ANSYS粘弹性材料Prony总结

ANSYS粘弹性材料Prony总结
ANSYS粘弹性材料Prony总结

ANSYS 粘弹性材料

1.1 ANSYS 中表征粘弹性属性问题

粘弹性材料的应力响应包括弹性部分和粘性部分,在载荷作用下弹性部分是即时响应的,而粘性部分需要经过一段时间才能表现出来。一般的,应力函数是由积分形式给出的,在小应变理论下,各向同性的粘弹性本构方程可以写成如下形式:

()

()0

02t

t de d G t d I K t d d d σττττττ

?=-+-?? (1)

其中

σ=Cauchy 应力 ()G t =为剪切松弛核函数 ()K t =为体积松弛核函数

e =为应变偏量部分(剪切变形)

?=为应变体积部分(体积变形)

t =当前时间 τ=过去时间

I =为单位张量。

该式是根据松弛条件本构方程(1),通过将一点的应变分解为应变球张量(体积变形)和应变斜张量(剪切变形)两部分,推导而得的。这里不再敖述,可参考相关文献等。

ANSYS 中描述粘弹性积分核函数()G t 和()K t 参数表示方式主要有两种,一种是广义Maxwell 单元(VISCO88 和 VISCO89)所采用的Maxwell 形式,一种是结构单元所采用的Prony 级数形式。实际上,这两种表示方式是一致的,只是具体数学表达式有一点点不同。

1.2 Prony 级数形式

用Prony 级数表示粘弹性属性的基本形式为:

()1exp G

n i G

i i t

G t G G τ∞=??

=+- ???

∑ (2) ()1exp K n i K

i i

t

K t K K τ∞=??

=+- ???

∑ (3) 其中,G ∞和i G 是剪切模量,K ∞和i K 是体积模量,G i τ和K i τ是各Prony 级数分量的松弛时间(Relative time)。再定义下面相对模量(Relative modulus)

0G i i G G α= (4) 0K i i K K α= (5)

其中,0G ,0K 分别为粘弹性材质的瞬态模量,并定义式如下:

()01

0G

n i i G G t G G ∞====+∑ (6)

()01

0K

n i i K K t K K ∞====+∑ (7)

在ANSYS 中,Prony 级数的阶数G n 和K n 可以不必相同,当然其中的松弛时间G i τ和K

i τ也不必相同。

对于粘弹性问题,粘弹体的泊松比一般是取为时间的函数()t μμ=。不过有时情况允许也可近似设为常数,这时根据弹性常数关系就有:

()()()()()()

21312E t G t E t K t μμ=+=

- (8)

其中,()E t 为松弛模量,由实验来确定。()()(),,E t G t K t 的相应系数比相同。

这样就可以将()G t 和()K t 统一于()E t 形式。若我们将松弛模量表示为Prony 级数形式,即:

()1exp n i i i

t E t E E τ∞=??

=+-

???

∑ (9) 于是,()G t 和()K t 中有,G K n n n ==,(Relative Time)

G K i i i τττ==,(Relative

Modulus)G K i i i ααα==。类似于0G 、0K ,我们也同样定义瞬态松弛模量0E :

()01

0G

n i i E E t E E ∞====+∑ (10)

这样,由错误!未找到引用源。可得

()()

00

021312E G E K μμ=+=

- (11)

1.3 Shift Function :

Shift function (转换函数) 有三项可以选择:

(a) William-Landel, ferry: 时温等效方程, 适用于聚合体

Tref: 即理论中的C1-Relative temperature: 相对温度(对应《粘弹性理论》中的时温等效方程(WFL 方程)应该是玻璃化转变温度)

C1,C2: WFL 方程的常量,与材料有关; (b ) Tool-Narayanaswamy 方程

Tref: 理论中的C1-Relative temperature: 相对温度(应该是玻璃化转变温度) C1: 就是TN 常量; (c) 用户定义

Tref: 理论中的C1-Relative temperature: 相对温度(应该是玻璃化转变温度) C1: 方程的常量;

在使用PRONY 模拟时,SHIFT FUNCTION 不是一定要输入的,如果松弛模量E(t)与温度不相关,可以不用输入shift function.

1.4 PRONY 输入例子:

E 0=2.903153MPA v =0.495,松弛模量E(t)用Prony 级数表示为: 30130.7

3013.07

301.307

()0.7058860.1681690.098714 1.930384 (MPa)t t t E t e

e e ---=+++

0 2.903153MPa E =,0.495v =;根据(8)式,

11112222333330130.7, 0.0579

3013.07, 0.0340301.307, 0.6649

G K G K G K G K G K G K τταατταατταα============ 参数输入情况分别如下图所示:

(

)

(

)

base

base

T t T C T

t T C T a -+-=)()(log )('2'1

10

粘弹性人工边界在ANSYS中实现

从半空间无限域取一4X2的矩形平面结构,顶部中间一定范围内受随时间变化的均布荷载,荷载如下 p(t)=t 当0< DIV> p(t)=2-t 当1<=t<=2时 p(t)=0 当t>2时 材料弹性模量E=2.5,泊松比0.25,密度1 网格尺寸0.1X0.1,在网格边界上所有结点加法向和切向combin14号单元用以模拟粘弹性人工边界(有关理论可参考刘晶波老师的相关文章)。combine14单元的两个结点,其中一个与实体单元相连,另一个结点固定。网格图如图1所示 时程分析的时间步长为0.02秒,共计算16秒。计算得到四个控制点位移时程图如图2所示,控制点坐标A(0,2)、B(0,1)、C(0,0)、D(2,2). 计算所用命令流如下: /PREP7 L=4 !水平长度 H=2 !竖起深度 E=2.5 !弹性模量 density=1 !密度 nu=0.25 !泊松比 dxyz=0.1 !网格尺寸 G = E/(2.*(1.+nu)) !剪切模量 alfa = E*(1-nu)/((1.+nu)*(1.-2.*nu)) !若计算平面应力,此式需要修改 Cp=sqrt(alfa/density) !压缩波速 Cs=sqrt(g/density) !剪切波速 R=sqrt(L*L/4.+H*H/4.) !波源到边界点等效长度 KbT=0.5*G/R*dxyz KbN=1.0*G/R*dxyz CbT=density*Cs*dxyz CbN=density*Cp*dxyz

