Project Distributed Control and Stochastic Analysis of Hybrid Systems Supporting Safety Cri

Project Distributed Control and Stochastic Analysis of Hybrid Systems Supporting Safety Cri
Project Distributed Control and Stochastic Analysis of Hybrid Systems Supporting Safety Cri

Distributed Control and Stochastic Analysis of Hybrid Systems Supporting Safety Critical Real-Time Systems Design WP4:Compositional Specification of Stochastic Hybrid Systems

On Control of Complex Stochastic Hybrid

Systems

Stefan Strubbe,Jan Willem Polderman,Agung Julius and

Arjan van der Schaft1

April,2005

Version: 1.0

Task number: 4.4

Deliverable number:D4.4

Contract:IST-2001-32460of European Commission

HYBRIDGE EU IST Programme Task4.4/Deliverable D4.4

DOCUMENT CONTROL SHEET

Title of document:On Control of Complex Stochastic Hybrid Systems

Authors of document:Stefan Strubbe,Jan Willem Polderman,Agung Julius and Arjan van der

Schaft

Deliverable number:D4.4

Contract:IST-2001-32460of European Comission

Project:Distributed Control and Stochastic Analysis of Hybrid Systems Supporting

Safety Critical Real-Time Systems Design(HYBRIDGE)

DOCUMENT CHANGE LOG

Version#Issue Date Sections affected Relevant information

0.1Dec2004All First draft

0.2January2005All Draft for internal review

1.0April20051,3,5Review comments incorporated.

Version1.0Organisation Signature/Date Authors Stefan Strubbe UTwente

Jan Willem Polderman UTwente

Agung Julius UTwente

Arjan van der Schaft UTwente

Internal reviewers Henk Blom NLR

On Control of Complex Stochastic Hybrid Systems1 Stefan Strubbe,Jan Willem Polderman,Agung Julius and Arjan van der Schaft

April2005

1Public deliverable17for the EU project HYBRIDGE(IST-2001-32460)

Contents

1Introduction2

1.1Scope of the report (2)

1.2Summary of contents (2)

2Control by composition using the active/passive framework4

2.1Introduction (4)

2.2De?nitions and Notations (5)

2.3Composition and projection operators (7)

2.4The control problem and passive canonical controller (9)

2.5HBA and CPDP (12)

3Value-passing CPDPs14

3.1De?nition of the value-passing CPDP (14)

3.2Free Flight in air tra?c example (16)

3.2.1System description (17)

3.2.2The CPDP model (18)

3.2.3Discussion (21)

3.3Value-passing CPDPs and PDPs (22)

3.3.1Examples of value-passing-CPDP to PDP conversion (26)

4Stability Analysis for Hybrid Automata using Conservative Gains28

4.1Introduction (28)

4.2Hybrid automata and stability (29)

4.3Conservative estimate of gains via Lyapunov functions (30)

4.3.1Calculation of the gains (31)

4.3.2Optimizing the choice of Lyapunov function (32)

4.4Gain automata and detection of non-contractive cycles (34)

5Overview of the results of WP439

Chapter1

Introduction

1.1Scope of the report

This report deals with some fundamental issues in the control of complex stochastic hybrid systems.

Let us start with a disclaimer.The report does not deal with any aspect of optimal control of stochastic hybrid systems,although there does exist a substantial body of knowledge about this topic.In particular we refer to the work by Davis on optimal control of Piecewise-Deterministic Markov processes[7],and the work by Ghosh and Arapostathis[11].

Instead our focus will be on structural issues in the control of stochastic hybrid systems which are strictly related to the complexity of the system,as well as to the delineation of some sort of limits of performance of the controlled complex https://www.360docs.net/doc/162068278.html,mon theme will be to look at control as the addition of extra components to the complex system,that is,control by interconnection or,more precisely,control by composition since the nature of composition (and the related communication structure)is fundamental in complex hybrid systems,being stochastic or not.

We will be far from presenting a complete theory.Instead we will report on three rather loosely related recent lines of research which in our opinion all will play a role in a larger body of theory which is waiting to be developed.The?rst chapter treats a basic control by composition problem for hybrid automata,without explicit taking into account stochasticity. The second chapter is concerned with an extension of the framework of CPDPs as recently developed within Workpackage4,see in particular Deliverables[32]and[33].The main issue addressed here is an extension of the possibilities for communication in the composition of CPDPs,and appears to be important both for modeling(see the presented ATM example) and control by composition.The third chapter studies conditions for stability of complex switched linear systems,which can be seen as a necessary requisite for a theory of stabilization of complex hybrid systems.This chapter convincingly shows how the analysis and control of complex hybrid systems pro?tably uses tools from automata theory.

1.2Summary of contents

In the?rst chapter the problem of control by composition is treated for Hybrid Behavioral Automata(HBA).HBAs are automata that make use of the distinction between active and passive transitions.Therefore HBAs are closely related to CPDPs,although HBAs do not

involve stochastic aspects.The control problem can be seen as a combination of the control

by interconnection problem for the continuous dynamics of each location of a complex hybrid

system(modelled as an HBA),i.e.each location has its own control objective.To solve

the problem,the controller needs to know at all times in which location the process is.In

order to gain that knowledge,the controller uses passive transitions to observe the switchings

between the locations of the process.Under certain conditions of the transition structure of

the process,the control problem can be solved.

In the second chapter,we de?ne value-passing CPDPs.In the composition of two value-

passing CPDPs,one CPDP can communicate the value of its continuous state to the other

CPDP.The other CPDP may use this information to switch to another location.The reset

map of this switch may also depend on the information that was communicated.This idea

is formalized via a special kind of synchronization of active transitions.Synchronization of

two active transitions is not possible in the CPDP framework(with composition operator||)

of[33].However,with the composition operator|P A|,also described in[33]for active/passive transition systems(but not for CPDPs),it is possible to express active-active synchronization.

Therefore,in this chapter we de?ne the composition operator|P A|for value-passing CPDPs (after having de?ned value-passing CPDPs),such that value passing can be expressed via this operator.

After the de?nitions of value-passing CPDPs and|P A|for value-passing CPDPs,we apply (the composition of)value-passing CPDPs to a part of the air tra?c management example ’Free Flight’(described in[25]and[10]).The use of value passing for compositional speci?ca-tion can be clearly seen in this example.The section ends with a discussion on the adequacy of our concept of value-passing from a compositional analysis point of view.

The?nal section of the second chapter is concerned with the connection between value-passing CPDPs and PDPs.We give an algorithm that can be used to convert a closed value-passing CPDP to a PDP.We prove that,when the algorithm terminates,the value-passing CPDP expresses a PDP behavior and the corresponding PDP is given by the results of the algorithm.As an example,the algorithm is applied to the’Free Flight’example of the second section.The result is that the algorithm terminates(in?ve rounds),which shows that the value-passing CPDP expresses a PDP behavior.

The third chapter presents a stability analysis approach for a class of hybrid automata.It is assumed that the dynamics in each location of the hybrid automaton is linear and stable, and that the guards on the transitions are hyperplanes in the state space.For each pair of ingoing and outgoing transitions in a location a conservative estimate is made of the gain via a Lyapunov function for the dynamics in that location.It is shown how the choice of the Lyapunov function can be optimized to obtain the best possible estimate.The calculated conservative gains are used in de?ning a so-called gain automaton that forms the basis of an algorithmic criterion for the stability of the hybrid automaton.

Chapter2

Control by composition using the active/passive framework

2.1Introduction

In this chapter we discuss the hybrid behavioral automata(HBA)model.In particular,we are interested in the interconnections of such structure and its relation with controller design problem.

One of the de?ning features of the HBA is the introduction of the passive transitions.With the passive transitions in the model,we can model uni-directional discrete synchronizations between automata,in contrast with the common bi-directional synchronizations commonly used in other models.

There are other models that capture the spirit of uni-directional synchronization,for example,I/O automata[21]and its extension,hybrid I/O automata[19,20].The di?erences between the these frameworks and our framework are that in our framework synchronization with multiple active(output)agents is allowed and that input enabledness is embedded in the composition semantics rather than imposed on top of the structure as an assumption.

Formulation of control as interconnection has been recently advocated in behavioral sys-tem theory[38,27].This had led to some fundamental results,generalizing classical results in the input-output framework;see[37,4]for the linear case and[29],[28]for extensions to other system classes.The same paradigm also appeared in computer science,for example,in the submodule construction problem[22].

In this chapter,a control problem is presented.A solution,derived from the construction of canonical controllers presented in[28]is derived.We also present and discuss some conditions under which the proposed controller solves the problem.

The layout of this chapter is as follows.In the next section we will present the structure of hybrid behavioral automata.Some notions of interconnection and projection of HBA are given in Section3.In Section4,we discuss the control problem and propose a solution,which is designed according to the canonical controller in[28].In Section5,the connection with CPDP is disussed and some concluding remarks are given.

2.2De?nitions and Notations

We begin by de?ning hybrid behavioral automata and their behaviors.First,note that throughout this paper we use a general totally ordered set T as the underlying time axis for the trajectories inside each location.Instances of T can be R,R+or other chosen sets.This time axis is not to be mistaken with the hybrid time trajectory,which is de?ned later.

A hybrid behavioral automaton(HBA)A is a septuple(L,W,A,T,P,Inv,B),where ?L is the set of locations or discrete states,

?W is the set of continuous variables taking values in W,

?A is the set of labels,

?T is the set of active jumps/transitions.Each jump is given as a pentuple(l,a,l ,G,R), where l is the origin location,a is the label of the jump,l is the target location,G:= (γ,g)is the guard of the jump,whereγ:B(l)×T→codomain(γ)and g?codomain(γ), and R:B(l)×T→2B(l )is the reset map of the jump.

?P is the set of passive jumps/transitions.We represent each passive jump as a quadruple (l,a,l ,R).Passive jumps are not guarded.

?Inv maps each location l∈L to a pair Inv(l):=(ν,V),whereν:B(l)×T→co-domain(ν)and V?codomain(ν).

?B maps each location to its continuous behavior.A behavior is a subset of W T.

The guard G and the invariant Inv(l)as introduced above are instances of dynamic predicates.In general,a dynamic predicate is a pair C:=(ψ,Ψ),

ψ:B×T→codomain(ψ),

Ψ?codomain(ψ).

B signi?es a behavior over the general(ordered)time axis T.A pair(w,t)∈B×T is said to satisfy the dynamic predicate

C ifψ(w,t)∈Ψ.We denote it by(w,t)|=C.The negation of this statement is denoted by(w,t)|=C.

We assume that the mapsγ,R,andνare causal.A map x:B×R→X is causal if for any w1and w2in B andτ∈R,the following implication holds.

w1(t)|t≤τ=w2(t)|t≤τ =?(x(w1,t)=x(w2,t)).

In order to describe the evolution of such automaton,we need to de?ne a suitable timeline structure.In this case,we use a slightly modi?ed version of hybrid time trajectory,introduced in[36].The idea behind the hybrid time trajectory is as follows.We have continuously evolving dynamical system,but punctuated by jumps.Because of this,we choose a timeline that consists of intervals of T.Each interval acts as a timeline for describing the evolution between jumps.

