各国电压表

各国电压表
各国电压表

世界各国工业电压一览表

世界各国工业电压一览表 日本单相100V/200V三相200V 50/ 60HZ 美国单相115V/230V三相230V 60HZ 加拿大单相120V/347V三相208V/240V/600V 60HZ 韩国单相110V/220V三相200V/220V/380V 60HZ 中国单相220V三相380V 50HZ 台湾单相110V/220V三相220V/380V 60HZ 香港单相200V/220V三相346V/380V 50HZ 新加坡单相230V三相400V 50HZ 马来西亚单相240V三相415V 50HZ 奥地利单相230V三相400V 50HZ 比利时单相230V三相400V50HZ 保加利亚单相220V三相380V 50HZ 丹麦单相230V三相400V 50HZ 芬兰单相230V三相400V50HZ 法国单相230V三相400V 50HZ 德国单相230V三相400V 50HZ 希腊单相230V三相400V 50HZ 匈牙利单相220V三相380V50HZ 意大利单相230V三相400V 50HZ

卢森堡单相230V三相400V 50HZ 荷兰单相230V三相400V 50HZ 挪威单相220V/230V三相380V 50HZ 波兰单相220V三相380V 50HZ 葡萄牙单相230V三相400V/480V 50HZ 罗马尼亚单相220V三相380V 50HZ 西班牙单相127V/230V三相220V/400V 50HZ 瑞典单相230V/400V三相400V/690V 50HZ 瑞士单相230V三相400V 50HZ 英国单相230V三相400V 50HZ 日本单相100V/200V三相200V 美国单相115V/230V三相230V 加拿大单相120V/347V三相208V/240V/600V 韩国单相110V/220V三相200V/220V/380V 中国单相220V三相380V 台湾单相110V/220V三相220V/380V 香港单相200V/220V三相346V/380V 新加坡单相230V三相400V 马来西亚单相240V三相415V 奥地利单相230V三相400V 比利时单相230V三相400V 保加利亚单相220V三相380V

基于LABVIEW的数字电压表的设计

学号 XX 虚拟仪器 学生姓名XX 专业班级XX

基于LABVIEW的数字电压表的设计 一、设计目的 1.掌握数字电压表的基本原理和方法。 2.基于LabView设计数字电压表并实现。 二、设计原理 电压是电路中常用的电信号,通过电压测量,利用基本公式可以导出其他的参数。因此,电压测量是其他许多电参数和非电参数量的基础。测量电压相当普及的一种测量仪表就是电压表,但常用的是模拟电压表。模拟电压表根据检波方式的不同。分为峰值电压表、均值电压表和平均值电压表,它们都各自做成独立的仪表。这样,使用模拟电压表进行交流电压测量时,必须根据测量要求选择仪表。另外,多数电压表的表头是按正弦交流有效值刻度的,而测量非正弦波时,必须经过换算才能得到正确的测量结果,从而给实际工作带来不便。 采用虚拟电压表,可将表征交流电压特征的峰值、平均值和有效值集中显示在一块面板上,测量时可根据波形在面板上选择仪表,用户仅通过面板指示值就能对测量结果进行分析比较,大大简化了测量步骤。 三、设计思路 LabVIEw 8.5版本的工程技术比以往任何一个版本都丰富.它采用了英文界面,各个控件的功能一目了然。利用它全新的用户界面对象和功能,能开发出专业化、可完全自定义的前面板。LabVIEW 8.2对数学、信号处理和分析也进行了重大的补充和完善,信号处理分析和数学具有更为全面和强大的库,其中包括500多个函数。所以在LabVIEW 8.5版本下能够更方便地实现虚拟电压表的设计。 该电压表主要用于电路分析和模拟电子技术等实验课的教学和测量仪器,能够让使用者了解和掌握电压的测量和电压表对各种波形的不同响应。因此,虚拟电压表应具备电源开关控制、波形选择,以及显示峰值、有效值和平均值三种结果,且输入信号的大小可调节等功能。所以,用软件虚拟了一个信号发生器。该信号发生器可产生正弦波、方波和三角波,还可以输入公式,产生任意波形。根据需要,可调节面板上的控件来改变信号的频率和幅度等可调参数,然后检测电压表的运行情况。因此,在LabVIEW图形语言环境下设计的虚拟电压表主要分为