ET, 1, plane42,,,2 !按平面应变计算 et, 2, combin14, ,, 2 !切向 et, 3, combin14, ,, 2 !法向 r, 2, KbT, CbT r, 3, KbN, CbN MP, EX, 1, E MP, PRXY, 1, nu MP, DENS, 1, density rectng,-L/2.,L/2,0.,H asel, all aesize, all, dxyz mshape,0,2D mshkey,1 amesh, all !以下建立底边界法向和切向弹簧阻尼单元 nsel,s,loc,y,0. *get,np,node,,count !得到选中的结点数,存入np *get,npmax,node,,num,maxd !得到已经定义的最大结点数,存入npmax *do,ip,1,np npnum=node((ip-1)*dxyz-L/2.,0.,0.) x=nx(npnum) y=ny(npnum) z=nz(npnum) npmax=npmax+1 n,npmax,x.,y-dxyz/2,z !定义底边界法向结点以便与边界点形成法向单元type,3

高分子材料的高弹性和粘弹性

第二节高分子材料的高弹性和粘弹性 本章第二、三节介绍高分子材料力学性能。力学性能分强度与形变两大块,强度指材料抵抗破坏的能力,如屈服强度、拉伸或压缩强度、抗冲击强度、弯曲强度等;形变指在平衡外力或外力矩作用下,材料形状或体积发生的变化。对于高分子材料而言,形变可按性质分为弹性形变、粘性形变、粘弹性形变来研究,其中弹性形变中包括普通弹性形变和高弹性形变两部分。 高弹性和粘弹性是高分子材料最具特色的性质。迄今为止,所有材料中只有高分子材料具有高弹性。处于高弹态的橡胶类材料在小外力下就能发生100-1000%的大变形,而且形变可逆,这种宝贵性质使橡胶材料成为国防和民用工业的重要战略物资。高弹性源自于柔性大分子链因单键内旋转引起的构象熵的改变,又称熵弹性。粘弹性是指高分子材料同时既具有弹性固体特性,又具有粘性流体特性,粘弹性结合产生了许多有趣的力学松弛现象,如应力松弛、蠕变、滞后损耗等行为。这些现象反映高分子运动的特点,既是研究材料结构、性能关系的关键问题,又对正确而有效地加工、使用聚合物材料有重要指导意义。 一、高弹形变的特点及理论分析 (一)高弹形变的一般特点 与金属材料、无机非金属材料的形变相比,高分子材料的典型高

弹形变有以下几方面特点。 1、小应力作用下弹性形变很大,如拉应力作用下很容易伸长100%~1000%(对比普通金属弹性体的弹性形变不超过1%);弹性模量低,约10-1~10MPa(对比金属弹性模量,约104~105MPa)。 2、升温时,高弹形变的弹性模量与温度成正比,即温度升高,弹性应力也随之升高,而普通弹性体的弹性模量随温度升高而下降。 3、绝热拉伸(快速拉伸)时,材料会放热而使自身温度升高,金属材料则相反。 4、高弹形变有力学松弛现象,而金属弹性体几乎无松弛现象。 高弹形变的这些特点源自于发生高弹性形变的分子机理与普弹形变的分子机理有本质的不同。 (二)平衡态高弹形变的热力学分析 取原长为l0的轻度交联橡胶试样,恒温条件下施以定力f,缓慢拉伸至l0+ d l 。所谓缓慢拉伸指的是拉伸过程中,橡胶试样始终具有热力学平衡构象,形变为可逆形变,也称平衡态形变。 按照热力学第一定律,拉伸过程中体系内能的变化d U为: dU- = dQ dW (4-13) 式中d Q为体系吸收的热量,对恒温可逆过程,根据热力学第二定律有, dQ= TdS (4-14)

弹性力学ansys分析

图1为一个承受内压的薄板,在其中心位置有一个小圆孔,相关的结构尺寸参考图1所示。 材料属性:弹性模量E=2e11Pa,泊松比为0.3。 拉伸载荷为:q=3000Pa。 平板的厚度为:t=0.01mm。 通过简单力学分析,该问题属于平面应力问题,又因为平板结构的对称性,所以只要分析其中的1/4即可,如图2所示。 图1 板的结构示意图图2 有限元分析见图 一、前处理 (1)定义工作文件名:Utility Menu> Jobname,弹出如图3所示的Change Jobname 对话框,在Enter new Jobname后面的输入栏中输入Plate,并将New Log and error files复选框选为yes,单击OK。

图3 定义工作文件名对话框 (2)定义工作标题:Utility Menu> Title,在出现的对话框中输入The Analysis of Plate Stress with small Circle,单击OK。 图4 定义工作标题对话框 (3)重新显示:Utility Menu>Plot>Replot。 (4)关闭三角坐标符号:Utility Menu>PlotCtrls>Window Controls>Window options,弹出一个对话框,在Location of triad 后面的下拉式选择框中,选择Not Shown,单击OK。 (5)选择单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete,弹出Element Type对话框,单击Add按钮,又弹出如图5所示的Library of Element Types对话框,在选择框中分别选择Structural Solid和Quad 8node 82,单击OK,然后单击Close。

