液体及固体介质声速测量陈忠

液体及固体介质声速测量陈忠
液体及固体介质声速测量陈忠

液体及固体介质声速测量

(陈忠2013301020155 武汉大学物理科学与技术学院)

摘要:本实验用共振干涉法、相位比较法和时差法测定超声波在不同介质中的的传播速度,利用声波的传播速度与其频率和波长的关系和声波传播所经过的距离和传播时间的关系可获得声速。

关键词:声速,介质,时差法,相位比较法,共振干涉法。

Abstract: This study measured ultrasonic wave propagation velocity in different media with resonance interferometry, phase comparison method and the difference method, the relationship between distance and travel time relations and the use of acoustic wave propagation velocity of propagation of sound waves and their frequency and wavelength through which can get the speed of sound.

Key words: speed of sound, media, time difference, phase comparison method, resonance interferometry.

导言:声波是一种在弹性媒质中传播的机械波,频率低于Hz20的声波称为次声波;频率在kHz20~Hz20 的声波可以被人听到,称为可闻声波;频率在kHz20以上的声波称为超声波。由于超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。

实验原理:

1.共振干涉法

实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即

(3)

时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。

因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。本实

验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。从示波器上观察到的电信号幅值也是极大值(参见图2)。

图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。我们只要测出各极大值对应的接收器的位置,就可测出波长。由信号源读出超声波的频率值后,即可由公式(1)求得声速。

2.相位比较法

波是振动状态的传播,也可以说是位相的传播。沿波传播方向的任何两点同相位时,这两点间的距离就是波长的整数倍。利用这个原理,可以精确的测量波长。实验装置如图1所示,

沿波的传播方向移动接收器,接收到的信号再次与发射器的位相相同时,一国的距离等于

与声波的波长。

同样也可以利用李萨如图形来判断位相差。实验中输入示波器的是来自同一信号源的信号,它们的频率严格一致,所以李萨如图是椭圆,椭圆的倾斜与两信号的位相差有关,当两信号

之间的位相差为0或时,椭圆变成倾斜的直线。

3.时差法

用时差法测量声速的实验装置仍采用上述仪器。由信号源提供一个脉冲信号经发出一个脉冲波,经过一段距离的传播后,该脉冲信号被接收,再将该信号返回信号源,经信号源内部线路分析、比较处理后输出脉冲信号在、之间的传播时间t,传播距离L可以从游标卡尺上读出,采用公式(2)即可计算出声速。

4.逐差法处理数据

在本实验中,若用游标卡尺测出个极大值的位置,并依次算出每经过个的距离为

这样就很容易计算出。如测不到20个极大值,则可少测几个(一定是偶数),用类似方法计

算即可。

实验数据与结果:

固体用时差法;

1:有机棒中的声速

v

2.铜棒中的声速:

v

液体中的相位比较法和共振干涉法:

水中的声速相位法:温度:t= 13。9 0C 谐振频率:f=37598 HZ

141.95mm

λ=

11577.24/

v m s =

240.53mm

λ=

21523.85/

v m s

=

水中的声速共振干涉法:温度T=13.90C 谐振频率:f=37598 HZ

群速度与相速比较:

群速度和相速度是导波理论中的重要概念,也是导波的主要参数。群速度(cg )是指脉冲波的包络上具有某种特性(如幅值最大)的点的传播速度,它是波群的能量传播速度。通俗的说,群速度是关于一族频率相近的波的传播速度。而相速度(cp)是波上相位固定的一点传播方向的传播速度。值得注意的是,导波以其群速度向前传播。

相速度表格

t/

误差与结论;1 关于误差

其实做这个实验需要极其精细的操作。为了得到更精确的结果,不仅要每个人时刻集中精力观察仪器,操作仪器,而且需要两个人的默契配合。当然,还是有一些最基本的需要注意的地方,如操作距离旋钮时,旋转最好不要太快,接近读数点时要放慢速度,最好不要逆向旋转旋钮;示波器的图像最好调节到合适的大小位置,以便观察和减小误差。观察李萨如图像时应选取水平或垂直线段中的一者为标准,否则无法判断移动的是波长还是半波长。此时应将图像尽量放大,因为观察重合时图像较小会导致误差很大。

当然最终测得的结果还是有一定的误差,但误差已经很小了。观察测得得空气中声速发现几种测量方法的测量结果都偏大,一个重要的原因就是空气中含有水蒸汽及其它杂质,声音在这些物质中的传播速度都要比在空气中的传播速度大,所以最后的测量结果都偏大。而使用相位法测得的结果与真实值最接近,因为这个方法观察图像时,是在图像变化到重合时读数,判断图像重合成直线是相对容易的,所以误差会较小