De?nition1.A hybrid time trajectoryτ={I i}N i=0is a?nite or in?nite sequence of intervals of T,such that:

?I 0=[τ0,τ 0]or (?∞,τ 0],τ0≤τ 0

∈T ,?I i =[τi ,τ i ]for i

),?for all i,τi ≤τ i =τi +1.

A hybrid time trajectory τ ={I i }N

i =0is said to be a pre?x of another time trajectory

τ={I i }N i =0if N ≤N and I i =I i for all 0≤i ≤N .A hybrid time trajectory τ={I i }N i =0is

said to be in?nite if N =∞or τ N =∞.In line with this timeline structure,we describe the evolution of an HBA.A hybrid trajec-

tory is denoted as (τ,ξ).Here τis a hybrid time trajectory and ξmaps the interval {I n }n ≥0in τto a triple (l n ,w n ,j n ),where l n ∈L,w n :I n →W ,and j n ∈(T ∪P )or j n =?.The case where j n =?may happen only on the last interval of τ.

A hybrid trajectory (τ ,ξ )is said to be a pre?x of another hybrid trajectory (τ,ξ)if τ is a pre?x of τand ξ =ξon τ .A hybrid trajectory (τ,ξ)is called in?nite if τis in?nite.

A hybrid trajectory (τ,ξ)is included in the hybrid behavior A of the automaton A if the following conditions are satis?ed for all n ≥0.

1.w n ∈B (l n ),

2.j n =(l n ,a ,l n +1,G n ,R n ),for some a ∈A,

3.j n ∈T,

4.(w n ,τ n )|=G n ,

5.τ n ≤inf {t |t ≥τn and (w n

,t )|=Inv (l n )},6.w n +1∈R n (w n ,τ n ).Such trajectory is called a valid trajectory.Notice that we do not have passive jumps in a valid trajectory.A hybrid trajectory (τ,ξ)is included in the potential behavior ˉA if it satis?es conditions 1,2,4,5and 6above,together with a relaxed version of condition 3,j n ∈(T ∪P ).The intuitive idea is that we only include hybrid trajectories without any passive jumps in A ,while in ˉA we also allow passive jumps.Obviously A ?ˉA .Notice that,by the way they are de?ned,A and ˉA are pre?x closed .This means that if a hybrid trajectory (τ,ξ)is in A (or ˉA ),then any of its pre?xes (τ ,ξ )is also in A (or ˉA ).Throughout this chapter we shall also use the following shorthand notation.We write l a →l to denote the existence of an active transition going from location l ∈L to location l ∈L with label a ∈A.The existence of a passive transition with the same characteristics is denoted by l a l .The notations l a →and l a denote the existence of l ∈L such that l a

→l and l a l respectively.The absence of such transitions are denoted as l a →l ,l a

l ,l a →,and l a respectively.If the information about the guard and the reset map is also included in the notation,we write l (a ,G,R )?→l to denote (l,a ,l ,G,R )∈T,and l (a ,R ) l if (l,a ,l ,R )∈P.

2.3Composition and projection operators

Two HBA,A1and A2characterized by(L i,W,A,T i,P i,Inv i,B i),i=1,2,can be intercon-nected to form another HBA A=A1 A2.The automaton A is characterized by the septuple (L,W,A,T,P,Inv,B),where

L=L1×L2,

B((l1,l2))=B1(l1)∩B2(l2),

Inv((l1,l2))=(ν,V),

such that Inv((l1,l2))is satis?ed if and only if both Inv1(l1)and Inv2(l2)are satis?ed.

The set T and P consist of pentuples and quadruples,((l1,l2),a,(l 1,l 2),G T,R T)and ((l1,l2),a,(l 1,l 2),R T)respectively,such that the following interconnection semantics are com-mutatively satis?ed.

l1(a,G,R)

?→l 1,l2

a

(l1,l2)(a,G,R)

?→(l 1,l2)

l1(a,G,R1)

?→l 1,l2

(a,R2)

l 2 (l1,l2)(a,G,R1∩R2)

?→(l 1,l 2)

l1

a

,l2

(a,R)

l 2

(l1,l2)(a,R)

(l1,l 2)

l1

(a,R1)

l 1,l2(a,R2)

l 2

(l1,l2)

(a,R1∩R2)

(l 1,l 2)

By taking intersection of reset maps,we mean intersecting their respective images.

The interconnection operation described here possesses some ideal properties that make it suitable for establishing modularity for hybrid behaviors,namely commutativity and asso-ciativity[30].

Notice that all(continuous)variables are involved in the synchronization.This type of interconnections is called total interconnections.It is also possible to de?ne partial intercon-nections,where only a part of the variables are synchronized.

Two HBA,A1and A2characterized by(L i,W i∪Z,A,T i,P i,Inv i,B i),i=1,2,are partially interconnected over Z to form another HBA A=A1 Z A2.The automaton A is characterized by the septuple(L,W1∪W2∪Z,A,T,P,Inv,B),where

L=L1×L2,

B((l1,l2))=B1(l1) Z B2(l2),

Inv((l1,l2))=(ν,V),where

Inv i(l i)=:(νi,V i),i=1,2,

ν((w1,w2,z),t)=(ν1((w1,z),t),ν2((w2,z),t)),and

V=V1×V2.

The set T and P consist of pentuples and quadruples,((l1,l2),a,(l 1,l 2),G T,R T)and ((l1,l2),a,(l 1,l 2),R T)respectively,such that the following interconnection semantics are com-mutatively satis?ed.

l1(a,G,R)

?→l 1,l2

a

(l1,l2)(a,G,R)

?→(l 1,l2)

l1(a,G,R1)

?→l 1,l2

(a,R2)

l 2 (l1,l2)(a,G,R1 Z R2)

?→(l 1,l 2)

l1

a

,l2

(a,R)

l 2

(l1,l2)(a,R)

(l1,l 2)

l1

(a,R1)

l 1,l2(a,R2)

l 2

(l1,l2)

(a,R1 Z R2)

(l 1,l 2)

By performing partial interconnection on the reset maps we mean partially interconnecting their respective images in the behavioral sense1.

Let A=(L,W∪Z,A,T,P,Inv,B).We can project the automaton to the set of variables W,written asπW A,by de?ningπW A=(L,W,A,πW T,πW P,πW Inv,πW B),where

πW B:={w|?z such that(w,z)∈B}.

The projected set of active transitionsπW T consists of pentuples(l,a,l ,πW G,πW R),with (l,a,l ,G,R)∈T.The projected guard and reset map are de?ned as follows.For any w∈

πW B(l)and t∈T,the pair(w,t)satis?esπW G if and only if there is a z∈Z T such that(w,z)∈B(l)and(w,z,t)satis?es G.For any w∈πW B(l)and t∈T,the trajectory

w ∈B (l )is included in R (w,r)if and only if there are z and z such that

(w,z)∈B(l),

(w ,z )∈B(l ),

(w ,z )∈R(w,z,t).

The projected set of passive transitionsπW P consists of quadruples(l,a,l ,πW R),with (l,a,l ,R)∈P.The projected invariantπW Inv is such that for any l∈L,w∈πW B(l)and

t∈R,the pair(w,t)satis?esπW Inv(l)if and only if there exists a z such that(w,z)∈B(l) and(w,z,t)satis?es Inv(l).

We also de?ne another notion of projection,which we call factorization.The idea behind

it is as follows.

Interconnecting two automata results in an automaton whose discrete dynamics is some-what larger(i.e.more locations and more transitions)than those of the components.By factorizing the interconnected automata,we aim to see the’e?ect’of the interconnection on

the individual component.

Take two HBA A i=(L i,W,A,T i,P i,Inv i,B i),i=1,2.Let A=(L1×L2,W,A,T,P,Inv,B)= A1 A2.Factorizing A with respect to its component A1,denoted asπA1A can be done as follows.First,we construct the following equivalent relation.For any(l1i,l2i)and(l1j,l2j)in

L1×L2,

(l1i,l2i)≈(l1j,l2j)i?(l1i=l1j).

Each equivalent class of≈represents a location in L1and is named accordingly.

The action of the factorizationπA

1to A results inπA

1

A=(L1,W,A,T ,P ,Inv ,B ),

where

T ={(l i,a,l j,G,R)|?l i∈l i,l j∈l j,

such that(l i,a,l j,G,R)∈T},

P ={(l i,a,l j,R)|?l i∈l i,l j∈l j,

such that(l i,a,l j,R)∈P},

B (l i)= l∈l i B(l),

and the invariant Inv (l i)is such that any pair(w,t)∈B (l i)×T satis?es it i?(w,t)satis?es at Inv(l)for at least one l∈l i.

1(R1 Z R2):={(w1,w2,z)|(w1,z)∈R1and(w2,z)∈R2}

Figure2.1:Control with partial interconnection.

Figure2.2:The controller C can=πZ(P W S).

Factorizing A with respect to A1gives us information about the e?ect of the interconnec-tion to A1.This is particularly useful when interconnection is seen as controlling[28].In this point of view,a plant model(in this case it is A1)and a desired speci?cation S are given.The

problem is to?nd a controller,in this case A2,such thatπA

1(A1 A2)=S.This formulation

is very closely related to control as seen from behavioral point of view[38].

2.4The control problem and passive canonical controller

The behavioral approach to control theory sees control as interconnection.Given a plant(in term of behavior)P and a speci?cation S(also in term of behavior),the problem of?nding a controller that achieves the desired closed-loop behavior is translated to the problem of?nding a controller behavior C,such that P C=S[38,28,29].The symbol signi?es behavior interconnection[38,27].This formulation is closely related to the submodule construction problem in computer science[22].

In most of the problems,however,not all variables of the plant are available for inter-connection with the controller.Most problems deal with partial interconnections.This type of interconnection can be described as in Figure2.1.In this?gure,W represents the set of variables on which the speci?cation is expressed,while Z represents those used in the inter-connection with the controller.Note that these two sets are not necessarily disjunct.Partial interconnections are denoted by adding a subscript to the composition operator.Thus,the structure in Figure2.1is P Z C.

Such problems for general behaviors have been treated in[29,28],where a construction for canonical controllers is given.This construction is shown in Figure2.2.A canonical controller C can constructed in this way solves the problem provided that the plant P and the speci?cation S satisfy a couple of conditions,which can be thought of as some generalized controllability and observability conditions.In this case,we then have

πW(P Z C can)=S.

In the following,we introduce the notion of rooted hybrid behavioral automata.Simply speaking,the root of an automata is the location in which all trajectories are assumed to start.Thus,the root acts as discrete initial condition for the evolution.An HBA A that has a root l is denoted as A(l).To this rooted automaton we can associate a rooted hybrid behavior A(l),such that a hybrid trajectory(τ,ξ)∈A(l)if(τ,ξ)∈A and2l0=l.The rooted potential behaviorˉA(l)is de?ned in a similar fashion.