ANSYS中重要的后处理

ANSYS后处理 1.ANSYS后处理时如何按灰度输出云图? 1)你可以到utilitymenu-plotctrls-style-colors-window colors试试2)直接utilitymenu-plotctrls-redirect plots 2 将云图输出为JPG 菜单->PlotCtrls->Redirect Plots->To JPEG Files 3.怎么在计算结果实体云图中切面? 命令流 /cplane /type 图形界面操作 <1.设置工作面为切面 <2.PlotCtrls-->Style-->Hidden line Options 将[/TYPE]选项选为section 将[/CPLANE]选项选为working plane 4.非线性计算过程中收敛曲线实时显示 solution>load step opts>output ctrls>grph solu track>on 5.运用命令流进行计算时,一个良好的习惯是: 使用SELECT COMMEND后.........其后再加上ALLSEL......... 6.应力图中左侧的文字中,SMX与SMN分别代表最大值和最小值 如你plnsolv,s,eqv 则 SMX与SMN分别代表最大值等效应力和最小值等效应力

如你要看的是plnsolv,u 则SMX与SMN分别代表位移最大值和位移最小值 不要被S迷惑 mx(max) mn(min) 7.在非线性分析中,如何根据ansys的跟踪显示来判断收敛? 在ansys output windows 有 force convergence value值和 criterion 值当前者小于后者时,就完成一次收敛你自己可以查看两条线的意思分别是: FL2:不平衡力的2范数 FCRIT:不平衡力的收敛容差, 如果前者大于后者说明没有收敛,要继续计算,当然如果你以弯矩M为收敛准则那么就对应 M L2 和 M CRIT 希望你现在能明白 8.两个单元建成公共节点,就成了刚性连接,不是接触问题了。做为接触问题,两个互相接触的单元的节点必须是不同的。 9.接触单元主要分为有厚度和无厚度的,有厚度主要以desai 为代表,无厚度的则以goodman 为代表。尽管古得曼也提出了相应的本构关系,但是如今goodman 单元成了无厚度接触单元的代名词,相应的本构关系现在也作了 较大的改进。Ansys中接触单元并不是goodman 单元,类似于goodman单元 ansys 里面的接触单元是是通用的,而goodman是一种专业的单元。goodman单元假定两片长为L的接触面以无数微小的切向和法向弹簧所连接,接触面单元与 相邻接触面两边的单元只在结点处有力的联系。单元厚度为零,受力前两接触面完全吻合. 10.怎样检查接触单元的normal direction?是不是打开 plotctrls/symbols/esys on?

宽温域高阻尼粘弹性材料

宽温域、粘弹性、高阻尼防护材料 为了满足飞机、舰船等装备减振降噪、密封防腐蚀的实际需求,我们研制了一种新颖的宽温域、高阻尼、粘弹性防护材料。其特征是:宽温域、多功能、系列化。因而具有非常广泛的应用前景。 一. 震动、噪音的危害 在恶劣的工作环境中,震动、噪声、腐蚀介质等环境因素对装备造成损伤现象不仅非常普遍,而且有的还相当严重。 振动和噪声的危害:①振动和噪声不仅干扰武器装备导航、攻击系统的正常工作,还会极大地降低装备的隐身性能,其危害极其严重。例如,振动和噪声能降低潜艇的隐身性能,容易被敌方的声纳设备监控而遭受攻击。②振动和噪声能加速装备机械构件的疲劳损伤、腐蚀-疲劳损伤,从而缩短使用寿命。③振动和噪声能影响机械加工的精度和产品的质量。④振动和噪声能干扰人们的安宁、舒适的生活环境和工作环境。 腐蚀介质的危害表现在二个方面:一是引起装备的金属物件发生腐蚀损伤,二是引起非金属物件发生老化损伤。它严重地影响装备使用的可靠性、安全性及使用寿命。 因此,开展阻尼-防护新产品、新技术研究,不仅是具有重大的军事意义,而且还具有重要的社会意义。 二、减振降噪技木的分类 目前实用的减振降噪技术,主要有三种阻尼结构涂层形式:自由阻尼结构涂层、约束阻尼结构涂层、复合阻尼-隔声结构涂层。 ⑴自由阻尼结构涂层 自由阻尼结构涂层,就是在基材上涂敷一层粘弹性阻尼材料形成外部呈自由状态的阻尼层。当基材弯曲振动时,通过阻尼层材料的拉压变形将振动能量变成热能而消耗掉,达到减振降噪的目的。自由阻尼结构理论是由德国的Oberst于1956年提出的。实施方法简便,经济。 ⑵约束阻尼结构涂层 约束阻尼结构涂层,就是除了在基材板上涂敷一层粘弹性材料形成阻尼层之外,还要在其上再涂敷一层高模量的材料形成约束层。当基材弯曲振动时,通过阻尼材料的剪切变形将振动能量变成热能而消耗掉,达到减振降噪的目的。在约束阻尼结构中,约束层不得与基板相联接。 约束阻尼结构理论是由kerwin于1959年提出来的。约束阻尼结构涂层的阻尼效果比自由阻尼结构涂层好。 其缺点是:与自由阻尼结构涂层相比较,由于增加了一层约束层,因此,实施工艺复杂,用料多,重量重,成本高,施工周期长。 ⑶复合阻尼-隔声结构涂层

ANSYS粘弹性材料Prony总结

ANSYS 粘弹性材料 1.1 ANSYS 中表征粘弹性属性问题 粘弹性材料的应力响应包括弹性部分和粘性部分,在载荷作用下弹性部分是即时响应的,而粘性部分需要经过一段时间才能表现出来。一般的,应力函数是由积分形式给出的,在小应变理论下,各向同性的粘弹性本构方程可以写成如下形式: () ()0 02t t de d G t d I K t d d d σττττττ ?=-+-?? (1) 其中 σ=Cauchy 应力 ()G t =为剪切松弛核函数 ()K t =为体积松弛核函数 e =为应变偏量部分(剪切变形) ?=为应变体积部分(体积变形) t =当前时间 τ=过去时间 I =为单位张量。 该式是根据松弛条件本构方程(1),通过将一点的应变分解为应变球张量(体积变形)和应变斜张量(剪切变形)两部分,推导而得的。这里不再敖述,可参考相关文献等。 ANSYS 中描述粘弹性积分核函数()G t 和()K t 参数表示方式主要有两种,一种是广义Maxwell 单元(VISCO88 和 VISCO89)所采用的Maxwell 形式,一种是结构单元所采用的Prony 级数形式。实际上,这两种表示方式是一致的,只是具体数学表达式有一点点不同。 1.2 Prony 级数形式 用Prony 级数表示粘弹性属性的基本形式为: ()1exp G n i G i i t G t G G τ∞=?? =+- ??? ∑ (2) ()1exp K n i K i i t K t K K τ∞=?? =+- ??? ∑ (3) 其中,G ∞和i G 是剪切模量,K ∞和i K 是体积模量,G i τ和K i τ是各Prony 级数分量的松弛时间(Relative time)。再定义下面相对模量(Relative modulus) 0G i i G G α= (4) 0K i i K K α= (5) 其中,0G ,0K 分别为粘弹性材质的瞬态模量,并定义式如下:

(完整版)ANSYS粘弹体分析

ANSYS 中粘弹材质属性参数输入和分析 (1) 1.1 ANSYS 中表征粘弹性属性问题 ............................................................................................................... 1 1.2 Prony 级数形式 .......................................................................................................................................... 1 1.3 Maxwell 形式 .............................................................................................................................................. 3 1.3 建模与载荷条件 . (5) 1.3.1 模型设计 .......................................................................................................................................... 5 1.3.2 有限元建模 ...................................................................................................................................... 5 1.3.3 理论解析解计算式 .......................................................................................................................... 6 1.4 有限元数值解与结果比较 . (6) 1.4.1 Plane183,Prony 级数方式 ............................................................................................................. 6 1.4.5 算例结论 . (10) ANSYS 中粘弹材质属性参数输入和分析 1.1 ANSYS 中表征粘弹性属性问题 粘弹性材料的应力响应包括弹性部分和粘性部分,在载荷作用下弹性部分是即时响应的,而粘性部分需要经过一段时间才能表现出来。一般的,应力函数是由积分形式给出的,在小应变理论下,各向同性的粘弹性本构方程可以写成如下形式: () ()0 02t t de d G t d I K t d d d σττττττ ?=-+-?? (0.1) 其中 σ=Cauchy 应力 ()G t =为剪切松弛核函数 ()K t =为体积松弛核函数 e =为应变偏量部分(剪切变形) ?=为应变体积部分(体积变形) t =当前时间 τ=过去时间 I =为单位张量。 该式是根据松弛条件本构方程(0.1),通过将一点的应变分解为应变球张量(体积变形)和应变斜张量(剪切变形)两部分,推导而得的。这里不再敖述,可参考相关文献等。 ANSYS 中描述粘弹性积分核函数()G t 和()K t 参数表示方式主要有两种,一种是广义Maxwell 单元(VISCO88 和 VISCO89)所采用的Maxwell 形式,一种是结构单元(如Plane183,Plane182等)所采用的Prony 级数形式。实际上,这两种表示方式是一致的,只是具体数学表达式有一点点不同。 1.2 Prony 级数形式 用Prony 级数表示粘弹性属性的基本形式为: ()1exp G n i G i i t G t G G τ∞=?? =+- ??? ∑ (0.2)

ansys使用技巧(后处理)

2009-04-28 14:26 ANSYS中查看截面结果的方法 一般情况下,对计算结果后处理时,显示得到的云图为结构的外表面信息。有时候,需要查看结构内部的某些截面云图,这就需要通过各种后处理技巧来获得截面的结果云图。另外,有时候需要获得截面的结果数据,也需要用到后处理的技巧。 下面对常用的查看截面结果的方法做一个介绍: 1. 通过工作平面切片查看截面云图工作平面实现。 这是比较常用的一种方法。 首先确保已经求解了问题,并得到了求解结果。 调整工作平面到需要观察的截面,可通过移动或者旋转工作平面实现。调整时注意保证工作平面与需要观察的截面平行。 在PlotCtrls菜单中设置观察类型为Section,切片平面为Working Plane。也可以通过等效的/type以及/cplane命令设置。 在通用后处理器中显示云图,得到需要查看的云图。 更简单地说,我们只需在显示云图命令前加上下面两条命令就可以了: /CPLANE,1 ! 指定截面为WP /TYPE,1,5 ! 结果显示方式选项 2. 通过定义截面查看截面云图 这种方法也需要用到工作平面与切片,步骤如下: 首先确保已经得到了求解结果。 调整工作平面到需要观察的截面。 在PlotCtrls菜单中设置观察类型为Working Plane,或者使用命令/cplane,1。通过sucr命令定义截面,选择(cplane)。 通过sumap命令定义需要查看的物理量。 通过supl命令显示结果。 3. 通过定义路径查看云图与保存数据 首先确保已经得到了求解结果。 通过path与ppath命令定义截面路径。 通过pdef命令映射路径。 通过plpath、prpath与plpagm命令显示及输出结果。

