MOS管主要参数.doc

MOS管主要参数.doc
MOS管主要参数.doc

MOS管主要参数:

1.开启电压VT

·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压;

·标准的N沟道MOS管,VT约为3~6V;

·通过工艺上的改进,可以使MOS管的VT值降到2~3V。

2. 直流输入电阻RGS

·即在栅源极之间加的电压与栅极电流之比

·这一特性有时以流过栅极的栅流表示

·MOS管的RGS可以很容易地超过1010Ω。

3. 漏源击穿电压BVDS

·在VGS=0(增强型)的条件下,在增加漏源电压过程中使ID开始剧增时的VDS 称为漏源击穿电压BVDS

·ID剧增的原因有下列两个方面:

(1)漏极附近耗尽层的雪崩击穿

(2)漏源极间的穿通击穿

·有些MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后

,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的ID

4. 栅源击穿电压BVGS

·在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS。

5. 低频跨导gm

·在VDS为某一固定数值的条件下,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导

·gm反映了栅源电压对漏极电流的控制能力

·是表征MOS管放大能力的一个重要参数

·一般在十分之几至几mA/V的范围内

6. 导通电阻RON

·导通电阻RON说明了VDS对ID的影响,是漏极特性某一点切线的斜率的倒数

·在饱和区,ID几乎不随VDS改变,RON的数值很大,一般在几十千欧到几百千欧之间

·由于在数字电路中,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似

·对一般的MOS管而言,RON的数值在几百欧以内

7. 极间电容

·三个电极之间都存在着极间电容:栅源电容CGS 、栅漏电容CGD和漏源电容CDS

·CGS和CGD约为1~3pF

·CDS约在0.1~1pF之间

8. 低频噪声系数NF

·噪声是由管子内部载流子运动的不规则性所引起的

·由于它的存在,就使一个放大器即便在没有信号输人时,在输出端也出现不规则的电压或电流变化

·噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB)

·这个数值越小,代表管子所产生的噪声越小

·低频噪声系数是在低频范围内测出的噪声系数

·场效应管的噪声系数约为几个分贝,它比双极性三极管的要小

常用全系列场效应管 MOS管型号参数封装资料.

场效应管分类型号简介封装常用三极管型号及参数(1 DISCRETE晶体管型号反压Vbe0电流Icm功率Pcm放大系数特征频MOS FET 2N7000 60V,0.115A TO-92IRFU02050V15A42W**NMOS场效应 DISCRETE IRFPG421000V4A150W**NMOS场效应 MOS FET 2N7002 60V,0.2A SOT-23IRFPF40900V4.7A150W**NMOS场效应 DISCRETE IRFP9240200V12A150W**PMOS场效应 MOS FET IRF510A 100V,5.6A TO-220IRFP9140100V19A150W**PMOS场效应 DISCRETE IRFP460500V20A250W**NMOS场效应 MOS FET IRF520A 100V,9.2A TO-220IRFP450500V14A180W**NMOS场效应 DISCRETE IRFP440500V8A150W**NMOS场效应 MOS FET IRF530A 100V,14A TO-220IRFP353350V14A180W**NMOS场效应 DISCRETE IRFP350400V16A180W**NMOS场效应 MOS FET IRF540A 100V,28A TO-220IRFP340400V10A150W**NMOS场效应 DISCRETE IRFP250200V33A180W**NMOS场效应 MOS FET IRF610A 200V,3.3A TO-220IRFP240200V19A150W**NMOS场效应 DISCRETE IRFP150100V40A180W**NMOS场效应 MOS FET IRF620A 200V,5A TO-220晶体管型号反压Vbe0电流Icm功率Pcm 放大系数特征频DISCRETE IRFP140100V30A150W**NMOS场效应 MOS FET IRF630A 200V,9A TO-220IRFP05460V65A180W**NMOS场效应