本实验通过媒质中声速的测定,可以了解媒质的特性或状态变化。例如,测量氯气(气体)、蔗糖(溶液)的浓度、氯丁橡胶乳液的密度以及输油管中不同油品的分界面等等,这些问题都可以通过测定这些物质中的声速来解决。可见,声速测定在工业生产上具有一定的实用意义。同时,通过液体中声速的测量,了解水下声纳技术应用的基本概念。

)客观评价本方案的优缺点

该实验谐振频率变化对超声声速的测量结果影响可以忽略不计,而波长的变化比谐振频率变化所引起的超声声速的测量结果影响大得多,不可以忽略不计。从而可知该实验结果产生误差的主要原因来自超声声速波长的准确测定,也可以把谐振频率作为常数来进行数据处理。

参考文献:赵凯华钟细华主编。光学。北京大学出版社

杭州精科空气、液体及固体介质中的声速测量实验讲义

声速测量实验报告

大学物理实验课教案 俸永格(136********) 教学题目:声速的测量 教学对象:10级电子信息班、10动医学班、10级农机班、10级植保班。授课地点:海南大学基础实验楼2610室。 教学重点:让学生了解测量超声波在媒介中传播速度的实验设计思想和实验方法。 教学难点:让学生熟练掌握双踪示波器、SV5/7测试仪、SV8信号源的协调使用并完成两正交信号相位差的多次测量。 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: GW-680双踪示波器一台,SV8信号发生器一台,SV7测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×104Hz的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)

间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ×f λ=2X v = 2X×f 原理图示1(驻波法原理图) (二)相位法测量声速基本原理 请同学们自行完成!要求体现以下两个方面的内容! (1)简谐振动正交合成的基本原理, (2)利用李萨如图形的相位差特点间接测量声速的基本原理。 四实验内容与步骤 (一)驻波法测声速 实验连线图示1(驻波法) (1)了解测试仪的基本结构,调节两个换能器的间距5cm左右。 (2)初始化示波器面板获得扫描线。 (3)按图示1正确连线,将示波器的扫描灵敏度与通道1垂直灵敏度旋钮分别调至适当档位,缓慢顺时针方向转动换能器平移鼓轮至驻波波腹位置

声速测定实验报告

【实验目的】 1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。 2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。 3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。 【实验原理】 在波动过程中波速V 、波长λ和频率f 之间存在着下列关系:λ?=f V ,实验中可通过测定声波的波长λ和频率f 来求得声速V 。常用的方法有共振干涉法与相位比较法。 声波传播的距离L 与传播的时间t 存在下列关系:t V L ?= ,只要测出L 和t 就可测出声波传播的速度V ,这就是时差法测量声速的原理。 1.共振干涉法(驻波法)测量声速的原理: 当二束幅度相同,方向相反的声波相交时,产生干涉现象,出现驻波。对于波束1:)/X 2t cos(A F 1λ?π-ω?=、波束2:()λ?π+ω?=/X 2t cos A F 2,当它们相交会时,叠加后的波形成波束3:()t cos /X 2cos A 2F 3ω?λ?π?=,这里ω为声波的角频率,t 为经过的时间,X 为经过的距离。由此可见,叠加后的声波幅度,随距离按()λ?π/X 2cos 变化。如图28.1所示。 压电瓷换能器1S 作为声波发射器,它由信号源供给频率为数千周的交流电信号,由逆压电效应发出一平面超声波;而换能器2S 则作为声波的接收器,正压电效应将接收到的声压转换成电信号,该信号输入示波器,我们在示波器上可看到一组由声压信号产生的正弦波形。声源1S 发出的声波,经介质传播到2S ,在接收声波信号的同时反射部分声波信号,如果接收面(2S )与发射面(1S )严格平行,入射波即在接收面上垂直反射,入射波与发射波相干涉形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器2S 处的振动情况。移动2S 位置(即改变1S 与2S 之间的距离),你从示波器显示上会发现当2S 在某些位置时振幅有最小值或最大值。根据波的干涉理论可以知道:任何二相邻的振幅最

大学物理实验课后答案

实验一霍尔效应及其应用 【预习思考题】 1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。 霍尔系数,载流子浓度,电导率,迁移率。 2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型? 以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。 3.本实验为什么要用3个换向开关? 为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电 流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。总之,一共需要3个换向开关。 【分析讨论题】 1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行? 若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。 2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源? 误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。 实验二声速的测量 【预习思考题】 1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定? 答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。由数显表头读出每一个电压最大值时的位置,即对应的波节位置。因此在系统处于共振的条件下进行声速测定,可以容易和准确地测定波节的位置,提高测量的准确度。 2. 压电陶瓷超声换能器是怎样实现机械信号和电信号之间的相互转换的? 答:压电陶瓷超声换能器的重要组成部分是压电陶瓷环。压电陶瓷环由多晶结构的压电材料制成。这种材料在受到机械应力,发生机械形变时,会发生极化,同时在极化方向产生电场,这种特性称为压电效应。反之,如果在压电材料上加交