We are going to treat the following control problem:

Given a plant in terms of a rooted HBA P(l)=(L,W∪Z,A,T p,?,Inv p,B p),and a speci?cation S(l)=(L,W,A,T s,?,Inv s,B s).Notice that we assume that both the plant and the speci?cation do not have any passive transition.The problem is to?nd a controller C(l), which is also expressed in terms of rooted HBA,such that

(πW?πP)(P Z C)(l,l)=S(l).

The operatorsπP andπW denote factorization of the interconnected automaton with respect to P and projection of the continuous dynamics to the W variables.

A solution,which is adopted from[29,28],is proposed.The idea is as follows.We shall use a controller that has no active transitions.Such controller is called a passive controller. The controller has the same set of locations as the plant,and the set of passive transitions in the controller is the same as the set of active transitions in the plant less the information about the guard.The controller is a rooted HBA C(l)=(L,Z,A,?,P c,Inv c,

B c).Since we assume no active transitions in the controller,we also assume the invariant Inv c is a dynamic predicate that is always satis?ed.Moreover,the behavior B c is de?ned as follows.

B c(l)=πZ(B p(l) W B s(l)).

Notice that this construction is similar to that in[29,28].

Theorem1.The proposed controller C(l)solves the control problem,

(πW?πP)(P Z C)(l,l)=S(l),

if the following conditions hold.

(c1)For any l∈L,B s(l)?πW(B p(l)).

(c2)For any l∈L and any pairs(w,z),(?w,z)∈B p(l),the following implication holds.

(w∈B s(l))?(?w∈B s(l))

(c3)The set of active transitions T s=πW T p.

(c4)The invariant Inv s=πW Inv p.

(c5)For any l∈L,a∈A,there can be at most one transition in T p that starts in location l with label a.

2Recall that l0is the location of the?rst interval ofτ.

(c6)For any l ∈L,t ∈T ,(l,a ,l ,G,R )∈T p and any pairs (w,z ),(w,?z )∈B p (l ),the

following implications hold

(w,z,t )|=G ?(w,?z ,t )|=G,

(2.2a)(w,z,t )|=Inv p (l )?(w,?z ,t )|=Inv p (l ),

(2.2b)

(w ,z )∈R (w,z,t )?(w ,?z )∈R (w,z,t )

for all (w ,z ),(w ,?z )∈B p (l ).(2.2c)Proof.In this proof we shall denote P Z C :=Q for brevity.Consequently,its behavior is denoted as Q .Assume that all the conditions above hold.Based on (c1)and (c2),we can infer 3

B s (l )=πW (B p (l ) Z B c (l )),?l ∈L.(2.3)

Take any hybrid trajectory (τ,ξ)∈S (l ).We shall prove that (τ,ξ)∈(πW ?πP )Q (l,l ).Let τ={I i }N i =0.Since (τ,ξ)∈S (l ),the following conditions must be satis?ed.for all N ≥n ≥0

l 0=l,

(2.4a)w n ∈B s (l n ),

(2.4b)j n =(l n ,a n ,l n +1,G n ,R n )∈T s ,

(2.4c)(w n ,τ n )|=G n ,

(2.4d)τ n ≤inf {t |t ≥τn and (w n ,t )|=Inv s (l n )},

(2.4e)w n +1∈R n (w n ,τ n ).(2.4f)We argue that there is a trajectory (τ,?ξ

)∈Q (l,l )such that for all N ≥n ≥0?l 0=(l,l ),

(2.5a)?l n =(l n ,l n ),

(2.5b)?w n =(w n ,z n )∈B p (l n ) Z B c (l n ),

(2.5c)?j n =(?l n ,a n ,?l n +1,?G

n ,?R n )∈T q ,where (2.5d)(l n ,a n ,l n +1,?G

n ,?R n )∈T p ,G n =πW ?G n ,R n =πW ?R n ,(2.5e)(?w n ,τ n )|=?G

n ,(2.5f)τ n ≤inf {t |t ≥τn and (?w n ,t )|=Inv p (l n )},

(2.5g)?w n +1=(w n +1,z n +1)∈?R n (w n ,z n ,τ n ).(2.5h)

These relations are obtained by the following.Equation (2.5e)is obtained through (2.4c)and (c3),then (2.5d)is obtained using the de?nition of partial interconnection.This implies (2.5b).Equation (2.5c)is obtained using (2.3).Next,(2.5f)is implied by G n =πW ?G n ,while (2.5g)is implied by (c4)and (c6).Finally,(2.5h)is implied by (c3),and due to (2.2c)z n +1is not restricted,since any z n +1such that (w n +1,z n +1)∈B p (l n +1)will satisfy (2.5h).This guarantees that the whole argument can be established iteratively,starting with n =0.Given the existence of such (τ,?ξ

)∈Q (l,l ),it follows that (τ,ξ)∈(πW ?πP )Q (l,l ).Hence we have that

S (l )?(πW ?πP )Q (l,l ).(2.6)

3Please see [29,28]for a proof.

To show the converse,take any(τ,ξ)∈(πW?πP)Q(l,l).We shall show that(τ,ξ)∈S(l). Again,we letτ={I i}N i=0.Since(τ,ξ)∈(πW?πP)Q(l,l),there is a(τ,?ξ)∈Q(l,l)such that for all N≥n≥0,(2.5a)-(2.5h)hold.The reasoning is as follows.The controller C(l)has only passive transitions,therefore any transition in(P Z C)(l,l)must be a synchronization between a passive transition of C and an active transition of https://www.360docs.net/doc/162068278.html,ing(c5)and the de?nition of partial interconnection,we can infer(2.5b).This equation then implies(2.5c).Further, (2.5b)and the de?nition ofπW imply(2.5d),(2.5e),(2.5f),(2.5g),and(2.5h).Again,due to (2.2c)z n+1is not restricted,therefore ensuring that the whole argument can be established iteratively.Now we shall prove that(τ,ξ)∈S(l)by showing that(2.4a)-(2.4f)hold.First, (2.4b)is implied by(2.3),then(c3)and(2.5e)imply(2.4c),(2.4d)and(2.4f).Finally,(2.4e) is implied by(c4).Now,we have established that

S(l)?(πW?πP)Q(l,l),(2.7) and hence completed the proof.

Let us now discuss the conditions posed in the theorem,i.e.(c1)-(c6).The?rst two conditions arise as su?cient conditions to guarantee that we can establish(2.3).These con-ditions are adopted from[29,28].In the same reference,some variants of the conditions are also presented.Conditions(c3)-(c5)are essential,because of the passive nature of the controller.Since the controller only has passive transitions,it cannot be used to in?uence the active transitions in the plant,hence(c3)and(c4).Condition(c5)is there to guarantee that the location of the controller can accurately follow that of the plant,without any possibility of being misleaded due to some nondeterminism.Finally,condition(c6)is there to guarantee that the choice for z n does not in?uence the choice for z n+1.As explained above,this in turn guarantees that the whole reasoning can be done iteratively(interval wise).

2.5HBA and CPDP

The connection between HBA and CPDP is that they are both automata frameworks using active/passive transitions.The di?erences are:HBA is not stochastic(i.e.there are are no spontaneous transitions and the reset maps are non-stochastic).Except for the stochastic as-pects,HBA is a more general framework than CPDP:instead of the di?erential equations in CPDP,HBA uses the more general behavioral approach and instead of letting the reset map depend on the current state only,the HBA reset maps may depend on the entire trajectory in the current location.

The objective of the control problem,treated in this chapter,is to control the continuous dynamics in each location.This means that in fact each location has its own control objec-tive.In order to achieve this control objective,the controller needs to know at all times in which location the process is.This is where the active/passive framework is used:as soon as the process switches to another location with an active transition labelled a,the controller observes this switch via a passive transition labelledˉa.

The extension of this control problem to a stochastic hybrid system context is,although promising,a non-trivial one.One problem is that in the current framework of CPDPs in-teraction of the continuous dynamics with a controller dynamics is not possible.However, since the interconnection of plant and continuous controller will normally result in ordinary

closed-loop di?erential equations,such an extension is perfectly allowable from a PDP point of view.Thus allowing these kinds of continuous interactions for CPDP opens possibilities to treat the control problem of this chapter also in the CPDP context.

Chapter3

Value-passing CPDPs

In the CPDP-model as it is de?ned in[33],it is not possible that one component can inform another component about the value of its continuous state.In Dynamically Colored Petri Nets,this is possible(see[9])and later in this chapter we will see an example where this feature is used.In this chapter we introduce a new CPDP-model(see[34]),in which this feature is also present.We chose to follow a standard method of data-communication,called value-passing.Value-passing has been de?ned for di?erent models like LOTOS([18]).Value-passing can be seen as a natural extension to(the standard)communication through shared events because it is also expressed through”shared events”/”synchronization of transitions”.

3.1De?nition of the value-passing CPDP

We introduce a new de?nition for CPDP,where communication of data is possible.A CPDP is a tuple(L,V,W,v,w,F,G,Σ,A,P,S),where

?L is a countable set of locations

?V is a set of state variables.With d(y)for y∈V we denote the dimension of variable y.y∈V takes its values in R d(y).

?W is a set of output variables.With d(y)for y∈W we denote the dimension of variable y.y∈W takes its values in R d(y).

?v:L→2V maps each location to a subset of V,which is the set of state variables of the corresponding location

?w:L→2W maps each location to a subset of W,which is the set of output variables of the corresponding location

?F assigns to each location l and each y∈v(l)a mapping from R d(y)to R d(y),i.e.

F(l,y):R d(y)→R d(y).

?G assigns to each location l and each y∈w(l)a mapping from R d(x1)+···+d(x m)to R d(y), where x1till x m are the state variables of location l.

?Σis the set of communication labels.ˉΣdenotes the’passive’mirror ofΣand is de?ned asˉΣ:={ˉa|a∈Σ}.

?A is a?nite set of active transitions and consists of5-tuples(l,a,l ,G,R)and6-tuples (l,a,l ,G,R,val),denoting a transition from location l∈L to location l ∈L with com-munication label a∈Σ,guard G,reset map R and(if present)value-passing identi?er val.G is a subset of the active output variable space.val can be equal to either!Y or ?Y.For the case!Y,Y is a subset of w(l),meaning that this transition can pass the values of the variables from Y to other transitions in other components.For the case ?Y,Y?R n for some n∈N,meaning that this transition asks for inputs with values in R n(which should be passed/o?ered by other transitions in other components).Only inputs that are in Y are accepted.The reset map R assigns to each point in G×Y(for the case(l,a,l ,G,?Y))or to each point in G(for all other cases)for each state variable y∈v(l )a probability measure on the invariant(and its Borel sets)of y for location l .?P is a?nite set of passive transitions of the form(l,ˉa,l ,R).R is de?ned on all interior points.

?S is a?nite set of spontaneous(also called Poisson)transitions and consists of5-tuples (l,λ,a,l ,R),denoting a transition from location l∈L to location l ∈L with com-munication label a∈Σ,jump-rate functionλand reset map R.The jump rateλis

a mapping from Inv l to R+.R is de?ned on all interior points of l as it is done for

spontaneous transitions.