MOS管参数解释

MOS管参数解释 MOS管介绍 在使用MOS管设计开关电源或者马达驱动电路的时候,一般都要考虑MOS的导通电阻,最大电压等,最大电流等因素。 MOSFET管是FET的一种,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,一般主要应用的为增强型的NMOS管和增强型的PMOS管,所以通常提到的就是这两种。这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。 在MOS管内部,漏极和源极之间会寄生一个二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要,并且只在单个的MOS管中存在此二极管,在集成电路芯片内部通常是没有的。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免。 MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到一定电压(如4V或10V, 其他电压,看手册)就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,因而在DS间流过电流的同时,两端还会有电压,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几毫欧,几十毫欧左右 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,导通瞬间电压和电流的乘积很大,造成的损失也就很大。降低开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 MOS管驱动 MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。但是,我们还需要速度。在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。 普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS 管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大(4V或10V其他电压,看手册)。如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。

MOS功率与选型

品牌: 美国的IR,型号前缀IRF;日本的TOSHIBA; NXP,ST(意法),NS(国半),UTC,仙童,Vishay。 MOS管选型指南. xls

关于MOS选型 第一步:选用N沟道还是P沟道 低压侧开关选N-MOS,高压侧开关选P-MOS 根据电路要求选择确定VDS,VDS要大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。 第二步:确定额定电流 额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOS管能承受这个额定电流,即使在系统产生尖峰电流时。 MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOS 管在“导通”时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RD S(ON)就会越高。 第三步:确定热要求 器件的结温等于最大环境温度加上热阻与功率耗散的乘积(结温=最大环境温度+[热阻×功率耗散])。根据这个方程可解出系统的最大功率耗散,即按定义相等于I2×RDS(ON)。第四步:决定开关性能

选择MOS管的最后一步是决定MOS管的开关性能。影响开关性能的参数有很多,但最重要的是栅极/漏极、栅极/源极及漏极/源极电容。这些电容会在器件中产生开关损耗,因为在每次开关时都要对它们充电。MOS管的开关速度因此被降低,器件效率也下降。 详细的MOS管的选型可以参考资料3

MOS管正确选择的步骤 正确选择MOS管是很重要的一个环节,MOS管选择不好有可能影响到整个电路的效率和成本,了解不同的MOS管部件的细微差别及不同开关电路中的应力能够帮助工程师避免诸多问题,下面我们来学习下MOS管的正确的选择方法。 第一步:选用N沟道还是P沟道 为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOS管。在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道MOS 管,这也是出于对电压驱动的考虑。 要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。下一步是确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。知道MOS管能承受的最大电压会随温度而变化这点十分重要。设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。设计工程师需要考虑的其他安全因素包括由开关电子设备(如电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V。 第二步:确定额定电流 第二步是选择MOS管的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOS管能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。 选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOS管在“导通”时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。器件的功率耗损可由Iload2&TImes;RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。 技术对器件的特性有着重大影响,因为有些技术在提高最大VDS时往往会使RDS(ON)

MOS管主要参数

MOS管主要参数 1.开启电压VT ·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压; ·标准的N沟道MOS管,VT约为3~6V; ·通过工艺上的改进,可以使MOS管的VT值降到2~3V。 2. 直流输入电阻RGS ·即在栅源极之间加的电压与栅极电流之比 ·这一特性有时以流过栅极的栅流表示 ·MOS管的RGS可以很容易地超过1010Ω。 3. 漏源击穿电压BVDS ·在VGS=0(增强型)的条件下,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS ·ID剧增的原因有下列两个方面: (1)漏极附近耗尽层的雪崩击穿 (2)漏源极间的穿通击穿 ·有些MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后 ,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的ID 4. 栅源击穿电压BVGS ·在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS。 5. 低频跨导gm ·在VDS为某一固定数值的条件下,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导 ·gm反映了栅源电压对漏极电流的控制能力 ·是表征MOS管放大能力的一个重要参数 ·一般在十分之几至几mA/V的范围内 6. 导通电阻RON ·导通电阻RON说明了VDS对ID的影响,是漏极特性某一点切线的斜率的倒数 ·在饱和区,ID几乎不随VDS改变,RON的数值很大,一般在几十千欧到几百千欧之间 ·由于在数字电路中,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似 ·对一般的MOS管而言,RON的数值在几百欧以内 7. 极间电容 ·三个电极之间都存在着极间电容:栅源电容CGS 、栅漏电容CGD和漏源电容CDS ·CGS和CGD约为1~3pF ·CDS约在0.1~1pF之间 8. 低频噪声系数NF ·噪声是由管子内部载流子运动的不规则性所引起的 ·由于它的存在,就使一个放大器即便在没有信号输人时,在输出端也出现不规则的电压或电流变化 ·噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB)

