =2; (2)已知二次函数的图象经过点(2,-1),并且当x=5时有最大值4; (3)已知抛物线顶点(2,8),且抛物线经过点(1,–2) 4、归纳总结 二次函数解析式常用的形式: (1)、一般式:_______________ (a≠0) (2)顶点式:_______________ (a≠0) 2、用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式, (1)当已知抛物线上任意三点时,通常设为一般式的形式。

北师版九下数学确定二次函数的表达式 说课稿

北师大版九年级下册数学《确定二次函数表达式》说课稿 尊敬的各位评委、各位老师: 大家好!我说课的题目是《确定二次函数的表达式》。我将从教材分析、教法学法、教学过程、板书设计和教学评级及反思五个方面对本节课进行说明。 第一方面,教材分析 1.地位和作用 本节课是鲁教版九年级上册第二章《二次函数》的第六节的内容。本章是在之前学习了一次函数、反比例函数及一元二次方程等知识的基础上进行学习的,主要内容有二次函数的图像、性质及应用,这些知识的学习均与二次函数表达式有关。因此,本节课的学习即是对以前所学方程及方程组解法的巩固,又是研究综合题的基础。所以,无论从生产实际和生活需要,还是发展学生的应用意识和能力本节课都具有极其重要的意义。 2.教学目标 新课程强调以培养学生的能力,培养学生的兴趣为根本目标,考虑到学生已有的知识结构和心理特征,我制定本节课的教学目标如下: 知识目标 1、会用待定系数法求各种形式的二次函数的表达式 2、会用二次函数的表达式解决实际为题 能力目标

通过用二次函数表达式解决实际问题,体会“一题多变”、“一题多解”的思想,逐步提高学生的分析能力、整合能力及创新能力情感目标 通过解决实际问题,进一步增强“数学来源于生活,回归生活”的意识,从而培养学生热爱科学,勇于探索的精神 3.教学重点和难点 考虑到九年级学生观察、分析、认识问题的能力,都已得到一定的锻炼,计算能力也有了一定的提高,结合课标的要求,我确定本节课的教学重、难点如下: 会确定各种形式的二次函数表达式的方法和思路为本节的教学重点,教学难点是实际问题中二次函数表达式确定的方法。 第二方面,教法学法分析 1.教法数学课程标准指出,类比、联想是数学学习的一种优秀思 维品质,是数学发现和创造的源泉;而转化则是一种重要的数学思想。因此本节课,我采用类比、联想、转化式的教学方法;2.学法按照知识发现理论,一般情况下,学习者在学习过程中对 学习材料的发现,才是学习者所获得的最有价值的东西,教师在教授过程中,必须设法教会学生学习方法,促使学生从学会到会学,最后到乐学。因此本节课我采用自主探究、合作交流的研讨式学习方法。 那么本节课就采用多媒体教学。 第三方面,教学过程分析

二次函数的四种表达式求法推导

二次函数的四种表达式求法推导 (1)如果二次函数的图像经过已知三点,则设表达式为c bx ax y ++=2 ,把已知三点坐标代入其中构造三元一次方程组求a 、b 、c 。 (2)二次函数顶点式:如果二次函数的顶点坐标为(h ,k ),则二次函数的表达式为: k h x a y +-=2)( 推导如下: a b ac a b x a a b ac a b x a a c a b a b x a a c a b a b x a b x a a c x a b x a c bx ax y 44)2(]44)2[(] 4)2[(] )2()2([)(2 22 2 222222222-+ +=-++=+-+=+-++=++ =++= 则a b a c k a b h 44,22 -=-= 顶点式的变形: 设二次函数)0(2 ≠++=a c bx ax y 的图像交x 轴于点A ),(1o x 和B )0,(2x ,则a b x x - =+21 ,a c x x = ?21 点A 、B 的距离为d , a ac b a ac b a c a b x x x x x x x x d 444)(4)()(22222 12212 1212-= -=--=?-+=-=-= 2 2222 22222222224 1 )2(]41)2[(]44)2[(]4)2[(])2()2([)(ad a b x a d a b x a a ac b a b x a a c a b a b x a a c a b a b x a b x a a c x a b x a c bx ax y -+=-+=--+=+-+=+-++=++ =++= 已知二次函数与x 轴两个交点间的距离d ,则设二次函数的表达式为:)]()[(00d x x x x y +--= (3)二次函数两根式:如果二次函数的图像与x 轴交于点)0,()0,.(21x x 和,则二次函数的表达式为:

专题09 一元二次函数的三种表示方式(解析版)

专题09 一元二次函数的三种表示方式 一、知识点精讲 通过上一小节的学习,我们知道,一元二次函数可以表示成以下三种形式: 1.一般式:y=ax2+bx+c(a≠0); 2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k). 除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式, 我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数. 当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.① 并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac 存在下列关系: (1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立. (2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立. (3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x 轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0), 则x1,x2是方程ax2+bx+c=0的两根,所以x1+x2= b a -,x1x2= c a ,即 b a =-(x1+x2), c a =x1x2.所 以,y=ax2+bx+c=a(2b c x x a a ++) = a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论: 若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法: 3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标. 今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题. 二、典例精析 【典例1】已知某一元二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),

相关文档
最新文档