Composition is de?ned via the following composition rules.Rule r1data is concerned with value-passing,the other rules are not.

r1data.

l1a,G1,R1,v1

?→l 1,l2a,G2,R2,v2

?→l 2

l1|P A|l2a,G1|G2,R1×R2,v1|v2

?→l 1|P A|l 2

(a∈A,v1|v2=⊥).

Here,v1|v2is de?ned as:v1|v2:=!Y if v1=!Y and v2:=?Y or if v2=!Y and v1:=?Y (with dim(Y )=dim(Y));v1|v2:=?(Y1∩Y2)if v1=?Y1and v2=?Y2and dim(Y1)=dim(Y2); v1|v2:=⊥otherwise.⊥here means that v1and v2are not compatible.G1|G2is de?ned as follows:G1|G2:=(G1∩Y)×G2if v1=!Y and v2=?Y;G1|G2:=G1×(G2∩Y)if v1=?Y and v2=!Y ;G1|G2:=G1×G2if v1=?Y1and v2=?Y2.Here,G∩Y,which is abuse of notation,means{y∈G|y↓z∈Y},where z is the set of variables received by the?Y transition.

In these de?nitions of v1|v2and G1|G2we see an interplay between the output guards G1,G2and the input guards Y1,Y2:In the synchronization of an(l1,a,l 1,G1,R1,!z)transition with a(l2,a,l 2,G2,R2,?Y)transition,Y restricts the guard G1such that the z-part of G1 lies within Y.This restriction can not be coded in v1|v2(as it is done in the?Y1-?Y2-case), therefore we need to code it in the output guards.The composition rules that do not concern value passing are as follows.

r1.

l1a,G1,R1

?→l 1,l2a,G2,R2

?→l 2

l1|P A|l2a,G1×G2,R1×R2

?→l 1|P A|l 2

(a∈A),

r2.

l1a,G1,R1

?→l 1,l2ˉa,R2?→l 2

l1|P A|l2a,G1×Id,R1×R2

?→l 1|P A|l 2

(a∈A),

r3.

l1a,G1,R1

?→l 1,l2ˉa?→

l1|P A|l2a,G1×Id,R1×Id

?→l 1|P A|l2

(a∈A). r4.

l1ˉa,R1

?→l 1

l1|P A|l2ˉa,R1×Id

?→l 1|P A|l2

(ˉa∈P).

r5.

l1ˉa,R1

?→l 1,l2ˉa,R2?→l 2

l1|P A|l2ˉa,R1×R2

?→l 1|P A|l 2

(ˉa∈P),

r6.

l1ˉa,R1

?→l 1,l2ˉa?→

l1|P A|l2ˉa,R1×Id

?→l 1|P A|l2

(ˉa∈P)

r7.

l1λ,a,R1

?→l 1

l1|P A|l2?λ,a,R1×Id

?→l 1|P A|l2

,

where forξ=(ξ1,ξ2),?λ(ξ)=λ(ξ1).For an explanation of the communication possibilities

(and the composition rules)of the|P A|operator,we refer to[33].

We chose to de?ne a guard(of an active transition)as a subset of the output space.On

the one hand,this can be seen as a restriction with respect to state-guards(although we

can always make output-copies of state variables).On the other hand,the notion of output-

guards might be more appropriate when dealing with equivalences that depend on external

behaviors(like bisimulation).

We chose not to assigns guards or value-passing to passive transitions.This is to keep

things as simple as possible.Technically it is possible to assigns guards to passive transitions,

but this will blow up the number of composition rules and the number of transitions in the

composite system:Two passive transitions with shared eventˉa and with guards G1and G2

will result in three transitions with guards G1×G2,G1×?G2and?G1×G2.Synchronization of two active transitions with guards always results in only one transition.A similar thing

happens if we assign value-passing to passive transitions.We might consider using(output)

value passing for spontaneous transitions.

3.2Free Flight in air tra?c example

In this section we give a CPDP model for a part of the Pilot-?ying-DCPN model.See[25]

and[10]for more information about this model and its broader context.This model consists

of several local Petri nets(LPNs).We concentrate on one local Petri net called Current goal.

This LPN interacts with several other LPNs from Pilot-?ying and also with LPNs outside

Pilot-?ying(for example with the LPN HMI PF from the DCPN called ACCMS).We chose

for concentrating on current goal because there are interesting interactions present in this

LPN and the question is whether we can model these interactions as well in CPDP or not.

In our CPDP model we model the component current goal almost as detailed as the DCPN

model.For the rest,we only model LPNs that are connected to the current goal.These components will be modelled very abstractly(only the parts that are interesting as far as current goal is concerned).

3.2.1System description

We describe component Current goal detailed and we describe components Task performance, Memory,Audio alert and HMI-PF abstractly.We start with the abstract components and end with Current goal.

Component HMI-PF is a failure-indicator.There are?ve systems that can fail:Engine, navigation,ASAS,ADS-B Rec,ADS-B Transm.The HMI-PF system itself can also fail,then we say that it is in non-working mode(otherwise it is in working mode).If one(or more)of the?ve systems fail,this can be seen by the pilot from this HMI-PF component.

Component Audio alert sends a signal as soon as there is an alert.In the signal is coded which goal needs to be achieved by the pilot:C1-collision avoidance,C2-emergency actions, C3-con?ict resolution,C4-navigation vertical,C5-navigation horizontal,C6-preparation route change,C7-miscellaneous.In case of C2,it is also speci?ed which failure causes the emergency(this can be one of the?ve systems indicated by HMI-PF or failure number six: other emergency).

Component Memory memorizes which goals need to be achieved.If the pilot is busy achieving a goal while Audio alert signals that another goal(with lower priority than the current goal)needs to be achieved,then this new goal can be stored in the memory.As soon as the pilot is ready with the current goal,he can retrieve from the memory which subset of C1till C7needs to be done(and in case C2which failure is present).

Component Task performance is the largest LPN of the DCPN Pilot?ying,it monitors which task is being performed by the pilot.It has many interactions with other LPNs(inside and outside Pilot?ying).We only describe it abstractly.In order to achieve one goal,the pilot needs to perform six tasks:T1-monitoring,T2-monitoring and decision,T3-coor-dination,T4-execution,T5-execution monitoring,T6-monitoring and goal prioritization. For reasons of convenience we say that when the pilot is ready with the six tasks(and waiting for the next goal to be achieved)he is performing task T7-end task.Because there are seven goals,each consisting of seven tasks,it is clear why this component has a large state space and many interactions.In our CPDP-model we abstract the seven times seven states back to two states:A endtask-state(the pilot is not performing a task)and a task-state(the pilot is performing some task for some goal).

Component Current goal monitors which goal(C1-C7)is now being achieved by the pilot.This component has interaction with(and only with)the four components described above.Thus,the four components described above form(abstractly)the entire interaction-environment of current goal.The state of current goal re?ects the current goal which is one of C1-C7and in case C2it also re?ects the failure that is currently being resolved.The state of this component can be changed in two ways:

申通

目录 一、申通快递概况 二、主要经营业务 三、经营模式 四、快件操作流程 五、申通快递优劣势分析 六、申通快递在运作中存在的问题 七、建议

一、申通快递概况 申通快递有限公司(以下简称“申通快递”)成立于2007年,注册资本5000万,是申通快递网络的总部,拥有注册商标“STO申通快递”。申通快递负责对申通快递网络加盟商的授权许可、经营指导、品牌管理等。目前,申通快递担任中国快递协会、上海快递行业协会和浙江快递行业协会副会长单位,旗下的加盟商在各个省份也分别担任着副会长或理事单位。 申通快递品牌创建于1993年,是国内最早经营快递业务的品牌之一,经过十多年的发展,申通快递在全国范围内形成了完善、流畅的自营速递网络,基本覆盖到全国地市级以上城市和发达地区县级以上城市,尤其是在江浙沪地区,基本实现了派送无盲区。申通快递在全国各省市有六百多个一级加盟商(包括西藏拉萨等偏远地区)和两千多个二级加盟商、四千多个门店,50多个分拨中心,全国网络共有从业人员四万多名,上万辆干线和支线网络车,日均业务量近百万票,年营业额超过四十亿元,成为国内快递网络最完整、规模最大的民营快递体系。 申通快递主要提供跨区域快递业务,市场占有率超过百分之十,使公司成为国内快递行业的龙头企业之一。随着国内快递需求的多样化,公司紧贴市场,不断进行产品创新,继续提供传统快递服务的同时,也在积极开拓新兴业务,包括电子商务物流配送服务、第三方物流和仓储服务、代收货款业务、贵重物品通道服务等,目前已经成为国内最重要的电子商务物流供应商。 在未来,公司将继续致力于民族品牌的建设和发展,不断完善终端网络、中转运输网络和信息网络三网一体的立体运行体系,立足传统快递业务,全面进入电子商务物流及3PL物流领域,以专业的服务和严格的质量管理来推动中国物流和快递行业的发展,成为对国民经济和人们生活最具影响力的企业之一。 二、主要经营业务 目前,公司的经营业务主要分为三部分。即:同城快递、省际快递和国际快递。 同城快递:主要从事本省市地区内的快件传送,一般传送当天件。 省际快递:申通内部网省际件分邻近省市采用汽车运输,一般两天到达;远距离地区采用航空和铁路等运输工具。 国际快递:通过外商协作,公司和国外的建立了快件来往。 三、经营模式 1、直属形式:申通有自己的网点,这些网点更方便管理,保证了服务质量。 2、加盟形式:利用加盟形式,申通已经成为民营快递中网点最多,覆盖最广的企业。

力矩电机控制系统设计

力矩电机控制系统 一、设计目的及任务 力矩电机分直流力矩电机和交流力矩电机,其工作原理和普通直流和交流电 机的工作原理是一样的。但是不同的是直流力矩电机的电枢绕组的电阻比普通直流电机的电枢绕组的电阻大,同样交流力矩电机转子的电阻比普通交流电机的转子电阻大。对于力矩电机我们注重它的技术参数主要是额定堵转电压,额定堵转电流和额定堵转电流下的堵转时间。 力矩电机的特点是具有软的机械特性,可以堵转。当负载转矩增大时能自动 降低转速,同时加大输出转矩。当负载转矩为一定值时改变电机端电压便可调速,但转速的调整率不好。因而在电机轴上加一测速装置,配上控制器,利用测速装置输出的电压和控制器给定的电压相比,来自动调节电机的端电压,使电机稳定。 设计任务就是要设计一个控制系统来控制力矩电机,使其产生满足要求的力矩。 1、能产生所要求的力矩,可用于一些地面模拟设备上,用来模拟设备运行时的干扰力矩; 2、可用于控制系统设计课程实验设备或是控制算法的验证。 二、设计要求 本系统为力矩电机的控制系统,设计要求如下: 1、可以产生三种固定的力矩波形; 2、可以根据要求任意设定力矩波形,这样可以大大增加系统的灵活性; 3、可以实现单片机和PC的相互传输; 4、控制精度高,响应快; 5、力求简单,实用。 三、设计方案 系统的装置由光电码盘,稀土永磁直流力矩电机和飞轮组成。 在控制器的设计上,为了做到简单、实用,选择了常用的PID控制;为了提高系统的控制精度,从软件上对系统进行误差补偿。 1、系统工作原理 通过控制向力矩电机施加的电流,向飞轮施加力矩,使飞轮加速后减速旋转,反作用力矩通过模拟器机械装置的底座同时施加到连接的转台上,达到向状态施加力矩的作用,全部过程再闭环控制下进行。系统总体框图如图1所示: 图1.系统总体框图 2、控制系统描述 电机转动的角度经光电码盘检测转化为脉冲输出,对脉冲信号进行计算就得 到角度转动的累计值,控制计算机将指令与光电码盘输出的角度信号相比较,得