ansys命令流----前后处理和求解常用命令之求解与后处理

ansys命令流----前后处理和求解常用命令之求解与后处理.txt都是一个山的狐狸,你跟我讲什么聊斋,站在离你最近的地方,眺望你对别人的微笑,即使心是百般的疼痛只为把你的一举一动尽收眼底.刺眼的白色,让我明白什么是纯粹的伤害。3 /solu u /solu 进入求解器 3.1 加边界条件 u D, node, lab, value, value2, nend, ninc, lab2, lab3, ……lab6 定义节点位移约束Node : 预加位移约束的节点号,如果为all,则所有选中节点全加约束,此时忽略nend和ninc. Lab: ux,uy,uz,rotx,roty,rotz,all Value,value2: 自由度的数值(缺省为0) Nend, ninc: 节点范围为:node-nend,编号间隔为ninc Lab2-lab6: 将lab2-lab6以同样数值施加给所选节点。 注意:在节点坐标系中讨论 3.2 设置求解选项 u antype, status, ldstep, substep, action antype: static or 1 静力分析 buckle or 2 屈曲分析 modal or 3 模态分析 trans or 4 瞬态分析 status: new 重新分析(缺省),以后各项将忽略 rest 再分析,仅对static,full transion 有效 ldstep: 指定从哪个荷载步开始继续分析,缺省为最大的,runn数(指分析点的最后一步)substep: 指定从哪个子步开始继续分析。缺省为本目录中,runn文件中最高的子步数action, continue: 继续分析指定的ldstep,substep 说明:继续以前的分析(因某种原因中断)有两种类型 singleframe restart: 从停止点继续 需要文件:jobname.db 必须在初始求解后马上存盘 jobname.emat 单元矩阵 jobname.esav 或 .osav : 如果.esav坏了,将.osav改为.esav results file: 不必要,但如果有,后继分析的结果也将很好地附加到它后面 注意:如果初始分析生成了.rdb, .ldhi, 或rnnn 文件。必须删除再做后继分析 步骤:(1)进入anasys 以同样工作名 (2)进入求解器,并恢复数据库 (3)antype, rest (4)指定附加的荷载 (5)指定是否使用现有的矩阵(jobname.trl)(缺省重新生成) kuse: 1 用现有矩阵 (6)求解 multiframe restart:从以有结果的任一步继续(用不着) u pred,sskey, --,lskey….. 在非线性分析中是否打开预测器 sskey: off 不作预测(当有旋转自由度时或使用solid65时缺省为off) on 第一个子步后作预测(除非有旋转自由度时或使用solid65时缺省为on) -- :未使用变量区

最新ANSYS材料模型汇总

A N S Y S材料模型

第七章材料模型 ANSYS/LS-DYNA包括40多种材料模型,它们可以表示广泛的材料特性,可用材料如下所示。本章后面将详细叙述材料模型和使用步骤。对于每种材料模型的详细信息,请参看Appendix B,Material Model Examples或《LS/DYNA Theoretical Manual》的第十六章(括号内将列出与每种模型相对应的LS-DYNA材料号)。 线弹性模型 ·各向同性(#1) ·正交各向异性(#2) ·各向异性(#2) ·弹性流体(#1) 非线弹性模型 ·Blatz-ko Rubber(#7) ·Mooney-Rivlin Rubber(#27) ·粘弹性(#6) 非线性无弹性模型 ·双线性各向同性(#3) ·与温度有关的双线性各向同性(#4) ·横向各向异性弹塑性(#37) ·横向各向异性FLD(#39) ·随动双线性(#3) ·随动塑性(#3) ·3参数Barlat(#36) ·Barlat各向异性塑性(#33)

·与应变率相关的幂函数塑性(#64) ·应变率相关塑性(#19) ·复合材料破坏(#22) ·混凝土破坏(#72) ·分段线性塑性(#24) ·幂函数塑性(#18) 压力相关塑性模型 ·弹-塑性流体动力学(#10) ·地质帽盖材料模型(#25) 泡沫模型 ·闭合多孔泡沫(#53) ·粘性泡沫(#62) ·低密度泡沫(#57) ·可压缩泡沫(#63) ·Honeycomb(#26) 需要状态方程的模型 ·Bamman塑性(#51)·Johnson-Cook塑性(#15)·空材料(#9) ·Zerilli-Armstrong(#65) ·Steinberg(#11) 离散单元模型 ·线弹性弹簧

ansys实用的后处理

1.ANSYS后处理时如何按灰度输出云图? 1)你可以到utilitymenu-plotctrls-style-colors-window colors试试 2)直接utilitymenu-plotctrls-redirect plots 2 将云图输出为JPG 菜单->PlotCtrls->Redirect Plots->To JPEG Files 3.怎么在计算结果实体云图中切面? 命令流 /cplane /type 图形界面操作 <1.设置工作面为切面 <2.PlotCtrls-->Style-->Hidden line Options 将[/TYPE]选项选为section 将[/CPLANE]选项选为working plane 4.非线性计算过程中收敛曲线实时显示 solution>load step opts>output ctrls>grph solu track>on 5.运用命令流进行计算时,一个良好的习惯是: 使用SELECT COMMEND后.........其后再加上ALLSEL......... 6.应力图中左侧的文字中,SMX与SMN分别代表最大值和最小值 如你plnsolv,s,eqv 则SMX与SMN分别代表最大值等效应力和最小值等效应力 如你要看的是plnsolv,u 则SMX与SMN分别代表位移最大值和位移最小值 不要被S迷惑 mx(max) mn(min) 7.在非线性分析中,如何根据ansys的跟踪显示来判断收敛? 在ansys output windows 有force convergenge valu 值和criterion 值当前者小于后者时,就完成一次收敛

ansys prony

在做粘弹性分析之前建议先看一些粘弹性理论方面的书籍,知道一些基本概念,在做粘弹性分析之前建议先看一些粘弹性理论方面的书籍,知道一些基本概念,ansys中粘弹性材料模型的参数可以直接指定,也可以通过蠕变或者松弛实验数据输入。最终的参数是基本单元的数目,基本单元对应的迟豫时间,各单元的相对剪切模量,各单元的相对体积模量,初始剪切模量,初始泊松比。 以上是一位高人告诉我的,我也不是特别清楚,下面是一篇关于粘弹性模型的帖子,你看看吧 转贴一篇大海之子和dengnch两位学兄写的帖子,原来发在有限元联盟,希望对你有帮助。 ANSYS中粘弹性材料的参数意义: 我用的材料知道时温等效方程(W.L.F.方程),ANSYS 中的本构模型用MAXWELL模型表示。 1.活化能与理想气体常数的比值(Tool-Narayanaswamy Shift Function)或者时温方程的第一个常数。 2.一个常数当用Tool-Narayanaswamy Shift Function(这个方程我不懂)的方程描述,或者是时温方程第2个常数 3.定义体积衰减函数的MAXWELL单元数(在时温方程中用不到) 4.时温方程的参考温度 5.决定1、2、3、4参数的值 6-15定义体积衰减函数的系数, 16-25定义fictive temperature的松弛时间 这20个数最终用来定义fictive temperature(在理论手册中介绍,不用在时温方程中) 26-30和31-35分别定义了材料在不同物理状态时的热扩散系数 36-45用来定义fictive temperature的fictive temperature的一些插值一类的数值,时温方程也用不到 46剪切模量开始松弛的值 47松弛时间无穷大的剪切模量的值 48体积模量开始松弛的值 49松弛时间无穷大的体积模量的值 50描述剪切松弛模量的MAXWELL模型的单元数 51-60拟合剪切松弛模量的prony级数的系数值 61-70拟合剪切松弛模量的prony级数的指数系数值(形式参看理论手册)