MOS管参数解释

MOS管介绍 在使用MOS,一般都要考虑MOS,,最大电流等因素。 MOSFET管是FET,可以被制造成增强型或耗尽型,P沟道或N沟道共4,一般主要应用的为增强型的NMOS管和增强型的PMOS,所以通常提到的就是这两种。 这两种增强型MOS,比较常用的是NMOS。。所以开关电源,一般都用NMOS。 在MOS,漏极和源极之间会寄生一个二极管。,在驱动感性负载(如马达)这个二极管很重要,并且只在单个的MOS,在集成电路芯片内部通常。 MOS,这不是我们需要的,而是由于制造工艺限制产生的。 ,但没有办法避免。 MOS管导通特性 ,相当于开关闭合。 NMOS,Vgs,适合用于源极接地时的情况(低端驱动)只要栅(如4V或10V,,看手册)就可以了。 PMOS的特性,Vgs,适合用于源极接VCC时的情况(高端驱动)。但,虽然PMOS,但由于导通电阻大,价格贵,替换种类少等原,在高端驱动中,通常还是使用NMOS。 MOS开关管损失 不管是NMOS还是PMOS导通后都有导通电阻存在,因而在DS,两端还,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS。现在的小功率MOS,几十毫欧左右 MOS,一定不是在瞬间完成的。MOS,流 ,在这段时间内,MOS,叫做开关损。,而且开关频率越快,导通瞬间电压和电流的乘积很大,。,可以减小每次导通时的损失;降低开关频率,可以减小 。。 MOS管驱动 MOS,只要GS,就可以了。,我们还需要速。 在MOS,在GS,GD,而MOS,实际上就。,因为对电容充电瞬间可以把电容看成短路,

。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大。 普遍用于高端驱动的NMOS导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VCC),所以这时栅极电压要比VCC大(4V或10V,看手册)。,要得到比VCC,就要专门的升压电路。很多马达 ,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS。 M os f et参数含义说明 Feat ur es: V ds: D S击穿电压.当V gs=0V时,M O S的D S所能承受的最大电压 R ds(on):D S的导通电阻.当V gs=10V时,M O S的D S之间的电阻 I d:最大D S电流.会随温度的升高而降低 V gs:最大G S电压.一般为:-20V~+20V I dm:最大脉冲D S电流.会随温度的升高而降低,体现一个抗冲击能力,跟脉冲时间也有关系Pd:最大耗散功率 Tj:最大工作结温,通常为150度和175度 Ts t g:最大存储温度 I ar:雪崩电流 Ear:重复雪崩击穿能量 Eas:单次脉冲雪崩击穿能量 B V ds s: D S击穿电压 I ds s:饱和D S电流,uA级的电流 I gs s: G S驱动电流,nA级的电流. gf s:跨导 Q g: G总充电电量 Q gs: G S充电电量 Q gd: G D充电电量 Td(on):导通延迟时间,从有输入电压上升到10%开始到V ds下降到其幅值90%的时间 Tr:上升时间,输出电压 V D S从 90%下降到其幅值 10%的时间 Td(of f):关断延迟时间,输入电压下降到 90%开始到 V D S上升到其关断电压时 10%的时间Tf:下降时间,输出电压 V D S从 10%上升到其幅值 90%的时间 (参考图 4)。 C i s s:输入电容,C i s s=C gd + C gs. C os s:输出电容,C os s=C ds +C gd. C r s s:反向传输电容,C r s s=C gc.