申通快递业务操作规范标准

汇通快递业务操作规 总则 一、为贯彻落实《汇通快递网络服务管理制度》,向客户提供标准便捷的快递服务,依据《中华人民国邮政法》、《快递服务标准》及其他有关法律法规的规定,特制的本规。 二、工作人员向客户提供的业务受理、快件揽收、快件分拣、快件投递、快件查询均适用本规。 分则 第一章业务受理 三、网点公司工作人员根据客户来电、系统下单等方式所提供的快件信息,初步确认是否可以收寄。对于可以收寄的快件通知业务员上门取件,对不可收寄的快件的,告知客户不予收寄的理由。 第二章业务揽收 四、业务员对于初步确认可以揽收的快件在约定的时间提供上门取件服务。 (一)、工作准备: 1.确保通讯工具、交通工具的工作状态良好; 2.确认面单、封装物、胶带、电子称、工具刀等以及价目表、宣传册、发票等物料票据准备齐全; 3.确认工作证件、驾驶证件、车辆证件携带齐全; 4.保证个人仪容仪表,调整好工作状态; 5.熟知最新的公司业务动态。 6.至客户处要确保交通工具停放妥当,不违章,不影响他人; 7.妥善放置已揽收快件; 8.进门先整理好个人仪表,主动向客户表明身份,并出示证件,说明来意。 (二)快件核查: 1.确认客户寄递的快件是否在汇通网络派送区域之,对不在服务区域的快件可向客户提供解决方案或不予收寄;

2.严格按照《汇通快递寄递物品安全管理办法》的要求对快件验视,若属于禁寄物品或限寄物品的,则不予收寄,若发现违反国家法律法规的物品必须及时向公司及国家相关部门报告。 (三)快件包装: 指导或者协助客户使用规包装物料和充填物品包装快件,使快件符合中转运输的要求,确保寄递物品安全。 (四)运单填写及称重收费: 1.告知客户阅读运单背书条款,并提醒客户贵重物品建议保价; 2.对运单客户已填好的,对填写容进行检查;.若客户未填写运单,则指导客户填写或代为客户填写,并让客户在指定的位置签名; 3.对已包装好的快件进行称重,确认支付方和支付方式,并在运单指定的位置注明; 4.将填写好的运单、标识等规贴在快件的合适位置; 5.将运单客户联留存给客户,并为客户开具票据; 6.对已揽收的快件做信息采集,并上传至系统。 (五)将揽收快件在规定的时间运回处理点,并将运单公司留存联及费用交给相关的工作人员。 五、对客户上门交寄的快件参照以上流程处理。 第三章快件分拣 六、处理中心工作人员对快件进行分拣封发工作,包括到件接收、分拣、封装、发运等。 (一)工作准备: 1.熟知最新的操作处理通知; 2.领取操作工具包括扫描设备、拆剪封装工具、笔、包签、防护工具等; 3.检查扫描设备、传输设备是否正常。 (二)快件接收: 1.引导快件运输车辆准确停靠,核对车辆及押车人员身份;

申通快递简介

五指山团队 2011-8-18 申通快递有限公司简介 成立时间:1993年 成立愿景:以百年老店为梦想,以快递业务为核心,走专业化的发展战略。申通秉承“客户是我们的衣食父母!只要心中装着客户,我们就一定能够战胜一

切困难”的企业精神。 上市情况:正在筹备上市 申通快递有限公司发展历史: 快递行业发展状况 一、宏观环境:

当前,我国快递服务业正迎来历史上最好的发展机遇。据国家邮政局2007年全国首次快递服务统计调查显示,快递业需求旺盛,发展速度明显高于国民经济及第三产业,快递业务较第三产业增加值增幅高出个百分点,为20%。所有被调查快递企业的从业人员数量增长%,快递业务量增长%,快递业务收入增长25%。初步测算,去年国有、民营、外资快递企业分别实现快递业务收入亿元、亿元、亿元,分别占快递业务总收入的%、%、33%。民营快递企业业务收入虽然较国有和外资占比较少,但凭借其灵活的经营方式、相对低廉的服务成本等,在国内同城快递业务市场中优势比较明显。我国快递业在加速商品流通、促进对外贸易、服务各行各业、满足居民消费、提升第三产业、扩大人口就业等方面,为国民经济做出了重要贡献,已成为推动我国社会经济发展和改善人民生活质量的一支重要的力量。 二、民营快递发展背景 上个世纪90年代初,中国港、台地区的劳动密集型产业已大量转移到中国珠江三角洲,但中国内陆当时并不具备直接服务于发达市场的基础设施和能力,普遍的做法是来料/来件加工或进料加工。设立在珠三角的合资企业依据外商的要求搞出货样后寄回香港,得到香港公司的确认后再批量生产。香港因此成为中

国内陆与发达市场之间的贸易桥梁,来往的商务文件、货样、商品目录等不但量大而且时效性强。 三、国内、国外的政策 国家邮政局发布了《快递业务操作指导规范》。《规范》中规定,快递企业在接单后,宜在2小时内取件;取件后,宜在3小时内将快件送交快递营业场所。上门收寄时,要保证已收取快件的安全,严禁将已收取快件单独放置在无人保管的地方。《规范》不仅对收寄、分拣、运输、投递等关键作业环节提出规范要求,也明确对快递营业和分拣处理场所的设备设施提出基本要求。同时,对于目前社会普遍关注的收寄验视、快件分拣、快件安全等问题,《规范》都提出了指导性意见。 四、社会的需求 越来越多的传统企业进入电子商务领域,例如:消费品类企业、家电企业、服装企业等

力矩电机控制器 工作原理

本控制器为代替三相自耦变压器,而专门设计的一种先进的全电子化控制装置,能工作在电阻、电感性负载。广泛适用于五金机械塑料、电线、电缆、绳网、印刷、造纸、纺织、印染、化疑纤、橡绞、电影胶皮等各种机械、机电行业。 与三相自藕调压器相比较,本控制器由于采用了电子调节,无触点磨损,电压调节平衡,起动性能好,本控制器具有体积小、重量轻、效率高、发热小、节约能源(经测定平均节能17%以上),使用寿命长、安装、维修方便。 二、工作条件: 1、环境温度:-25℃~+55℃。 2、空气相对湿度:≤85%(20℃±5℃)。 3、无显著冲击震动外。 4、工作电压:三相电压交流380V、220V(±10%)。 5、50~60HZ。 三、工作原理: 三相调压器调速控制器主回路采用进口双向可控硅,改变可控制硅的开放角大小,就能使电机或其它负载的工作电压从0至375V连续可调,也就实现了平衡地调压调速过程,以满足不同生产的工艺要求。 在可控硅控制电路中采用了三相同步集成模块,加入了电流正反馈,构成一个闭环控制系统。既提高了力矩电机的机械性硬度,又改善了力矩电机在低电压时的起动性能,同时还提高了力矩电机的过载能力,扩大了力矩电机的使用范围。为了使调速过程尽快进入稳定状态,在控制回路中还加入了电压反馈,以提高控制器的技术性能。 四、使用方法: 接线说明:请严格按以下接线示意图接线,D1、D2、D3三点为控制器的输出端,接力矩电机的电源线柱W1V1U1(Ⅱ型力矩电机必须为Y接法及星型接法,电机中性点W2V2U2必须严格接电源零线N,否则,本控制器无法正常工作或烧毁本装置。) 1、调速旋钮旋至零位。 2、接通总电源,打开控制器开关。(指示灯亮) 3、整好面板上反馈设定按键。(一般不需调节,出厂时已按常规设定好,可适用不同启动电压的力矩电机)。 4、调节调速电位器旋钮,使电机达到你所需的速度。

申通快递业务操作规范

汇通快递业务操作规范 总则 一、为贯彻落实《汇通快递网络服务管理制度》,向客户提供标准便捷的快递服务,依据《中华人民共和国邮政法》、《快递服务标准》及其他有关法律法规的规定,特制的本规范。 二、工作人员向客户提供的业务受理、快件揽收、快件分拣、快件投递、快件查询均适用本规范。 分则 第一章业务受理 三、网点公司工作人员根据客户来电、系统下单等方式所提供的快件信息,初步确认是否可以收寄。对于可以收寄的快件通知业务员上门取件,对不可收寄的快件的,告知客户不予收寄的理由。 第二章业务揽收 四、业务员对于初步确认可以揽收的快件在约定的时间内提供上门取件服务。 (一)、工作准备: 1.确保通讯工具、交通工具的工作状态良好; 2.确认面单、封装物、胶带、电子称、工具刀等以及价目表、宣传册、发票等物料票据准备齐全; 3.确认工作证件、驾驶证件、车辆证件携带齐全; 4.保证个人仪容仪表,调整好工作状态; 5.熟知最新的公司业务动态。 6.至客户处要确保交通工具停放妥当,不违章,不影响他人; 7.妥善放置已揽收快件; 8.进门先整理好个人仪表,主动向客户表明身份,并出示证件,说明来意。 (二)快件核查: 1.确认客户寄递的快件是否在汇通网络派送区域之内,对不在服务区域内的快件

可向客户提供解决方案或不予收寄; 2.严格按照《汇通快递寄递物品安全管理办法》的要求对快件验视,若属于禁寄物品或限寄物品的,则不予收寄,若发现违反国家法律法规的物品必须及时向公司及国家相关部门报告。 (三)快件包装: 指导或者协助客户使用规范包装物料和充填物品包装快件,使快件符合中转运输的要求,确保寄递物品安全。 (四)运单填写及称重收费: 1.告知客户阅读运单背书条款,并提醒客户贵重物品建议保价; 2.对运单客户已填好的,对填写内容进行检查;.若客户未填写运单,则指导客户填写或代为客户填写,并让客户在指定的位置签名; 3.对已包装好的快件进行称重,确认支付方和支付方式,并在运单指定的位置注明; 4.将填写好的运单、标识等规范贴在快件的合适位置; 5.将运单客户联留存给客户,并为客户开具票据; 6.对已揽收的快件做信息采集,并上传至系统。 (五)将揽收快件在规定的时间内运回处理点,并将运单公司留存联及费用交给相关的工作人员。 五、对客户上门交寄的快件参照以上流程处理。 第三章快件分拣 六、处理中心工作人员对快件进行分拣封发工作,包括到件接收、分拣、封装、发运等。 (一)工作准备: 1.熟知最新的操作处理通知; 2.领取操作工具包括扫描设备、拆剪封装工具、笔、包签、防护工具等; 3.检查扫描设备、传输设备是否正常。 (二)快件接收:

力矩电机

当负载增加时,电动机的转速能自动的随之降低,而输出力矩增加,保持与负载平衡。力矩电机的堵转转矩高,堵转电流小,能承受一定时间的堵转运行。由于转子电阴高,损耗大,所产生的热量也大,特别在低速运行和堵转时更为严重,因此,电机在后端盖上装有独立的轴流或离心式风机(输出力矩较小100机座号及以下除外),作强迫通风冷却,力矩电机配以可控硅控制装置,可进行调压调速,调速范围可达1:4,转速变化率≤10%。本系列电机的特性使其适用于卷绕,开卷、堵转和调速等场合及其他用途,被广泛应用于纺织、电线电缆、金属加工、造纸、橡胶、塑料以及印刷机械等工业领域。 力矩电机的特点是具有软的机械特性,可以堵转.当负载转矩增大时能自动降低转速,同时加大输出转矩.当负载转矩为一定值时改变电机端电压便可调速.但转速的调整率不好!因而在电机轴上加一测速装置,配上控制器.利用测速装置输出的电压和控制器给定的电压相比,来自 动调节电机的端电压.使电机稳定!具有低转速、大扭矩、过载能力强、响应快、特性线性度好、力矩波动小等特点,可直接驱动负载省去减速传动齿轮,从而提高了系统的运行精度。为取得不同性能指标,该电机有小气隙、中气隙、大气隙三种不同结构形式,小气隙结构,可以满足一般使用精度要求,优点是成本较低;大气隙结构,由于气隙增大,消除了齿槽效应,减小了力矩波动,基本消除了磁阻的非线性变化,电机线性度更好,电磁气隙加大,电枢电感小,电气时间常数小,但是制造成本偏高;中气隙结构,其性能指标略低于大气隙结构电机,但远高于小气隙结构电机,而体积小于大气隙结构电机,制造成本低于大气隙结构电机。 在纺织、造纸、橡胶、塑料、金属线材和电线电缆等工业中,需要将产品卷绕在卷筒(盘)上。卷绕的直径从开始至末了是越卷越大,为保持被卷物张力均匀(即线速度不变),就要求卷筒转速越卷越小,卷绕力越卷越大. 一、卷绕: 力矩电机 在电线电缆、纺织、金属加工、造纸等加工时,卷绕是一个十分重要的工序。产品卷绕时卷筒的直径逐渐增大,在整个过程中保持被卷产品的张力不变十分重要,因为张力过大会将线材的线径拉细甚至拉断,或造成产品的厚薄不均匀,而张力过小则可造成卷绕松驰。为使在卷绕过程中张力保持不变,必须在产品卷绕到卷盘上的盘径增大时驱动卷筒的电机的输出力矩也增大,同时为保持卷绕产品线速度不变,须使卷盘的转速随之降低,力矩电动机的机械特性恰好能满足这一要求。

申通快递服务合同通用范本

内部编号:AN-QP-HT534 版本/ 修改状态:01 / 00 The Contract / Document That Can Be Held By All Parties Of Natural Person, Legal Person And Organization Of Equal Subject Acts On Their Establishment, Change And Termination Of Civil Rights And Obligations, And Defines The Corresponding Rights And Obligations Of All Parties Participating In The Contract. 甲方:__________________ 乙方:__________________ 时间:__________________ 申通快递服务合同通用范本

申通快递服务合同通用范本 使用指引:本协议文件可用于平等主体的自然人、法人、组织之间设立的各方可以执以为凭的契约/文书,作用于他们设立、变更、终止民事权利义务关系,同时明确参与合同的各方对应的权利和义务。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 甲方:____ 乙方:____ 公司地址:____ 公司地址:____ 电话:____ 电话:____ 根据《中国人民共和国合同法》等有关法律法规,甲乙双方经友好协商,在平等自愿的基础上就甲方为乙方提供国际国内(速递)服务,签订如下合同,以期共同遵守。 本合同包括: 第一条:服务内容、区域 1.1 乙方委托甲方办理国际国内的物流(速递)服务业务。 1.2 服务区域:甲方在全国各地所开通的

申通快递服务合同

申通快递服务合同 甲方承运方: 乙方托运方: 甲乙双方本着诚信、互利、长期共赢的态度进行合作。为明确甲乙双方的权利和义务,根据《中华人民共和国合同法》及相关规定,经甲乙双方友好协商,就甲方为乙方提供国 内快递运输服务及相关费用结算事宜,达成如下协议: 一、合同说明 二、收件方式 三、双方的责任和义务 1、乙方同意由甲方为其提供国内快递运输服务,和按本协议规定支付给甲方相关费用。乙方在使用甲方服务时,须使用甲方所提供的专属快递账号,对其负保密责任,对该 帐号下发生的全部费用向乙方承担付款责任。 2、乙方在使用甲方快递服务时,须正确、认真、如实填写甲方快递运单,在必要时,应向甲方提供与货物运送有关的资料和文件。 3、乙方应遵守国家对于禁运品的有关规定,并保证所交付的物品或物品中所夹带的 物件不属于国家法律、法规、规章规定的禁止或限制运输物及其他危害运输安全的物品, 如实申报货物品名等。如因乙方违反本规定而造成的全部损失由乙方承担。 4、发件人采用由收件人或第三方付费时,乙方应承担因收件人或第三方拒绝付费时 支付该运费及其他费用的责任。 5、甲方在承诺时间内必须送达乙方快件,甲乙双方收发件人口头约定亦有效。 6、双方之权利义务适用甲方国内运单背面所载条款以及相关法律、法规的规定。因 乙方责任而造成货物损失的,乙方需按甲方国内运单规定负赔偿责任。 四、费用与结算 1、运价按照甲乙双方约定执行。在本协议书有效期内,甲方保留因特殊情况如部分 地区不能到达转EMS而调整价格的权利,但必须事前与乙方进行沟通,在征得乙方同意之后,方可改发其他方式。 2、约定快递费用:以本协议的所属附件附件一附件二为准。

交流力矩电机控制器的电路原理与检修

交流力矩电机控制器的电路原理与检修 交流力矩电机控制器的电路原理与检修 一、交流力矩电动机性能简述 力矩电动机,又分为交流力矩电动机和直流力矩电动机,在电路结构上与一般的交、直流电动机相类似,但在性能上有所不同。本文以交流力矩电机控制器的原理和检修内容为重点。交流力矩电动机转子的电阻比变通交流电动机的转子电阻大,其机械特性比较软。对力矩电机的使用所注重的技术参数主要是额定堵转电压、额定堵转电流和额定堵转电流下的堵转时间等。 力矩电动机是一种具有软机械特性和宽调速范围的特种电机,允许较大的转差率,电机轴不是像变通电机一样以恒功率输出动力而是近似以恒定力矩输出动力。当负载增加时,电机转速能随之降低,而输出力矩增加;力矩电动机的堵转电流小,能承受一定时间的堵转运行。配以晶闸管控制装置,可进行调压调速,调整范围达1:4;力矩电动机适用于纺织、电线电缆、金属加工、造纸、橡胶塑料以及印刷机械等工业领域,其机械特性特别适用于卷绕、开卷、堵转和调速等工艺流程。 早期对力矩电动机的调速和出力控制,是采用大功率三相自耦变压器,来调节力矩电机的电源电压,电力电子技术相对成熟后,逐步过渡到采用晶闸管调速(调压)电路和变频器调速(调频),实施对力矩电动机的调速控制。交流力矩电动机的晶闸管调速控制器,与一般的三相晶闸管调压电路(主电路结构和控制电路)是相同的,只不过驱动负载有所不同而已。有的设备在控制环节引入电流或电压负反馈闭环控制,改善了起动和运行性能,也提高了机械特性硬度。 2 、一款最简单的力矩电动机控制器 _此主题相关图片如下,点击图片看大图: 图1 HDY-2型力矩电机控制器 这是一款适用于额定堵转电流12A以下小功率三相力矩电动机的控制器电路,整机电路安装于一个小型机壳内,机器留有6个接线端子,三个为电源进线端子,三个为电机接线端子。主电路采用双向晶闸管BT139(三端塑封元件),工作电流16A,耐压600V,触发电流≤50mA。两只双向晶闸管串接于L1、L2电源支路,L3直通,省去了一只双向晶闸管。因为三相电源经负载互成回路,只对两相电源进行移相调压控制,即改变了三相输出电压。移相触发电路和调光台灯的控制思路相同,用R、C积分电路与双向触发二极管相配合,提供双向晶闸管每个电网周期内正、负半波的两个触发电流,实现交流调压。470k电位器为双联电位器,调节时使两只双向晶闸管的控制角同步变化,使输出三相电压平衡。 〔故障实例1〕HDY-2型力矩电机控制器,工作不正常,检测为输出电压不平衡。U、W之间输出电压为380V。检查发现L1电源所接双向晶闸管BT139击穿损坏,失去调压功能,导致三相输出电压不平衡。 晶闸管调压电路中,发现1000V以下截止电压的器件,较易发生击穿损坏故障。BT139为截止电压600V的管子,处于交流电压峰值500V的边缘,虽然实际上有200V的截止电压余量(标定击穿电压值尚有100V富裕量),若用于优质电网(未被污染,电压呈较好的正弦波),一般没有问题。但问题是现在的电网,因非线性整流设备的大量安装和应用,好多地区电网波形畸变已相当严重,这使得晶闸管调压设备的运行(电气)环境变得恶劣,设备本身的应用,又反过来加剧了电网的劣变。用户和供应厂商,往往又出于成本的考虑,省掉了安装该类设备必须追加的输入电抗器!所以导致晶闸管调压设备的高故障率,表现为耐电压稍低的晶闸管模块屡被击穿! 遇有此类故障,须尽量更换反向耐压值高的管子。对于屡损晶闸管的场所,应追加输入电抗器,以改善电网供电质量。 更换损坏晶闸管器件,在三相供电回路中串入了3只由XD1-25扼流圈代作的三相电抗器,交付用户使用后,晶闸管击穿的故障率大为降低。

申通快递合同范本

申通快递合同范本 申通快递公司服务合同 申通快递有限公司是“申通快递”品牌及有关商标的合法持有人,该品牌和商标由申通快递有限公司授权加盟“申遒快递”网络并独立承担责任的快递服务单位在提供快递服务中使用: 本合司的快递服务是接受托运入(寄件人)委托,承担递送快件物品义务,并收取相应快递服务费用的单位。 本合同的托运人(寄件人)是委托快递服务单位递送快件物品并支付快递服务费用的单位或者个人。 为了明确快递服务中双方的权利义务,托运人(寄件人)和快递服务单位特约定如下条款: 一、托运人(寄件人)权利和义务:对交寄的快件物品可以自愿选择是否保价;获得快递服务单位安全、及时的快递服