粘弹性

粘弹性功能梯度有限元法 摘要:有效离散的问题域的能力,使一个有吸引力的仿真技术的有限元方法造型复杂的边界值问题,如沥青混凝土路面材料非均匀性。专门―分级元素‖已被证明是提供高效,准确的功能梯度材料的模拟工具。以前的研究一直局限于功能梯度材料数值模拟弹性材料的行为。因此,当前的工作重点是对功能梯度材料的粘弹性材料有限元分析。在执行分析,使用弹性-粘弹性对应原理,和粘弹性材料的级配占内的元素广义ISO参数化配方。本文强调粘弹性沥青混凝土路面和几个例子的行为,包括核查问题领域的大规模应用,提交证明本办法的特点。DOI: 10.1061/_ASCE_MT.1943-5533.0000006 CE数据库标题:粘弹性;沥青路面混凝土路面;有限元方法。 关键词:粘弹性功能梯度材料,沥青路面,有限元法;通信原则。 概况 功能梯度材料(FGMs_)的特点是空间创建非均匀分布的各种微观结构巩固阶段将具有不同属性的大小和形状、,以及,通过转乘的加固作用和连续的方式(Suresh 和莫滕森基质材料)。他们通常被设计成产生财产渐变旨在优化下不同类型的结构响应加载条件(thermal,机械、电气、光学、etc)。(Cavalcante et al.2007)。这些属性渐变是在生产几种方法,例如通过循序渐进的含量变化相对于另metallic),采用热的一个阶段ceramic障涂层,或通过使用数量足够多具有不同的属性(Miyamoto et al 的构成阶段。1999_可以根据定制设计器粘弹性FGMs (VFGMs)符合设计要求等作用下粘弹性柱轴向和热加载(Hilton 2005)。最近,Muliana(2009_)提出了黏弹性细观力学模型FGMs 的行为。除了设计或量身定制的功能梯度材料,几个土木工程材料的自然表现出梯度材料的性能。席尔瓦等人。(2006)已研究和仿真竹子,这是一个自然发生的梯度材料。除了自然发生,各种材料和结构呈现非均质物质的分布和构成属性层次生产或建设的做法,老龄化的结果,不同金额暴露恶化代理商,等沥青混凝土路面是一个这样的例子,即老龄化和温度变化产量连续分级的非齐次构性质。老化和温度引起的财产梯度已经有据可查的一些研究人员沥青路面1995年_garrick领域;米尔扎和witczak的1996年,2006年apeagyei; chiasson等。2008_。目前沥青路面粘弹性模拟状态限于要么忽视非均质财产梯度2002年_kim和buttlar;萨阿德等。2006年,2006年BAEK和AL-卡迪;戴夫等。,2007_或者他们考虑通过分层的方法,例如,在美国的关联模型国家公路和运输官员_aashto_机械经验路面设计指南_mepdg_ _araINC。,EC。2002_。精度从使用的重大损失沥青路面层状弹性分析方法有被证明_buttlar等。2006_。广泛的研究已经进行了高效,准确地模拟功能梯度材料。例如,cavalcante等人。_2007_,张和保利诺_2007_,arciniega雷迪_2007_,歌曲和保利诺_2006_都报道功能梯度材料的有限元模拟。然而,大多数的以前的研究一直局限于弹性材料行为。一各种土木工程材料,如聚合物,沥青混凝土,水泥混凝土等,表现出显著的速率和历史影响。这些类型的材料的精确模拟必须使用粘弹性本构模型。1postdoctoral副研究员,DEPT。土木与环境工程大学。伊利诺伊大学厄巴纳- 香槟分校,分校,IL 61801_corresponding author_。工程,系2donald BIGGAR威利特教授。公民权利和环境工程,大学。在厄巴纳香槟分校,伊利诺伊州,IL 61801。3professor和narbey哈恰图良的教师学者,部。民间 与环境工程,大学。位于Urbana-Champaign的伊利诺斯州,分校,IL 61801。 注意:这个手稿于2009年4月17日完成,2009年10月15日提交了批准,2010年2月5日在线发表。直到2011年6月1日,讨论期间打开,必须提交单独讨论个别文件。本文是在民事部分的材料杂志 工程,第一卷。23,没有。1,2011年1月1日起,。ASCE,ISSN 0899-1561 /2011/1-39-48 / $ 25.00。土木工程材料杂志?ASCE / 2011年1月/ 39到2012年,下载03 61.178.77.85。再分配受ASCE许可证或版权。访问https://www.360docs.net/doc/154969802.html,当前工作提出有限元_fe_的制定专为粘弹性功能梯度材料的分析,特别是沥青混凝土。Paulino和金_2001_探索elasticviscoelastic对应范围内的原则_cp_功能梯度材料。在目前已使用制定基于CP-结合广义的ISO参数制定的研究_gif_金保利诺_2002_。本文提出了有限元的制定,验证,和沥青的详情路面模拟的例子。除了模拟沥青人行道,目前的做法也可以被用于其他工程系统表现出梯度的粘弹性分析行为。这种系统的例子包括金属和在高温_billotte等金属复合材料。二零零六年; koric和托马斯的2008_;聚合物和塑料的系统,经过氧化和/或紫外线硬化_hollaender等。1995年海尔等。1997_和分级纤维增强水泥混凝土结构。分级粘弹性的其他应用领域分析包括精确的模拟接口层之间的接口,如粘弹性材料之间不同的沥青混凝土升降机或模拟的