常见mos管的型号参数

电调常见的烧毁问题,可通过更换烧坏的MOS管来解决,如相应电流的,可用更多大额定电流的代替。注意,焊接MOS止静电。 TO-220 TO-252 TO-3

附SO-8(贴片8脚)封装MOS管IRF7805Z的引脚图。 上图中有小圆点的为1脚 注:下表按电流降序排列(如有未列出的,可回帖,我尽量补 封装形式极性型号电流(A)耐压(V)导通电阻(mΩ) SO-8N型SI43362230 4.2 SO-8N型IRF78312130 3.6 SO-8N型IRF783220304

SO-8N型IRF872114308.5 SO-8N型IRF78051330 SO-8N型IRF7805Q133011 SO-8N型IRF7413123018 SO-8N型TPC800312306 SO-8N型IRF7477113020 SO-8N型IRF7811113012 SO-8N型IRF7466103015 SO-8N型SI4410103014 SO-8N型SI4420103010 SO-8N型A27009307.3 SO-8N型IRF78078.330 SO-8N型SI48127.33028 SO-8N型SI9410 6.93050 SO-8N型IRF731363029 SO-8P型SI440517307.5 SO-8P型STM4439A143018 SO-8P型FDS667913309 SO-8P型SI441113308 SO-8P型SI446312.32016 SO-8P型SI44071230 SO-8P型IRF7424113013.5 SO-8P型IRF7416103020 SO-8P型IRF7416Q103020 SO-8P型SI442593019 SO-8P型IRF74248.83022 SO-8P型SI443583020 SO-8P型SI4435DY83020 SO-8P型A271673011.3 SO-8P型IRF7406 5.83045 SO-8P型SI9435 5.33050 SO-8P型IRF7205 4.63070 TO-252N型FDD668884305 TO-3N型IRF1504010055 TO-220N型IRF370321030 2.8 TO-220N型IRL3803140306 TO-220N型IRF140513155 5.3 TO-220N型IRF3205110558 TO-220N型BUZ111S80558

常用全系列场效应管MOS管型号参数封装资料

场效应管分类型号简介封装DISCRETE MOS FET 2N7000 60V,0.115A TO-92 DISCRETE MOS FET 2N7002 60V,0.2A SOT-23 DISCRETE MOS FET IRF510A 100V,5.6A TO-220 DISCRETE MOS FET IRF520A 100V,9.2A TO-220 DISCRETE MOS FET IRF530A 100V,14A TO-220 DISCRETE MOS FET IRF540A 100V,28A TO-220 DISCRETE MOS FET IRF610A 200V,3.3A TO-220 DISCRETE MOS FET IRF620A 200V,5A TO-220 DISCRETE MOS FET IRF630A 200V,9A TO-220 DISCRETE MOS FET IRF634A 250V,8.1A TO-220 DISCRETE MOS FET IRF640A 200V,18A TO-220 DISCRETE MOS FET IRF644A 250V,14A TO-220 DISCRETE MOS FET IRF650A 200V,28A TO-220 DISCRETE MOS FET IRF654A 250V,21A TO-220 DISCRETE MOS FET IRF720A 400V,3.3A TO-220 DISCRETE MOS FET IRF730A 400V,5.5A TO-220 DISCRETE MOS FET IRF740A 400V,10A TO-220 DISCRETE MOS FET IRF750A 400V,15A TO-220 DISCRETE MOS FET IRF820A 500V,2.5A TO-220 DISCRETE MOS FET IRF830A 500V,4.5A TO-220 DISCRETE MOS FET IRF840A 500V,8A TO-220 DISCRETE

MOS管i-v特性

一、实验目的 分析mos晶体管i-v特性分析 二、实验要求 了解结型场效应管和MOS管的工作原理、特性曲线及主要参数 三、实验内容 1、MOS器件的结构介绍 2、MOS的工作原理 3、i-v特性曲线 图1 原理图