务;交寄快件物品不属于国家禁止寄递范围,并进行妥善包装;诚实告知交寄快件物品的状况;准确、工整地填写快递详情单,并依照相关规定出示有效证件。 二、快递服务单位的权利和义务:依法收寄快件物品,并根据约定提供安全、及时的快递服务;对信件以外的快件物品按照有关规定可以当场验视,对禁寄及拒绝验视的有权不予收寄;向托运人(寄件人)提供自交寄之日起一年内的查询眼务。 三、因自然性质,合理损耗以及托运人(寄件人)或收货人的过错,造成所交寄快件物品毁损灭失的,快递服务单虚不承担赔偿责任。对特殊性质的快件物品(如重要物品,易损坏的物品等),托运人(寄件人)应做特殊处理,并向快递服务单位作出特别声明,或实行保价措施。 托运人(寄件人)违规交寄快件物品或包装不善导致快递服务单位物品或第三人物品等损失的,托运人应当向快递服务单位或第三人承担民事赔偿责任。 四、保价条款:托运人(寄件人)可根据交寄快件物品的重要性、易损性等,自主选择保价或不保价快递服务品种。

力矩电机调速控制器的设计

设计(论文)专用纸力矩电机调速控制器的设计 学校: 昆明理工大学 学院: 应用技术学院 姓名: 专业班级:电子信息工程081 指导教师单位: 应用技术学院 指导教师姓名:仉月仙 指导教师职称:讲师

设计(论文)专用纸Torque motor speed controller design University: Kunming University of Science and Technology Faculty: Faculty of Applied Technology Name: Wu Wen Ya Professional class: Electronic Information Engineering 081 Faculty Adviser Unit: Faculty of Applied Technology Faculty Adviser Name: Zhang Yue Xian Professional Title: Lecturer

设计(论文)专用纸 目录 摘要 (1) ABSTRACT (2) 前言 (3) 第一章绪论 (5) 1.1力矩电机 (5) 1.2调压调速 (6) 1.3课题研究的背景及其意义 (7) 1.4设计的主要目标任务 (7) 第二章设计方案及其论证 (9) 第三章系统硬件电路设计 (12) 3.1电源模块设计 (12) 3.1.1 电源的方案设计 (12) 3.1.2 元器件的选择 (12) 3.1.3 电源电路的电路图 (15) 3.1.4 元器件明细表 (15) 3.2主电路的模块设计 (16) 3.2.1 主电路方案设计 (16) 3.2.2 元器件的选择 (16) 3.2.3 主电路电路图 (19) 3.2.4 元器件明细表 (19) 3.3控制电路部分设计 (20) 3.3.1 控制电路方案设计 (20) 3.3.2 控制电路元件的选择 (20) 3.3.3 控制电路电路图 (30) 3.3.4 元件明细表 (31) 第四章调试与制作 (33) 4.1制作过程 (33) 4.2调试过程 (33) 结论 (36) 总结与体会 (37) 谢辞 (39)

申通快递有限公司服务合同

申通快递公司服务合同 申通快递有限公司是“申通快递”品牌及有关商标的合法持有人,该品牌和商标由申通快递有限公司授权加盟“申遒快递”网络并独立承担责任的快递服务单位在提供快递服务中使用: 本合司的快递服务是接受托运入(寄件人)委托,承担递送快件物品义务,并收取相应快递服务费用的单位。 本合同的托运人(寄件人)是委托快递服务单位递送快件物品并支付快递服务费用的单位或者个人。 为了明确快递服务中双方的权利义务,托运人(寄件人)和快递服务单位特约定如下条款: 一、托运人(寄件人)权利和义务:对交寄的快件物品可以自愿选择是否保价;获得快递服务单位安全、及时的快递服务;交寄快件物品不属于国家禁止寄递范围,并进行妥善包装;诚实告知交寄快件物品的状况;准确、工整地填写快递详情单,并依照相关规定出示有效证件。 二、快递服务单位的权利和义务:依法收寄快件物品,并根据约定提供安全、及时的快递服务;对信件以外的快件物品按照有关规定可以当场验视,对禁寄及拒绝验视的有权不予收寄;向托运人(寄件人)提供自交寄之日起一年内的查询眼务。

三、因自然性质,合理损耗以及托运人(寄件人)或收货人的过错,造成所交寄快件物品毁损灭失的,快递服务单虚不承担赔偿责任。对特殊性质的快件物品(如重要物品,易损坏的物品等),托运人(寄件人)应做特殊处理,并向快递服务单位作出特别声明,或实行保价措施。 托运人(寄件人)违规交寄快件物品或包装不善导致快递服务单位物品或第三人物品等损失的,托运人应当向快递服务单位或第三人承担民事赔偿责任。 四、保价条款:托运人(寄件人)可根据交寄快件物品的重要性、易损性等,自主选择保价或不保价快递服务品种。 如托运人(寄件人)对交寄快件物品选择不进行保价,则双方确认交寄快件物品实际价值不超过其支付的快递费用5倍。选择不保价服务品种的,如交寄物件物品毁损灭失,按照双方在快递详情单上的约定进行赔偿,如双方没有约定,按照最高赔偿标准不超过托运人(寄件人)已支付快递费用的5倍赔偿。 选择保价服务品种的,双方确认交寄快件物品实际价值不超过人民币10万元,若快件物品毁损灭失的,则按实际损失赔偿;保价费按照所保价快件物品价值的1%-3%计收,托运人在向快递服务单位办理保价手续时,应当向快递服务单位交付能够证明快件物品价值的有效凭证,经快递服务单位的查验确认,取得快递服务单位开具并盖有公章戳记的保价

力矩控制器原理与接线

力矩控制器 一.概述 力矩控制器为代替三相自耦变压器,而专门设计的一种先进的全电子化控制装置,能工作在电阻、电感性负载。此控制器广泛应用于五金机械塑料、电线、电缆、绳网、印刷、造纸、纺织、印染、化疑纤、橡绞、电影胶皮等各种机械、机电行业。 与三相自藕调压器相比较,本控制器由于采用了电子调节,无触点磨损,电压调节平衡,起动性能好,本控制器具有体积小、重量轻、效率高、发热小、节约能源(经测定平均节能17%以上),使用寿命长、安装、维修方便。 二.技术参数 1.输入电压:三相交流电压 380V±10% 2.输出电压:三相交流电压 0-380V 3.额定电流:标称电流(面板上标称的电流) 4.输出电压可以无极调节,从而使电机实现无极调速 5、频率50~60HZ。 三.工作环境 1、环境温度:-25℃~+55℃。 2、空气相对湿度:≤85%(20℃±5℃)。 3、无显著冲击震动。 四.工作原理 三相调压器调速控制器主回路采用进口双向可控硅,改变可控硅的开放角大小,就能使电机或其它负载的工作电压从0至380V连续可调,也就实现了平衡地调压调速过程,以满足不同生产的工艺要求。 在可控硅控制电路中采用了先进的集成电路,加入了电

流回馈, 构成一个循环控制系统。既提高了力矩电机的机械性硬度,又改善性能,同时还提高了力矩电机的超载能力,扩大了力矩电机的使用范围。为了使调速过程尽快进入稳定状态,在控制回路中还加入了电压回馈以提高控制器的技术性能。 五.使用方法 1. 接线说明:请严格按以下接线示意图接线:D1、D2、D3三点为 控制器的输出端,接力矩电机;A 、B 、C 、为输入端接三相380V 电源。 N 为零线接口,接零线。 2.旋钮旋至零位。 3.总电源。(指示灯亮) 4.控制开关,调节调速电位器旋钮,使电机达到你所需的速度。 5. 电位器为精密长寿电位器。 六.注意事项 1.严禁输出短路。 2.严禁使用中,负载电流超过过面板标称电流值。 3、严禁零线N 接入电机星点. 4、若控制器出现问题务必请专业人员检修,以免使故障范围扩大. 六.接线图 A B C D1D2D3A B C 输入 380V 输出 0~380V V 1 U1 W1 W2V 2U2力矩电机 A B C D1D2D3 A B C 输入 380V 输出 0~380V V 1 U1 W1 W2V 2U2力矩电机 N

申通快递淘宝业务服务标准

申通快递淘宝业务服务标准 申通快递—淘宝业务服务标准 一、服务承诺 1、物流运输中是有一定风险的~包括丢失和损坏~为避免商家不必要 的损失~请务必按物流公司的要求进行包装。 2、下定单时希望能够确定大概的来收货时间~同时可以通过查看申通网站或通过“申通在线客服“获得当地网点的电话~直接联系确认为 佳。 3、在17:00前下的订单,冬季在东北限于14:00前,~当天原则上完 成取件~如有特殊情况将电话联系客户重新确定时间。 4、申通公司原则上不接受粉末、液体类物品~绝对拒绝化工及其它国家规定的违禁物品~一旦发现瞒报发运~申通有权拒绝提供服务。造成损失的将视后果的严重程度采取进一步的法律措施。涉及化妆品等常见民用产品的~需在申通总公司做书面备案~并在我们认可的包装 条件的条件下方可发运。 5、各位商家务必能做好发货准备~包括包装和填写“申通—淘宝”专用运单~并在运单上清晰的填写上淘宝物流号~以便于我们的信息匹 配~确保及时的信息反馈及查询。 6、业务员揽收时只负责检查外包装情况~客户必须使用申通公司不干胶的封口条,每个申通网点的编号不同~便于我们今后界定责任,~并 在箱子或袋口的各个接缝处贴上。 7、客户发出货物后~网上查询一旦发觉不正常~应即刻与“申通在线 客服”直接联系,了解当地申通电话可到申通网站查询。

8、申通公司无法承诺货物一定送到收货人本人手上~但承担由此可能 带来的遗失风险。 9、我司业务员派送时要求客户先检视外包装的完整,特别是箱体封口处的不干胶是否损坏,和确认内无明显的破碎声后再签收~申通业务员无帮助检视内件情况的义务。如有异常状态~可拒绝收货并要求退回,但必须注明原因并签名,~退回费用由申通公司承担,但因包装不 良导致的封口贴损坏由发件方承担~参见包装要求1,。 10、申通公司严禁业务人员派送时要求客户自提或下楼甚至到小区门口接货~发生此类问题~请商家到“申通在线客服“进行投诉。,所派送地区的受物业管理限制或特殊军事管理区限制的除外。对于学校派送~要求事先联系收件人~并在约定的时间内送达收件人指定的收件 地。, 二、理陪及相关事项 1、为保证服务质量~我们对部分服务内容进行了服务承诺~一旦发生服务不达标~我们将使用支付宝上的专用帐号进行赔付。任何关于理 陪事宜~请与”申通在线客服”联系。 2、违反服务承诺第3条的~经过核实~申通公司承诺赔款10元RMB/票。 3、违反服务承诺第10条的~经过核实~申通公司承诺赔款10元RMB/ 票。 4、发生乱收费的现象~经核实确认~申通公司将退还多收费用并承诺 赔款RMB10元/票。 5、目前我们暂不接受保价运输~客人如有需求~可建议联系当地申通 网点~并走申通贵重物品专用通道,收费可能会高于一般价格,。 6、对未保价递送物品的灭失、损毁~按实际损失的价值赔偿~但最高