声速测量实验报告

声速测量实验报告 【实验目的】 1.学会测量超声波在空气中的传播速度的方法。 2.理解驻波和振动合成理论。 3.学会用逐差法进行数据处理。 4.了解压电换能器的功能和培养综合使用仪器的能力。 【实验仪器】 信号发生器、双踪示波器、声速测定仪。 【实验原理】 声波的传播速度v与声波频率f和波长的关系为: 可见,只要测出声波的频率f和波长 ,即可求出声速。f可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。 根据超声波的特点,实验中可以采用驻波法和相位法测出超声波的波长。 1. 驻波法(共振干涉法) 如右图所示,实验时将信号发生器输出的 正弦电压信号接到发射超声换能器上,超声发 射换能器通过电声转换,将电压信号变为超声 波,以超声波形式发射出去。接收换能器通过 声电转换,将声波信号变为电压信号后,送入示波器观察。 由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。此时,两换能器之间的距离恰好等于其声波半波长的整数倍。在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。 移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: Λ Λ3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

大学物理仿真实验实验报告 超声波测声速

大学物理仿真实验实验报告 试验日期: 实验者: 班级: 学号: 超声波测声速 一实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。下图是超声波测声速实验装置图。 驻波法测波长 由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分 别是:

叠加后合成波为: 的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 二实验仪器 1)声速的测量实验仪器 包括超声声速测定仪、函数信号发生器和示波器 2)超声声速测定仪 主要部件是两个压电陶瓷换能器和一个游标卡尺。 3)函数信号发生器 提供一定频率的信号,使之等于系统的谐振频率。 4)示波器 示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 三实验内容 1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。 3.用相位比较法测波长和声速。

*注意事项 1.确保换能器S1和S2端面的平行。 2.信号发生器输出信号频率与压电换能器谐振频率f 0保持一致。 三 数据记录与处理 1. 基础数据记录 谐振频率=33.5kHz 2. 驻波法测量声速 λ的平均值:==∑=1 6i i λλ 1.0585(cm ) λ的不确定度: ) 1()(6 1 2 --= ∑=i i S i i λλ λ=0.002(cm ) 因为,λi = (1i+6-1i ) /3,Δ仪=0.02mm 所以,=仪?= 3 32λu 0.000544(cm ) =+=22λ λλσu S 0.021(mm ) 计算声速: 50.354==λυf (m/s ) 计算不确定度: (m/s) 3)()((kHz) 2.03 %122=+==?= f f f f λσσσσλυ 实验结果表示:υ=(354±3)m/s ,=0.8% 3. 相位比较法测量声速

大学物理实验报告-声速的测量

实 验 报 告 声速的测量 【实验目的】 1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速 2.学会用逐差法进行数据处理; 3.了解声速与介质参数的关系。 【实验原理】 由于超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。 超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。 声波的传播速度与其频率和波长的关系为:v f λ=? (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。 1. 共振干涉法 实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即 (3) 时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。 因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。从示波器上观察到的电信号幅值也是极大值(参见图2)。 图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。我们只要测出各极大值对应的接收器的位置,就可测出波长。由信号源读出超声波的频率值后,即可由公式(1)求得声速。

声速测量实验报告.doc

声速测量实验报告 只有通过实验才能知道结果,那么,下面是我给大家整理收集的声速测量实验报告,供大家阅读参考。 声速测量实验报告1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张x——测量时间 张x——发声 贾x——测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间17∶30 温度21℃

发声时间 0.26″ 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。 声速测量实验报告2 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: 双踪示波器一台,信号发生器一台,测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×10Hz 的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ × f λ=2X v = 2X × f

大学物理实验超声波速测量实验报告

大学物理实验超声波速测量实验报告 一实验目的 1.了解超声波的物理特性及其产生机制; 2.学会用相位法测超声波声速并学会用逐差法处理数据; 3.测量超声波在介质中的吸收系数及反射面的反射系数; 4.并运用超声波检测声场分布。 5.学习超声波产生和接收原理, 6.学习用相位法和共振干涉法测量声音在空气中传播速度,并与公认值进行比较。 7.观察和测量声波的双缝干涉和单缝衍射 二实验条件 HLD-SV-II型声速测量综合实验仪,示波器,信号发生仪 三实验原理 1、超声波的有关物理知识 声波是一种在气体。液体、固体中传播的弹性波。声波按频率的高低分为次声波(f<20Hz)、声波(20Hz≤f≤20kHz)、超声波(f>20kHz)和特超声波(f≥10MHz),如下图。 声波频谱分布图 振荡源在介质中可产生如下形式的震荡波: 横波:质点振动方向和传播方向垂直的波,它只能在固体中传播。 纵波:质点振动方向和传播方向一致的波,它能在固体、液体、气体中的传播。 表面波:当材料介质受到交变应力作用时,产生沿介质表面传播的波,介质表面的质点做椭圆的振动,因此表面波只能在固体中传播且随深度的增加衰减很快。 板波:在板厚与波长相当的弹性薄板中传播的波,可分为SH波与兰姆波。