1.特性曲线和电流方程 输出特性曲线 与结型场效应管一样,其输出特性曲线也可分为可变电阻区、饱和区、截止 区和击穿区几部分。 转移特性曲线 转移特性曲线如图1(b)所示,由于场效应管作放大器件使用时是工作在饱和 区(恒流区),此时i D 几乎不随v DS 而变化,即不同的v DS 所对应的转移特性曲线几乎是重合的,所以可用v DS 大于某一数值(v DS >v GS -V T )后的一条转移特性曲线代替饱和区的所有转移特性曲线. i D 与v GS 的近似关系 与结型场效应管相类似。在饱和区内,i D 与v GS 的近似关系式为 ( v GS > V T ) 式中I DO 是v GS =2V T 时的漏极电流i D 。 2.参数 2 GS DO D )1(-=T V v I i

MOS管的主要参数与结型场效应管基本相同,只是增强型MOS管中不用夹断电压V P,而用开启电压V T表征管子的特性。 MOS管 1. 基本结构 原因:制造N沟道耗尽型MOS管时,在SiO2绝缘层中掺入了大量的碱金属正离子Na+或K+(制造P沟道耗尽型MOS管时掺入负离子),如图1(a)所示,因此即使v GS=0时,在这些正离子产生的电场作用下,漏-源极间的P型衬底表面也能感应生成N沟道(称为初始沟道),只要加上正向电压v DS,就有电流i D。 如果加上正的v GS,栅极与N沟道间的电场将在沟道中吸引来更多的电子,沟道加宽,沟道电阻变小,i D增大。反之v GS为负时,沟道中感应的电子减少,沟道变窄,沟道电阻变大,i D减小。当v GS负向增加到某一数值时,导电沟道消失,i D趋于零,管子截止,故称为耗尽型。沟道消失时的栅-源电压称为夹断电压,仍用V P表示。与N沟道结型场效应管相同,N沟道耗尽型MOS管的夹断电压V P也为负值,但是,前者只能在v GS<0的情况下工作。而后者在v GS=0,v GS>0,V P

MOS管参数解释

M O S管参数解释Prepared on 21 November 2021

MOS管参数解释 MOS管介绍 在使用MOS管设计开关电源或者马达驱动电路的时候,一般都要考虑MOS的导通电阻,最大电压等,最大电流等因素。MOSFET管是FET的一种,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,一般主要应用的为增强型的NMOS管和增强型的PMOS管,所以通常提到的就是这两种。 这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。在MOS管内部,漏极和源极之间会寄生一个二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要,并且只在单个的MOS管中存在此二极管,在集成电路芯片内部通常是没有的。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免。 MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到一定电压(如4V或10V,其他电压,看手册)就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,因而在DS间流过电流的同时,两端还会有电压,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几毫欧,几十毫欧左右 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,导通瞬间电压和电流的乘积很大,造成的损失也就很大。降低开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 MOS管驱动 MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。 普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大(4V或10V其他电压,看手册)。如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。 Mosfet参数含义说明Features:Vds:DS击穿电压.当Vgs=0V时,MOS的DS所能承受的最大电压Rds(on):DS的导通电阻.当Vgs =10V时,MOS的DS之间的电阻Id:最大DS电流.会随温度的升高而降低Vgs:最大GS电压.一般为:-20V~+20VIdm:最大脉冲DS 电流.会随温度的升高而降低,体现一个抗冲击能力,跟脉冲时间也有关系Pd:最大耗散功率Tj:最大工作结温,通常为150度和175度Tstg:最大存储温度Iar:雪崩电流Ear:重复雪崩击穿能量Eas:单次脉冲雪崩击穿能量BVdss:DS击穿电压Idss:饱和DS电流,uA级的电流Igss:GS驱动电流,nA级的电流.gfs:跨导Qg:G总充电电量Qgs:GS充电电量Qgd:GD充电电量Td(on):导通延迟时间,从有输入电压上升到10%开始到Vds下降到其幅值90%的时间Tr:上升时间,输出电压VDS从90%下降到其幅值10%的时间T d(off):关断延迟时间,输入电压下降到90%开始到VDS上升到其关断电压时10%的时间Tf:下降时间,输出电压VDS从10%上升到其幅值90%的时间(参考图4)。Ciss:输入电容,Ciss=Cgd+Cgs.Coss:输出电容,Coss=Cds+Cgd.Crss:反向传输电容,Crss=Cgc. 其实MOS主要是通过栅控制器件的开启和导通,所以以NMOS管为例,只需要将栅得足够低,让它在中无法形成,也就没有了沟道,没有低阻通路,自然就变成高阻态,从漏源两端看上去,它便是关断的 追问