ANSYS分析报告

《大型结构分析软件的应用及开发》 学习报告 学院:建筑工程学院 专业班级:工程力学141 姓名:付贤凯 指导老师:姚激 学号:201411012111

1.模型介绍 如下图所示的一桁架结构,受一集中力大小为800N的作用,杆件的弹性模量为200GPa,泊松比为0.3。杆件的截面为正方形达长为1m,横截面面积为1m2。现求它的变形图与轴力图。 图1 桁架模型与受力简图(单位:mm) 2.建模与划分网格 利用大型有限元软件ANSYS,采用Link,2Dspar 1的单元进行模拟,通过网格的划分得到如图2所示的有限元模型。 图2 有限元模型

结合有限元模型中的约束条件为左侧在X与Y方向铰支固定,荷载条件为最右侧处施加向下的集中力P=800N。施加约束与荷载后的几何模型如图4所示。 图3 施加荷载与约束的几何模型 3.位移与轴力图 因在Y方向受力,所以主要做Y方向的位移图,又因为杆件在轴线方向有变形,故在X 方向仍有一定的位移。则图5为变形前后的板件形状。图6为模型沿Y方向的位移图,图7为模型沿X方向的位移图,图8为模型的总位移图。 图4 桁架变形前后形状图

图5 Y方向位移图 图6 X方向位移图

图7总位移图 分析所有的位移图可以看出从以看出左端变形最小,为零,右端变形最大。从总位移图可以看出最大的位移在左下点处,大小为0.164×10?5m。从X方向位移图可以看出,左下点处在X方向位移最大为0.36×10?6。从Y方向位移图可以看出最大位移在左下点处为0.164×10?5。都符合实际情况,图9为模型的轴力图。 图8 轴力图

ansys后处理结果图形的处理

a n s y s后处理结果图形 的处理 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

ansys后处理结果图形的处理 对体和面来说,ANSYS默认的结果输出格式是云图格式,而这种彩色云图打印为黑白图像时对比很不明显,无法表达清楚,这对于发表文章来说是非常不便的。发文章所用的结果图最好是等值线图,并且最好是黑白的等值线图。笔者原来进行这项工作时一般借用photoshop等第三方软件,很麻烦,并且效果不好。现通过摸索,发现通过灵活运用ansys本身也能实现这项功能。现将步骤写给大家,感谢simwe对我的帮助。 (1)将要输出的结果调出,这时为彩色云图; (2)将云图转换为等值线图的形式 GUI:plotCtrls—>Device Options—>[/DEVI]中的vector mode 选为on 命令:/DEVICE,VECTOR,1 这时结果为彩色等值线,若直接输出,打印为黑白图像时仍然不清晰,为此需进行以下几步将图像转换为黑白形式; (3)将背景变为白色 命令:jpgprf,500,100,1 /rep (4)对等值线中的等值线符号(图中为A,B,C等)的疏密进行调整 GUI:plotCtrls—>Style—>Contours—> Contours Labeling 在Key Vector mode contour label 中选中on every Nth elem,然后在N= 输入框中输入合适的数值,例如5,多试几次,直到疏密合适 命令:/clabel,1,5 (5)将彩色等值线变为黑色

GUI:plotCtrls—>Style—>Colors—>Contours Colors 将Items Numbered 1,Items Numbered 2等复选框中的颜色均选为黑色,图像即可变为黑白等值线图像命令:/color,cntr,whit,1 等等 (6)最后一步:出图 GUI:plotCtrls—>Capture Image 希望对大家能有所帮助。 一个使生成的图片在word里面比较好看的方法: 1、Plotctrls>Redirect Plots>To png file 2、选“Force White BG and Black FG",然后把Pixle resolution 换到1200!

粘弹性阻尼减振的基本概念

第一章粘弹性阻尼减振的基本概念 1.1振动控制和阻尼的概念 1.1.1振动与噪声的危害 振动是一种普遍的物理现象,我们这里讨论涉及到的震动问题主要是机械结构的振动及由此产生的物理现象。 大多数情况下,机械振动会造成严重危害,必须采用各种有效的方法加以控制,振动与噪声的危害主要包括: 1)振动造成机械结构的损坏,破坏工作条件。如建筑物在地震中受到随机 激励后,其强度承受不了共振响应造成损坏。 2)振动降低机器、仪器或工具的精度。如运载工具(火箭等)的命中精度 和控制装置如仪器、计算的抗振能力直接有关。 3)振动引起噪声,严重污染环境。如一些大型的振动设备工作过程中会产 生严重的噪声污染。 4)振动增加机械磨损,降低及其寿命。如在常高在低不平的路面上行驶, 汽车的寿命会严重减少。 1.1.2振动与噪声控制的主要方法 振动控制的工程含义有两层:振动利用和振动抑制。前者指利用系统的振动以实现某种工程目的;后者则指抑制系统的振动以保证系统正常工作,延长其使用寿命,本文主要讨论的是后面一个问题。 振动控制的方法很多,就机械产品设计和结构改进的角度上作分析和研究,振动和噪声控制主要是从消除振源或噪声源;隔离振源(及声源)与受影响机构间的传递和联系;以及减少结构本身响应这三个方面采取措施。 1)消除振动源或噪声源。 2)隔离振源(或声源)与受影响机构(或环境)之间的联系及能量传输。 3)结构的抗振及抗噪设计。 1.2阻尼减振降噪技术的定义以及工程应用实例 1.2.1阻尼技术的定义 从减振降噪的角度上来看,阻尼是指损耗振动能量的能力、也就是将机械振动及声振的能量,转变成热能或其它可以损耗的能量,从而达到减振及降噪的目的。 阻尼减振、降噪技术就是充分运用阻尼耗能的一般规律,从材料、测量、

workbench建立橡胶的超弹性和粘弹性本构模型

10分钟教你Ansys workbench建立橡胶的超弹性和粘 弹性本构模型 Ansys workbench 橡胶-聚合物-天然橡胶-硅橡胶-聚氨酯等 粘弹性本构模型的建立 需要具体指导可以 重要截图如下:

补充: ANSYS 粘弹性材料 1.1ANSYS 中表征粘弹性属性问题 粘弹性材料的应力响应包括弹性部分和粘性部分,在载荷作用下弹性部分是即时响应的,而粘性部分需要经过一段时间才能表现出来。一般的,应力函数是由积分形式给出的,在小应变理论下,各向同性的粘弹性本构方程可以写成如下形式: ()()002t t de d G t d I K t d d d σττττττ?=-+-??(1) 其中 σ=Cauchy 应力 ()G t =为剪切松弛核函数 ()K t =为体积松弛核函数 e =为应变偏量部分(剪切变形) ?=为应变体积部分(体积变形) t =当前时间 τ=过去时间 I =为单位张量。 该式是根据松弛条件本构方程(1),通过将一点的应变分解为应变球张量(体积变形)和应变斜张量(剪切变形)两部分,推导而得的。这里不再敖述,可参考相关文献等。 ANSYS 中描述粘弹性积分核函数()G t 和()K t 参数表示方式主要有两种,一种是广义Maxwell 单元(VISCO88和VISCO89)所采用的Maxwell 形式,一种是结构单元所采用的Prony 级数形式。实际上,这两种表示方式是一致的,只是具体数学表达式有一点点不同。1.2Prony 级数形式 用Prony 级数表示粘弹性属性的基本形式为: ()1exp G n i G i i t G t G G τ∞=??=+- ??? ∑(2)()1exp K n i K i i t K t K K τ∞=??=+- ???∑(3) 其中,G ∞和i G 是剪切模量,K ∞和i K 是体积模量,G i τ和K i τ是各Prony 级数分量的松弛时间(Relative time)。再定义下面相对模量(Relative modulus) 0G i i G G α=(4)

阻尼材料发展现状与应用进展_张文毓

2011年4月材 料 开 发 与 应 用 文章编号:1003 1545(2011)02 0075 04 阻尼材料发展现状与应用进展 张文毓 (中国船舶重工集团公司第七二五研究所,河南洛阳 471039) 摘 要:综述了国外阻尼材料发展现状,对阻尼材料的发展趋势进行了展望。关键词:阻尼材料;发展;应用中图分类号:TB34 文献标识码:A 收稿日期:2010-06-22 作者简介:张文毓,女,1968年生,高级工程师,现主要从事情报研究工作。E -m a i:l Z W Y68218@163 com 。 阻尼材料是将固体机械振动能转变为热能而耗散的材料,主要用于振动和噪声控制。阻尼材料按特性分为4类[1] : 橡胶和塑料阻尼板:用作夹芯层材料。应用较多的有丁基、丙烯酸酯、聚硫、丁腈和硅橡胶、聚氨酯、聚氯乙烯和环氧树脂等。这类材料可以满足-50-200 C 范围内的使用要求。 橡胶和泡沫塑料:用作阻尼吸声材料。应用较多的有丁基橡胶和聚氨酯泡沫,以控制泡孔大小、通孔或闭孔等方式达到吸声的目的。 阻尼复合材料:用于振动和噪声控制。它是将前两类材料作为阻尼夹芯层,再同金属或非金属结构材料组合成各种夹层结构板和梁等型材,经机械加工制成各种结构件。 高阻尼合金:阻尼性能在很宽的温度和频率范围内基本稳定。应用较多的是铜 锌 铝系、铁 铬 钼系和锰 铜系合金。下面对阻尼材料的发展、应用等进行分析、综述,以期对阻尼材料有一个全面的了解。 1 国外阻尼材料发展现状 1.1 主要研究计划 (1)美国先进研究项目局正在筹划复合材料壳体潜艇的研究工作。复合材料壳体潜艇既吸收一部分艇的自噪声,又可吸收一部分敌方主动式声呐发出的声波,从而提高艇的隐蔽性。 (2)美国海军金属加工中心开展研究计划项目之一,旨在对一种备选的阻尼材料进行鉴定和验证,拟用于弗吉尼亚核潜艇(SSN 774),使海 军能够更加有效使用阻尼材料,降低总成本。 (3)美国国家涡轮机高周疲劳计划,由美国空军、海军及国家宇航局合作,分7个专题,其中之一为被动阻尼技术。 (4)美国海军结构基础减震计划,采用层压复合材料用于减震。 (5)日本理工大学2002研究计划中有基于分子设计开发新型高阻尼材料的项目。 (6)英国剑桥大学CAVEND I S H 实验室承担的一项合同项目,利用液晶弹性体制作阻尼材料[2] 。 (7)在美国TDSI (T e m asek Defence Syste m Institute)支持下[3] ,新加坡计划研究一种具有高阻尼和高刚性的潜艇螺旋桨材料,其目标是开发一种粘弹性复合材料,以减少水下武器和随艇设备的辐射噪声,实现隐身潜艇。其内容是:开发各种超低噪声粘弹性复合材料以制备具有高阻尼和高刚性的潜艇螺旋桨;通过涂覆一种高阻尼、高刚性的颗粒增强复合材料,开发一种机械装置的被动减噪方法。1.2 主要研究内容1.2.1 粘弹性阻尼材料 (1)粘弹性材料应力 应变本构关系模型及性能预测研究; (2)粘弹性阻尼材料高频动态力学性能测试技术研究; (3)静压力条件下动态力学性能测试表征技术研究; (4)粘弹性材料阻尼微观设计技术研究; 75

相关文档
最新文档