超声波由于其波长短、频率高,故它有其独特的特点:绕射现象小,方向性好,能定向传播;能量较高,穿透力强,在传播过程中衰减很小,在水中可以比在空气或固体中以更高的频率传的更远,而且在液体里的衰减和吸收是比较低的;能在异质界面产生反射、折射和波形转换。 2、理想气体中的声速值 声波在理想气体中的传播可认为是绝热过程,因此传播速度可表示为 μrRT =V (1) 式中R 为气体普适常量(R=),γ是气体的绝热指数(气体比定压热容与比定容热容之比),μ为分子量,T 为气体的热力学温度,若以摄氏温度t 计算,则:t T T +=0 K T 15.2730= 代入式(1)得, 00001V 1)(V T t T t T rR t T rR ++?+===μμ (2) 对于空气介质,0℃时的声速0V = m s 。若同时考虑到空气中的蒸汽的影响,校准后 声速公式为: s m p p T t w /)319.01)(1(45.331V 0++= (3) 式中w p 为蒸汽的分压强,p 为大气压强。 3、共振干涉法 设有一从发射源发出的一定频率的平面声波,经过空气传播,到达接收器,如果接收面与发射面严格平行,入射波即在接收面上垂直反射,入射波与反射波相干涉形成驻波,反射面处为位移的波节。改变接收器与发射源之间的距离l ,在一系列特定的距离上,媒质中出现稳定的驻波共振现象。此时,l 等于半波长的整数倍,驻波的幅度达到极大;同时,在接收面上的声压波腹也相应地达到极大值。不难看出,在移动接收器的过程中,相邻两次达到共振所对应的接收面之间的距离即为半波长。因此,若保持频率 v 不变,通过测量相邻两次接收信号达到极大值时接收面之间的距离(2/λ),就可以用λv =V 计算声速。 声压变化与接收器位置的关系:

声速的测量实验报告

声速的测量实验报告 声速的测量实验报告 1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张灏、成立敬测量时间 张海涛发声 贾兴藩测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间 17∶30 温度 21℃ 发声时间 0.26 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。

声速的测量实验报告2 实验目的: 1)探究影响声速的因素,超声波产生和接收的原理。 2)学习、掌握空气中声速的测量方法 3)了解、实践液体、固体中的声速测量方法。 4)三种声速测量方法作初步的比较研究。 实验仪器: 1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。 4)信号发生器: 5)示波器 实验原理: 1)空气中: a.在理想气体中声波的传播速度为 v88 (式中8088cp cV (1) 称为质量热容比,也称比热[容]比,它是气体的质 量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T是绝对温度,R=8.314472(11.710-6)Jmol-1K-1为摩尔气体常量。) 标准干燥空气的平均摩尔质量为Mst =28.9668710-3kg/mol b.在标准状态下(T088273.15 K,p88101.388kPa),干燥空气中的声速 为v0=331.5m/s。在室温t℃下,干燥空气中的声速为 v88v0 (2)

大学物理实验:超声声速测定

超声声速测定 声波特性的测量,如频率、波长、声速、声压衰减、相位等,是声波检测技术中的重要内容。特别是声速的测量,不仅可以了解媒质的特性而且还可以了解媒质的状态变化,在声波定位、探伤、测距等应用中具有重要的实用意义。例如,声波测井、声波测量气体或液体的浓度和比重、声波测量输油管中不同油品的分界面等等。 “声速的测量”是一个综合性声学实验。实验中采用压电陶瓷超声换能器通过驻波法(共振干涉法)和相位比较法测量超声波在空气中的传播速度,这是一个非电量电测方法的应用。通过这个实验可以重点学习如下内容:(1)实验方法:非电量的电测方法;测量声速的驻波法和相位比较法。(2)测量方法:利用示波器测量电信号的极大值和观察李萨如图形测量相位差的方法。(3)数据处理方法:求声波波长的逐差法。(4)仪器调整使用方法:双踪示波器和函数信号发生器的正确调节和使用方法。 【实验目的】 1.学习用驻波共振法和相位比较法测量超声波在空气中的传播速度。 2.了解压电换能器的功能。 3.学习用逐差法处理数据。 【实验仪器】 SVX-5型声速测试仪信号源、SV-DH系列声速测试仪、双踪示波器等