常用全系列场效应管MOS管型号参数封装资料

场效应管分类DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET 型号简介封装2N7000 2N7002 IRF510A IRF520A IRF530A IRF540A IRF610A IRF620A IRF630A IRF634A IRF640A IRF644A IRF650A IRF654A IRF720A 60V,0.115A 60V,0.2A 100V,5.6A 100V,9.2A 100V,14A 100V,28A 200V,3.3A 200V,5A 200V,9A 250V,8.1A 200V,18A 250V,14A 200V,28A 250V,21A 400V,3.3A TO-92 SOT-23 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220

DISCRETE MOS FET IRF730A 400V,5.5A TO-220 DISCRETE MOS FET IRF740A 400V,10A TO-220 DISCRETE MOS FET IRF750A 400V,15A TO-220 DISCRETE MOS FET IRF820A 500V,2.5A TO-220 DISCRETE MOS FET IRF830A 500V,4.5A TO-220 DISCRETE MOS FET IRF840A 500V,8A TO-220 DISCRETE MOS FET IRF9520 DISCRETE MOS FET IRF9540 DISCRETE MOS FET IRF9610 DISCRETE MOS FET IRF9620 DISCRETE MOS FET IRFP150A 100V,43A TO-3P DISCRETE MOS FET IRFP250A 200V,32A TO-3P DISCRETE MOS FET IRFP450A 500V,14A TO-3P DISCRETE MOS FET IRFR024A 60V,15A D-PAK DISCRETE MOS FET IRFR120A 100V,8.4A D-PAK TO-220 TO-220 TO-220 TO-220

mos管选型指导

MOS管选型指导 正确选择MOS管是很重要的一个环节,MOS管选择不好有可能影响到整个电路的效率和成本,了解不同的MOS管部件的细微差别及不同开关电路中的应力能够帮助工程师避免诸多问题,下面我们来学习下MOS管的正确的选择方法。 第一步:选用N沟道还是P沟道 为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOS管。在典型的功率应用中,当一个MOS管接地,而负载连接到干线电压上时,该MOS管就构成了低压侧开关。在低压侧开关中,应采用N沟道MOS管,这是出于对关闭或导通器件所需电压的考虑。当MOS管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P 沟道MOS管,这也是出于对电压驱动的考虑。 要选择适合应用的器件,必须确定驱动器件所需的电压,以及在设计中最简易执行的方法。下一步是确定所需的额定电压,或者器件所能承受的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOS管不会失效。就选择MOS管而言,必须确定漏极至源极间可能承受的最大电压,即最大VDS。知道MOS管能承受的最大电压会随温度而变化这点十分重要。设计人员必须在整个工作温度范围内测试电压的变化范围。额定电压必须有足够的余量覆盖这个变化范围,确保电路不会失效。设计工程师需要考虑的其他安全因素包括由开关电子设备(如