力矩电机控制器工作原理

一、力矩电机控制器工作原理: 力矩电机控制器Y LJ-K-3-F系列是在原YKT-3,LTS系列力矩电机控制器的基础上 改制的一种新型的电子调压(开、闭环)控制装置,主要特点是在线速度变化后,张力仍能保持在所允许的范围内,适用于卷绕产品时的张力基本保持不变,电机性能与卷绕性能协调匹配,因此能代替传统复杂的设备系统,可大大节省投资。是机电一体化力矩电机的理想配套装置。控制器采用可控硅对电机无级调速、电压调节平稳,起动性能好、体积小、重量轻、效率高、解决传统设备维护困难的缺点,延长使用寿命。本控制器有开环、闭环控制两种模式。开环控制有系统简单、调整方便等优点,闭环控制是指系统中由检测传感器,如张力传感器、速度传感器、电流传感器、位移传感器、温度传感器、流量传感器等,将所需控制的物理量转换成电压讯号反馈到控制器中,控制器通过调压方式对这些物理量实现闭环控制。控制器采用GB3797-89及Q/JBHZ2-99标准。 主要技术数据 1、额定电压:三相380V±10%;频率:50Hz或60Hz。 2、输出电压范围:电压从70V到365V。 3、输出最大电流:6、8A、12、22、32、50、80A。 4、输出电压三相偏差:±3%。 5、转矩调节比:10﹕1。 使用条件 1、环境温度:-5℃~+40℃,温度变化率应不大于5℃/h。 2、相对湿度:在40℃时,不超过50%;在20℃以下时,不超过90%,相对湿度的变化率不超过5%/h,且无凝露现象。 3、安装使用地点的海拔高度不超过1000m。 4、控制器在使用环境中,不得有过量的尘埃和足以使电气元器件金属腐蚀的气体。 5、控制器工作时,外部振动频率≦150Hz,振动加速度不得超过5m/s2。 6、交流输入电源 a、电压持续波动范围±10%;短暂波动不超过-10%~+15%; b、频率波动不超过±2%,频率的变化速度不超过±1%/S ; c、三相电源的不平衡度不大于2%; d、波形畸变不超过5%。 工作原理与电路特性: 控制器主要电路采用三相全波Y联接,可任意选择所需要的负载形式,即为三角形或星形(星形负载中线不必联接);与其他类型电路相比这样的电路优点是输出谐波分量低,使电机内部损耗小于任何一种其他类型的电路,则电路效率高,并对邻近通讯电路干扰小,是控制器各种形式主电路中最为理想的一种。 控制器采用进口的双向晶闸管,改变流过电机交流电流的导通角,从而使电机的工作电压从70V~365V连续可调,以适应不同的工作情况;控制电路中采用宽脉冲及光电耦合管来触发主晶闸管,采用自动跟踪控制方法,用三相网路相位同步控制,保证三相输出自动平衡,并通过输出反馈控制,能有效地防止电机在运行过程调压失控;其次对电机起动、关机均采取了控制措施。因此产品性能优良,具有抗干扰能力强,起动性能好,平稳,无电流冲击,运行稳定,可靠等优点。

申通快递服务合同

申通快递服务合同 随着我国经济发展水平的提高,社会经济活动日益频繁,快递产业迅速进入中国,快递企业不断增加,对于申通快递服务合同你了解多少呢?以下是小编为大家整理的申通快递服务合同范文,欢迎参考阅读。 申通快递服务合同范文1 甲方(承运方): 乙方(托运方): 甲乙双方本着诚信、互利、长期共赢的态度进行合作。为明确甲乙双方的权利和义务,根据《中华人民共和国合同法》及相关规定,经甲乙双方友好协商,就甲方为乙方提供国内快递运输服务及相关费用结算事宜,达成如下协议: 一、合同说明 二、收件方式 三、双方的责任和义务

1、乙方同意由甲方为其提供国内快递运输服务,和按本协议规定支付给甲方相关费用。乙方在使用甲方服务时,须使用甲方所提供的专属快递账号,对其负保密责任,对该帐号下发生的全部费用向乙方承担付款责任。 2、乙方在使用甲方快递服务时,须正确、认真、如实填写甲方快递运单,在必要时,应向甲方提供与货物运送有关的资料和文件。 3、乙方应遵守国家对于禁运品的有关规定,并保证所交付的物品或物品中所夹带的物件不属于国家法律、法规、规章规定的禁止或限制运输物及其他危害运输安全的物品,如实申报货物品名等。如因乙方违反本规定而造成的全部损失由乙方承担。 4、发件人采用由收件人或第三方付费时,乙方应承担因收件人或第三方拒绝付费时支付该运费及其他费用的责任。 5、甲方在承诺时间内必须送达乙方快件,甲乙双方收发件人口头约定亦有效。 6、双方之权利义务适用甲方国内运单背面所载条款以及相关法律、法规的规定。因乙方责任而造成货物损失的,乙方需按甲方国内运单规定负赔偿责任。 四、费用与结算

申通快递企业文化

申通快递企业文化 企业价值观:即通过快速把客户的快件传递为价值,继而转化为企业的价值;去最大化的提供员工展示价值的空间,来最大化实现企业的上升空间;最大化的为社会创造的价值,企业也将最大化的得到的社会回报。质量方针:快速、安全、准确、周到,客户的满意,申通的追求。服务理念:申通快递,一如亲至,用心成就你我申通营销模式:品牌形象统一: 全网络采用统一的申通商标等形象。 服务规范统一: 加盟网点采用统一的客户服务规范,保证客户服务的快件 快速、安全、准确、周到。 信息管理统一: 各网点采用电脑系统,所有的管理信息在此一系统中完成数据扫描、上传和查询。总部作为系统的管理与维护者,对信息进行统一管理。服务口号:对客户满意的承诺,是申通坚定的信仰, 以人为本是申通永远的准则, 接受挑战是申通人必备的精神, 团队精神是申通网络运行的保障, 帮助别人就是帮助自己,是申通人的信条。 一、公司简介 公司成立运2007年,注册资本5000万,是申通快递网络的总部,拥有注册商标“品牌STO”申通快递。申通快递品牌创立1993年,是国

内最早经营快递业务品牌之一。申通快递主要提供跨区域快递业务,市场占有率超过百分之十,使公司成为国内快递行业的龙头老大之一。目前,申通快递介入电子商务配送业务已经开始起步,并计划新业务拆资千万,目前,一套全新的标准化流程和服务已经设计完毕,软件系统也已具备代收货款功能。 二、主要经营业务 申通公司主要经营的产品分成三部分。即:市内件、省内件和国际件。同城快递:主要从事本省市地区内的快件传送,一般传送当天件。省际快递:申通内部网省际间分邻近省市采用汽车运输,一般两天到达,远距离地区采用航空和铁路等运工具。 国际快递:通过外商协作,公司和国外的建立了快件来往。三、经营模式 1、直属形式:申通有自己的网点,这些网点更钢鞭管理,保证;服务质量。 2、加盟形式:利用加盟形式,申通已经成为民营快递中网点最多,覆盖最广的企业。 四、快递操作流程 1、客户下订单通知取件上门取件快件入库分拨转运出库派运客户签收交款交单 1、客户下单:如果是新客户,客户人员应为客户设立客户代码,快递人员取时通知客户并记下。客户人员在接电话时,五笔记录客户地址、公司名称、联系电话、联系人,告知大致取件时间。 2、通知取件:客户人员接到客户电话后,通知所属地区快递人员,

申通快递公司规章制度

申通快递公司规章制度

申通快递公司规章制度 【篇一:申通快递标准化管理现状及策略】 快递标准化管理现状及策略 [论文摘要] 我国快递企业在物流标准化管理工作中主要存在以下问题:企业管理者和员工存在物流标准化意识、质量意识淡薄现象;物流标准化管理思想和制度宣传贯彻不够;标准实施组织执行不力,过程中监督管理不够。针对国内快递企业在物流标准化管理中存在的主要问题,提出以下几点优化策略:①转变观念,找准定位;②建立健全物流标准化管理制度,加强管理制度的贯彻实施;③加强物流标准化监督工作。 物流快递业在运输业中不可低估的地位,早在1993年,全球十大运输企业排名中,第二及第九位均为主要从事快递服务的公司,经过近20年的发展,快递业在发达国家的地位更加稳固,不仅如此,发达国家为了提速快递运作效率,都积极致力于建立现代物流标准化管理系统。 我国快递业发展尚属起步阶段,快递业物流标准化管理工作更是相对落后于快递业,影响了我国快递一体化和电子商务的发展,不利于我国快递系统之间以及与国际快递系统之间的兼容。 一、我国快递企业的标准化管理现状 1.什么是物流标准化 物流标准化是流通业现代化的基础。物流标准化是以物流系统为对象,围绕运输、储存、装卸、包装、以及物流信息处理等物流活动制定、发布、实施有关技术和工作方面的标准,并按照技术标准和工作标准的配合性要求,统一整个物流系统的标准的过程。标准化可以加速流通速度,保证物流质量、减少物流环节,降低物流成本,极大提

使各项工作条理化、标准化和规范化,以求得最佳工作秩序、工作质量和工作效率。”“标准操作程序”这个概念强调的是标准的程序,而中国标准化协会对“工作程序标准”的定义 更强调的是标准和规定。因此,我们可以把sop定义为“达到了工作程序标准要求的程序或流程。” 我国一些快递企业通过了sop,它的整个操作流程如调度、取件、站操作、集散操作、派送等各个环节的生产作业制定了标准规程,快递操作的工作人员如客服人员、调度、递送员等也都规定了统一的操作规范和作业要求,不仅如此,许多快递企业在邮政编码的正确书写、快递服务人员的着装、操作区域的安置、安全监视系统、派送车辆的标志、检修维护、取件派送的管理要求、递送员出车、取件、理货、交接、信息的发送及接收、分拣、装袋等涉及到快件流转的方方面面都制定了一系列的标准。标准的制定,为企业进行有效地管理奠定了良好的基础。 操作标准的制定,微观上使公司运作更加规范,提高了工作效率,保障了货物、人员及车辆的安全性,使公司以统一形象、标识和服务规范面对客户,提高了企业在客户心目中的地位。宏观上起到了提高了技术创新能力、开拓了市场、提高企业的管理水平,有利于企业的规模效益等作用。 标准的制定不一定代表标准执行的到位。在标准执行过程中,企业中存在草草行事,走形式,不照章办事的现象,没有起到实质作用,经常发生不按标准操作的现象,致使快件丢失、延误经常发生,为公司造成了极大的损失,影响了企业的形象。究其原因,主要表现在以下几个方面: (1)企业管理者和员工存在物流标准化意识、质量意识淡薄现象,有了标准也不认真执行,对企业标准的实施不能进行有效地监督,有“人治”而非“法治”现象。实际上,标准的知识应该当成企业领导和员工

相关文档
最新文档