【实验原理】 频率介于20Hz ~20kHz 的机械波振动在弹性介质中的传播就形成声波,介于20kHz ~500MHz 的称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20KHz ~60kHz 之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器、效果最佳。 根据声波各参量之间的关系可知f ?=λυ,其中υ为波速, λ为波长,f 为频率。 图4-5-1共振法测量声速实验装置 在实验中,可以通过测定声波的波长λ和频率f 求声速。声波的频率f 可以直接从低频信号发生器(信号源)上读出,而声波的波长λ则常用相位比较法(行波法)和共振干涉法(驻波法)来测量。 图4-5-2 相位比较法测量声速实验装置 1.相位比较法 实验装置接线如图4-5-2所示,置示波器功能于X -Y 方式。当S1发出的平面超声波通过媒质到达接收器S2,合成振动方程为:

声速的测量实验报告.doc

声速的测量实验报告 不会写声速的测量实验报告的朋友,下面请看我给大家整理收集的声速的测量实验报告,仅供参考。 声速的测量实验报告1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张灏、成立敬——测量时间 张海涛——发声 贾兴藩——测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间17∶30 温度21℃

发声时间 0.26″ 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。 声速的测量实验报告2 实验目的: 1)探究影响声速的因素,超声波产生和接收的原理。 2)学习、掌握空气中声速的测量方法 3)了解、实践液体、固体中的声速测量方法。 4)三种声速测量方法作初步的比较研究。 实验仪器: 1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。 4)信号发生器: 5)示波器 实验原理: 1)空气中: a.在理想气体中声波的传播速度为 v88 (式中8088cp cV (1) 称为质量热容比,也称"比热[容]比",它是气体的质 量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T 是绝对温度,R=8.314472(1±1.7×10-6)Jmol-1K-1为摩尔气体常量。)

标准干燥空气的平均摩尔质量为Mst =28.966�8�710-3kg/mol b.在标准状态下 (T0�8�8273.15 K,p�8�8101.3�8�8kPa),干燥空气中的声速 为v0=331.5m/s。在室温t℃下,干燥空气中的声速为 v88v0 (2) (T0=273.15K) c.然而实际空气总会有一些水蒸气。当空气中的相对湿度为r时,若气温为t℃时饱和蒸气压为pS,则水汽分压为rps。经过对空气平均摩尔质量 M 和质量热容比8�0 的修正,在温度为t、相对湿度为r 的空气中,声速为 (在北京大气压可近似取p�8�4 101kPa;相对湿度r 可从干湿温度计上读出。温度t℃时的饱和水汽压ps可用 lgps�8�810.286�8�2 d.式(3)的计算结果与实际的超声声速真值可能有一定偏差。 引起偏差的原因有: ~状态参量的测量误差 ~理想气体理论公式的近似性 实验方法: A. 脉冲法:利用声波传播时间与传播距离计算声速 实验中用脉冲法测量,具体测量从脉冲声源(声发射器)到声探测器

大物实验报告声速测定(DOC)

声速测定 引言:本实验使用了超声声速测定仪、低频信号发生器(DF1027B)、示波器 (ST16B)设计了共振干涉法、相位比较法、时差法来进行超声速的测定,并对实验数据进行处理、分析,最终得出声速,并与理论值进行比较。 关键词:声速测定。 Abstract:This experiment uses the ultrasonic velocity measurement instrument (DF1027B), low frequency signal generator, oscilloscope (ST16B) design the resonance interferometry, phase comparison method, the time difference method for supersonic were measured, and the experimental data processing and analysis, finally obtains the speed of sound, and compared with the theoretical value. 一、实验目的 1、了解超声波换能器的工作原理和功能; 2、学习不同方法测定声速的原理和技术; 3、熟悉测定仪和示波器的调节和使用; 4、测定声速在空气中的传播速度。 二、仪器设备 ZKY_SS超声声速测定仪、低频信号发生器、示波器。 三、实验原理 由波动理论得知,声波的传播速度v与声波频率和波长之间的关系为。所以只要测出声波的频率和波长,就可以求出声速。其中声波频率可由产生声波的电信号发生器的振荡频率读出,波长则可用共振法和相位比较法进行测量。时差法可通过测量某一定间隔距离声音传播的时间来测量声波的传播速度。 压电陶瓷换能器 本实验采用压电陶瓷换能器来实现声压和电压之间的转换。它主要由压电陶瓷环片、轻金属铅(做成喇叭形状,增加辐射面积)和重金属(如铁)组成。压电陶瓷片由多晶体结构的压电材料锆钛酸铅制成。在压电陶瓷片的两个底面加上正弦交变电压,它就会按正弦规律发生纵向伸缩,从而发出超声波。同样压电陶瓷可以在声压的作用下把声波信号转化为电信号。压电陶瓷换能器在声—电转化过程中信号频率保持不变。 如图1所示,S1作为声波发射器,它把电信号转化为声波信号向空间发射。S2是信号接收器,它把接收到的声波信号转化为电信号供观察。其中S1是固定的,而S2可以左右移动。