电机或变压器)诱发的电压瞬变。不同应用的额定电压也有所不同;通常,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V。 第二步:确定额定电流 第二步是选择MOS管的额定电流。视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。与电压的情况相似,设计人员必须确保所选的MOS管能承受这个额定电流,即使在系统产生尖峰电流时。两个考虑的电流情况是连续模式和脉冲尖峰。在连续导通模式下,MOS管处于稳态,此时电流连续通过器件。脉冲尖峰是指有大量电涌(或尖峰电流)流过器件。一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。 选好额定电流后,还必须计算导通损耗。在实际情况下,MOS管并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。MOS管在“导通”时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显著变化。器件的功率耗损可由Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。对MOS管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。注意RDS(ON)电阻会随着电流轻微上升。关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。 技术对器件的特性有着重大影响,因为有些技术在提高最大VDS时往往会使RDS(ON)增大。对于这样的技术,如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,从而增加与之配套的封装尺寸及相关的开发成本。业界现有好几种试图控制晶片尺寸增加的技术,其中最主要的是沟道和电荷平衡技术。 在沟道技术中,晶片中嵌入了一个深沟,通常是为低电压预留的,用于降低导通电阻RDS(ON)。为了减少最大VDS对RDS(ON)的影响,开发过程中采用了外延生长柱/蚀刻柱工艺。例如,飞兆半导体开发了称为SupeRFET的技术,针对RDS(ON)的降低而增加了额外的制造步骤。这种对RDS(ON)的关注十分重要,因为当标准MOSFET的击穿电压升高时,RDS(ON)会随之呈指数级增加,并且导致晶片尺寸增大。SuperFET工艺将RDS(ON)与晶片尺寸间的指数关系变成了线性关系。这样,SuperFET器件便可在小晶片尺寸,甚至在击穿电压达到600V的情况下,实现理想的低RDS(ON)。结果是晶片尺寸可减小达35%。而对于最终用户来说,这意味着封装尺寸的大幅减小。 第三步:确定热要求 选择MOS管的下一步是计算系统的散热要求。设计人员必须考虑两种不同的情况,即最坏情况和真实情况。建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。在MOS管的资料表上还有一些需要注意的测量数据;比如封装器件的半导体结与环境之间的热阻,以及最大的结温。

MOS管全参数代换大全

型号参数国内外相似替换型号资料 2SC1885 150V,0.05A 0.75,200MHZ BF297,BF422,BF391,3DG18 0K NPN 2SC2336 180V,1.5A,25W,95MHZ 2SC2238A,2SC2238B,2SC2660, NPN 2SD478,2SD608A,2SD760,2SD1138, 3DA25F 2SC3306 500V,10A,100W BUV48A,BUV48B,BUV48C,BUW13 NPN 2SC2740,2SC3042,2SC3277,2SC3365 2SC3842,2DK308C 2SC3461 1100V,8A,140W BU902,2SC3643,2SC3847,2SC3982, NPN 2SD1433 2SC3746 80V,5A,20W 2SC3253,2SC3258,2SC3540,2SC3691 NPN 2SC4549,2SD1270,2SC1832 2SC3866 900V,3A,40W 2SC2979,2SC3178,2SC3559,2SC3979 NPN 2SC4303 2SC3953 2SC3886 1400V,8A,50W BU508AF,2SC3847,2SC3896,2SD1850 NPN 2SD1886 2SC3997 1500V,20A,250W - NPN 2SC4111 1500V,10A,150W 2SC3307,2SC3897,2SC3995 NPN 2SC4159 180V,1.5A,15W 2SC3298A,2SC3298B,2SD1763A,2SD1772 NPN 2SC4288 1400V,12A,200W 2SC3910,2SC3995 NPN 2SC4538 2SC4633 1500V,0.03A,7W 2SC4451,2SC4576 NPN 2SC4686A 1500V,0.05A,10W 2SC4578 NPN 2SC4833 500V,5A,35W BUT11AF,2SC3310,2SC3570,2SC4026 NPN 2SC4054,2SC4160,2SC4073,2SC4371 2SC4834 500V,8A,45W BU306F,BUT12AF,2SC3626,2SC4130, NPN 2SC4161,2SC4559 2SC4890 1500V,12A,75W BU2525AF,BU2527AF,2SC5105 NPN 2SC4897 1500V,20A,150W 2SC3997,2SC4290A,2SD2356 NPN

常用mos管(选型)