《声速测量》实验报告

《声速测量》实验预习报告 一、 实验原理 1. 理论计算 理想气体中声波的传播速度为 M RT v γ= 其中,γ为比热容比,M是气体的摩尔质量,T是绝对温度,R=8.31441J/(mol ·K) 在室温t 下,干燥空气中的声速为 01T t v v + = 其中,s m v /5.3310=,K T 15.2730=。 但实际中空气并不是干燥的,所以修正的结果为 ??? ? ? ?+???? ? ?+=p rp T t v s 31.0115.3310 其中,r 为相对湿度,p s 为饱和蒸汽压,Pa p 510013.1?=。 2. 实验方法 由于λf v =,故只要测出频率和波长,就可以求出声速。 其中,声波频率由声源振动频率得到,再用相位法测得波长即可。波可以看成是相位的传播。沿传播方向上的任意两点,只要他们的振动状态相同,即同相或者相位差为2π的整数倍,

这时两点间的距离应等于波长λ的整数倍,即λn l=。 当在发射器的声波中沿传播方向移动接受器时,总可以找到一 个位置,使得接受器接受到的电信号和发射器的激励电信号同 相。继续移动接受器,知道接受的信号再一次和激励电信号同 相的时候,移过的距离必然等于声波的波长。利用利萨如图形 在两个电信号同相或反相时椭圆退化为友斜或左斜直线即可 判断。 二、实验步骤 1.连接电路。函数信号发生器的输出与超声波发射器的输入端及示波器的通道1相连;超声波接受器的输出端和示波器的 通道2相连。函数信号发生器置于正弦波输出,频率置于100kHz 档,输出幅度调到峰值10V左右。 2.用示波器观察加在声波发射器上的电信号和超声波接受器输出的电信号。先将函数信号发生器的频率调节到40kHz左右,然后细调频率,使接受器输出信号最大,记下此频率,即超声 波频率。实验过程中若有改变,记下最大最小值,最后取平均 值。 3.用相位法测波长。利用利萨如图找出同相点,每遇到一个同相点就测一次接受器的位置x,连续测20个,并用逐差法处 理。得到波长的平均值。计算声速。 4.在测量开始和结束时,先后记录室温t1和t2,以及相对湿

声速测定实验报告

【实验目的】 1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。 2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。 3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。 【实验原理】 在波动过程中波速V 、波长λ和频率f 之间存在着下列关系:λ?=f V ,实验中可通过测定声波的波长λ和频率f 来求得声速V 。常用的方法有共振干涉法与相位比较法。 声波传播的距离L 与传播的时间t 存在下列关系:t V L ?= ,只要测出L 和t 就可测出声波传播的速度V ,这就是时差法测量声速的原理。 1.共振干涉法(驻波法)测量声速的原理: 当二束幅度相同,方向相反的声波相交时,产生干涉现象,出现驻波。对于波束1:)/X 2t cos(A F 1λ?π-ω?=、波束2:()λ?π+ω?=/X 2t cos A F 2,当它们相交会 时,叠加后的波形成波束3:()t cos /X 2cos A 2F 3ω?λ?π?=,这里ω为声波的角频率,t 为经过的时间,X 为经过的距离。由此可见,叠加后的声波幅度,随距离按 ()λ?π/X 2cos 变化。如图28.1所示。 压电陶瓷换能器1S 作为声波发射器,它由信号 源供给频率为数千周的交流电信号,由逆压电效应发出一平面超声波;而换能器2S 则作为声波的接收器,正压电效应将接收到的声压转换成电信号,该信号输入示波器,我们在示波器上可看到一组由声压信号产生的正弦波形。声源1S 发出的声波,经介质传播到2S ,在接收声波信号的同时反射部分声波信号,如果接收面(2S )与发射面(1S )严格平行,入射波即在接收面上垂直反射,入射波与发射波相干涉形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器2S 处的振动情况。移动2S 位置(即改变1S 与2S 之间的距离),你从示波器显示上会发现当2S 在某些位置时振幅有最小值或最大值。根据波的干涉理论可以知道:任何二相邻的振幅最

声速测量实验报告

一、实验项目名称:声速测量 二、实验目的: 1.学会测量超声波在空气中传播速度的方法。 2.理解驻波和振动合成理论。 3.学会逐差法进行数据整理。 4.了解压电换能器的功能和培养综合使用仪器的能力。 三、实验原理: 1. 声波在空气中的传播速度: 在标况下,干燥空气中的声速为v=331.5m/s,T=273.15K。室温t℃时,干燥空气的声速为v=v。(1+t/T。)^(1/2) 2. 测量声速的实验方法:v=fλ式中,v声速,f声源震动频率,波长。 I.相位法 波是震动状态的传播,即相位的传播。若超声波发生器发出的声波是平面波,当接受器端面垂直于波的传播方向时,其端面上各点都具有相同的相位。沿传播方向移动接收器时,总可以找到一个位置使得接受到的信号与发射器的激励电信号同相。继续移动接受器,直到找到的信号再一次与发射器的激励电信号同相时,移过的这段距离就等于声波的波长。 需要说明的是,在实际操作中,用示波器测定电信号时,由于换能器振动的传递或放大电路的相移,接受器端面处的声波与声源并不同相,总是有一定的相位差。为了判断相位差并测量波

长,可以利用双踪示波器直接比较发射器的信号和接收器的信号,进而沿声波传播方向移动接收器寻找同相点来测量波长;也可以利用李萨如图形寻找同相或反相时椭圆退化成直线的点。 II.驻波法 按照波动理论,超声波发生器发出的平面声波经介质到接收器,若接收面与发射面平行,声波在接收面处就会被垂直反射,于是平面声波在两端面间来回反射并叠加。当接收端面与当接受端面与发射头间的距离恰好等于半波长的整数倍时,叠加后的波就形成驻波。此时相邻两波节(或波腹)间的距离等于半个波长(即)。当发生器的激励频率等于驻波系统的固有频率(本实验中压电陶瓷的固有频率)时,会产生驻波共振,波腹处的振幅达到最大值。 声波是一种纵波。由纵波的性质可以证明,驻波波节处的声压最大。当发生共振时,接收端面处为一波节,接收到的声压最大,转换成的电信号也最强。移动接收器到某个共振位置时,示波器上又会出现了最强的信号,继续移动接收器到某个共振位置,再次出现最强的信号,则两次共振位置之间距离为λ/2。四、实验仪器: 声速测试仪、信号发生器、示波器。 五、实验内容及步骤: 用驻波法测声速 (1)按图连接电路,将信号发生器的输出端与声速仪的输出

声速测量实验报告

声速测量实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

《声速测量》实验预习报告 一、 实验原理 1. 理论计算 理想气体中声波的传播速度为 M RT v γ= 其中,γ为比热容比,M是气体的摩尔质量,T是绝对温度,R=(mol ·K) 在室温t 下,干燥空气中的声速为 01T t v v + = 其中,s m v /5.3310=,K T 15.2730=。 但实际中空气并不是干燥的,所以修正的结果为 ??? ? ? ?+???? ? ?+=p rp T t v s 31.0115.3310 其中,r 为相对湿度,p s 为饱和蒸汽压,Pa p 510013.1?=。 2. 实验方法 由于λf v =,故只要测出频率和波长,就可以求出声速。 其中,声波频率由声源振动频率得到,再用相位法测得波长即可。波可以看成是相位的传播。沿传播方向上的任意两点,只要

他们的振动状态相同,即同相或者相位差为2π的整数倍,这时 两点间的距离应等于波长λ的整数倍,即λ n l=。 当在发射器的声波中沿传播方向移动接受器时,总可以找到一个 位置,使得接受器接受到的电信号和发射器的激励电信号同相。 继续移动接受器,知道接受的信号再一次和激励电信号同相的时 候,移过的距离必然等于声波的波长。利用利萨如图形在两个电 信号同相或反相时椭圆退化为友斜或左斜直线即可判断。 二、实验步骤 1.连接电路。函数信号发生器的输出与超声波发射器的输入端及示波器的通道1相连;超声波接受器的输出端和示波器的通道2相连。函数信号发生器置于正弦波输出,频率置于100kHz档,输 出幅度调到峰值10V左右。 2.用示波器观察加在声波发射器上的电信号和超声波接受器输出的电信号。先将函数信号发生器的频率调节到40kHz左右,然 后细调频率,使接受器输出信号最大,记下此频率,即超声波频 率。实验过程中若有改变,记下最大最小值,最后取平均值。 3.用相位法测波长。利用利萨如图找出同相点,每遇到一个同相点就测一次接受器的位置x,连续测20个,并用逐差法处理。 得到波长的平均值。计算声速。 4.在测量开始和结束时,先后记录室温t1和t2,以及相对湿度 r 1和r 2 ,并查出平均室温对应的饱和蒸汽压。若温度不是整数值,