常用MOS管选型参考如下表所示: IRFU020 50V 15A 42W * * NmOS场效应IRFPG42 1000V 4A 150W * * NmOS场效应IRFPF40 900V 4.7A 150W * * NmOS场效应IRFP9240 200V 12A 150W * * PmOS场效应IRFP9140 100V 19A 150W * * PmOS场效应IRFP460 500V 20A 250W * * NmOS场效应IRFP450 500V 14A 180W * * NmOS场效应IRFP440 500V 8A 150W * * NmOS场效应IRFP353 350V 14A 180W * * NmOS场效应IRFP350 400V 16A 180W * * NmOS场效应IRFP340 400V 10A 150W * * NmOS场效应IRFP250 200V 33A 180W * * NmOS场效应IRFP240 200V 19A 150W * * NmOS场效应IRFP150 100V 40A 180W * * NmOS场效应IRFP140 100V 30A 150W * * NmOS场效应IRFP054 60V 65A 180W * * NmOS场效应IRFI744 400V 4A 32W * * NmOS场效应IRFI730 400V 4A 32W * * NmOS场效应IRFD9120 100V 1A 1W * * NmOS场效应IRFD123 80V 1.1A 1W * * NmOS场效应IRFD120 100V 1.3A 1W * * NmOS场效应IRFD113 60V 0.8A 1W * * NmOS场效应IRFBE30 800V 2.8A 75W * * NmOS场效应IRFBC40 600V 6.2A 125W * * NmOS场效应IRFBC30 600V 3.6A 74W * * NmOS场效应IRFBC20 600V 2.5A 50W * * NmOS场效应IRFS9630 200V 6.5A 75W * * PmOS场效应IRF9630 200V 6.5A 75W * * PmOS场效应IRF9610 200V 1A 20W * * PmOS场效应IRF9541 60V 19A 125W * * PmOS场效应IRF9531 60V 12A 75W * * PmOS场效应IRF9530 100V 12A 75W * * PmOS场效应IRF840 500V 8A 125W * * NmOS场效应IRF830 500V 4.5A 75W * * NmOS场效应IRF740 400V 10A 125W * * NmOS场效应IRF730 400V 5.5A 75W * * NmOS场效应IRF720 400V 3.3A 50W * * NmOS场效应IRF640 200V 18A 125W * * NmOS场效应

常用MOS管选型参考

常用MOS管选型参考 IRFU02050V15A42W NmOS场效应IRFPG421000V4A150W NmOS场效应IRFPF40900V 4.7A150W NmOS场效应IRFP460500V20A250W NmOS场效应IRFP450500V14A180W NmOS场效应IRFP440500V8A150W NmOS场效应IRFP353350V14A180W NmOS场效应IRFP350400V16A180W NmOS场效应IRFP340400V10A150W NmOS场效应IRFP250200V33A180W NmOS场效应IRFP240200V19A150W NmOS场效应IRFP150100V40A180W NmOS场效应IRFP140100V30A150W NmOS场效应IRFP05460V65A180W NmOS场效应IRFI744400V4A32W NmOS场效应IRFI730400V4A32W NmOS场效应IRFD9120100V1A1W NmOS场效应IRFD12380V 1.1A1W NmOS场效应IRFD120100V 1.3A1W NmOS场效应IRFD11360V0.8A1W NmOS场效应IRFBE30800V 2.8A75W NmOS场效应IRFBC40600V 6.2A125W NmOS场效应IRFBC30600V 3.6A74W NmOS场效应IRFBC20600V 2.5A50W NmOS场效应IRFS9630200V 6.5A75W PmOS场效应IRF9630200V 6.5A75W PmOS场效应IRF9610200V1A20W PmOS场效应IRF954160V19A125W PmOS场效应IRF953160V12A75W PmOS场效应IRF9530100V12A75W PmOS场效应IRF840500V8A125W NmOS场效应IRF830500V 4.5A75W NmOS场效应IRF740400V10A125W NmOS场效应IRF730400V 5.5A75W NmOS场效应IRF720400V 3.3A50W NmOS场效应IRF640200V18A125W NmOS场效应IRF630200V9A75W NmOS场效应IRF610200V 3.3A43W NmOS场效应IRF54180V28A150W NmOS场效应IRF540100V28A150W NmOS场效应IRF530100V14A79W NmOS场效应IRF440500V8A125W NmOS场效应IRF230200V9A79W NmOS场效应IRF130100V14A79W NmOS场效应BUZ20100V12A75W NmOS场效应BUZ11A50V25A75W NmOS场效应BS17060V0.3A0.63W NmOS场效应

相关文档
最新文档