大学物理实验报告-声速的测量

声速的测量 【实验目的】 1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速 2.学会用逐差法进行数据处理; 3.了解声速与介质参数的关系。 【实验原理】 由于超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行 声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。 超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常 见的方法是利用压电效应和磁致伸缩效应来实现的。本实验采用的是压电陶瓷制 成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。 声波的传播速度与其频率和波长的关系为: v f λ=? (1) 由(1)式可知, 测得声波的频率和波长,就可以得到声速。同样,传播速度亦可用 /v L t = (2) 表 示,若测得声波传播所经过的距离L 和传播时间t ,也可获得声速。 1. 共振干涉法 实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即 (3) 时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成 共振。 因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显

增大。从示波器上观察到的电信号幅值也是极大值(参见图2)。 图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。我们只要测出各极大值对应的接收器的位置,就可测出波长。由信号源读出超声波的频率值后,即可由公式(1)求得声速。 2.相位比较法 波是振动状态的传播,也可以说是位相的传播。沿波传播方向的任何两点同相位时,这两点间的距离就是波长的整数倍。利用这个原理,可以精确的测量波 长。实验装置如图1所示,沿波的传播方向移动接收器,接收到的信号再次与 发射器的位相相同时,一国的距离等于与声波的波长。 同样也可以利用李萨如图形来判断位相差。实验中输入示波器的是来自同一信号源的信号,它们的频率严格一致,所以李萨如图是椭圆,椭圆的倾斜与两信 号的位相差有关,当两信号之间的位相差为0或时,椭圆变成倾斜的直线。 3.时差法 用时差法测量声速的实验装置仍采用上述仪器。由信号源提供一个脉冲信号经发出一个脉冲波,经过一段距离的传播后,该脉冲信号被接收,再将该信号返回信号源,经信号源内部线路分析、比较处理后输出脉冲信号在、之间 的传播时间t,传播距离L可以从游标卡尺上读出,采用公式(2)即可计算出声速。 4.逐差法处理数据 在本实验中,若用游标卡尺测出个极大值的位置,并依次算出每经过个 的距离为 这样就很容易计算出。如测不到20个极大值,则可少测几个(一定是偶数),用类似方法计算即可。

实验报告--声速的测量

物理实验报告 姓名:专业:班级:学号: 实验日期:实验教室:指导教师: 一、【实验名称】超声波声速的测量 二、【实验目的】1、了解声速的测量原理 2、学习示波器的原理与使用 3、学习用逐差法处理数据 三、【仪器用具】1、SV-DH-3型声速测定仪段(资产编号) 2、双踪示波器(资产编号) 3、SVX-3型声速测定信号源(资产编号) 四、【仪器用具】 1.超声波与压电陶瓷换能器 频率20Hz-20kHz的机械振动在弹性介质中传播形成声波,高于20kHz称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点,声速实验所采用的声波频率一般都在20~60kHz之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。 图1 纵向换能器的结构简图 压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器。声速教学实验中所用的大多数采用纵向换能器。图1为纵向换能器的

结构简图。 2.共振干涉法(驻波法)测量声速 假设在无限声场中,仅有一个点声源S1(发射换能器)和一个接收平面(接收换能器S2)。当点声源发出声波后,在此声场中只有一个反射面(即接收换能器平面),并且只产生一次反射。 在上述假设条件下,发射波ξ1=Acos (ωt+2πx /λ)。在S2处产生反射,反射波ξ 2=A 1cos (ωt+2πx /λ),信号相位与ξ1相反,幅度A 1<A 。ξ1与ξ2在反射平面相交叠加, 合成波束ξ 3 ξ3=ξ1+ξ2=(A 1+A 2)cos (ωt-2πx /λ)+A 1cos (ωt+2πx /λ) =A 1cos(2πx /λ)cos ωt+A 2cos (ωt - 2πx /λ) 由此可见,合成后的波束ξ3在幅度上,具有随cos(2πx /λ)呈周期变化的特性,在 相位上,具有随(2πx /λ)呈周期变化的特性。 图4所示波形显示了叠加后的声波幅度,随距离按cos(2πx /λ)变化的特征。 图2 换能器间距与合成幅度 实验装置按图7所示,图中S1和S2为压电陶瓷换能器。S1作为声波发射器,它由信号源供给频率为数十千赫的交流电信号,由逆压电效应发出一平面超声波;而S2则作为声波的接收器,压电效应将接收到的声压转换成电信号。将它输入示波器,我们就可看到一组由声压信号产生的正弦波形。由于S2在接收声波的同时还能反射一部分超声波,接收的声波、发射的声波振幅虽有差异,但二者周期相同且在同一线上沿相反方向传播,二者在S1和S2区域内产生了波的干涉,形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器S2处的振动情况。移动S2位置(即改变S1和S2之间的距离),你从示波器显示上会发现,当S2在某此位置时振幅有最小值。根据波的干涉理论可以知道:任何二相邻的振幅最大值的位置之间(或二相邻的振幅最小值的位置之间)的距离均为λ/ 2 。发射换能器与接收换能器之间的距离

相关文档
最新文档