电流表电压表及功率表检定规程

电流表电压表及功率表检定规程 Verification Regulation of Amperemetor Voltmetor and Wattmetor 本检定规程经国家计量总局于1982年6月30日批准,并自1983年12月1日起施行。 归口单位:中国计量科学研究院 起草单位:中国计量科学研究院 中国计量科学研究院分院 主要起草人:乔玉文杨静贞王景元 本规程技术条文由起草单位负责解释。 电流表电压表及功率表检定规程 本规程适用于新生产的、使用中及修理后的直流和交流(频率为10~20000Hz)电流表、电压表和功率表,以及进行电流、电压和功率测量的复用表(以下简称为仪表)的检定。 本规程不适用于自动记录式仪表、数字式仪表、电子式仪表、平均值和峰值电压表及低功率因数功率表。 一、主要技术要求 (一)基本误差 1 仪表的基本误差在标度尺工作部分的所有分度线上不应超过表1中的规定。 表1 基本误差的表示方法: 1.1 单向标度尺的仪表--以标度尺工作部分上限的百分数表示。 即: 式中:γm--仪表的基本误差; Δ--最大绝对误差;

Am--仪表的上限值; A--仪表示值; A0--仪表的实际值。 1.2 双向标度尺的仪表--以标度尺工作部分两上限绝对值之和的百分数表示。 式中:-Am--仪表负向上限; +Am--仪表正向上限; 其它同前。 (二)升降变差及指示器不回零位 2 能耐受机械作用的仪表,微型和小型仪表,用直流进行检定的电磁系及铁磁电动系仪表,其指示值的升降变差不应超过其允许的基本误差绝对值的1.5倍。 其它仪表指示值的升降变差不应超过基本误差的绝对值。 3 具有机械反作用力矩的仪表,当将指示器自终点分度线平稳地逐渐减小至零时,指示器不回机械零位值不应超过如下规定: 3.1 能耐受机械作用的仪表、微型和小型仪表,标度尺角度大于120°的仪表和张丝式仪表用公式(3)确定不回机械零位γ(mm)之值: 式中:K--仪表的准确度等级; L--标度尺的长度(mm)。 3.2 其它仪表--按(3)式所确定数值的一半。 (三)倾斜影响 4 当仪表自规定的工作位置向任一方向倾斜(不大于表2所规定的角度)时,其指示值的改变不应超过表1中的规定值。指示值改变的表示方法与基本误差表示方法相同。 如仪表上未注明工作位置时,则在垂直与水平两个位置都应符合本条要求。 本条不适用于装有水准器的仪表。

世界各国工业电压标准

圣路易斯230 美标 斯里兰卡230 斯洛伐克230 德标 斯洛文尼亚220 德标 斯威士兰230 苏丹230 德标 索马里220 德标 塔吉克斯坦220 德标 塔希提岛110/220 德标泰国220 德标 坦桑尼亚230 美标 汤加240 突尼斯220 德标 土耳其230 德标 土库曼斯坦220 美标 危地马拉120 美标 委内瑞拉120 美标 文莱240 美标 乌干达240 美标 乌克兰220 德标 乌拉圭220 德标 乌兹别克斯坦220 德标西班牙230 德标 西萨摩亚230 希腊220 德标 香港220 美标 象牙海岸220 德标 新加坡230 美标 新喀里多尼亚220 德标新西兰230 国标 匈牙利230 德标 叙利亚220 德标 牙买加110 美标 亚美尼亚220 德标 亚述尔群岛220 德标 也门220 美标 伊拉克230 德标 伊朗230 德标

印尼127/240 美标 英国230 美标 约旦230 德标 越南127/220 美标/德标 赞比亚230 德标 智利220 意标 中非共和国220 德标 中国220 国标 回答者:pangduoduo - 秀才三级3-12 13:19 其他回答共2 条世界各各国电压概况100V :日本、北韩110~130V:台湾、美国、加拿大、巴拿马、古巴、黎巴嫩、墨西哥220~230V :英国、德国、法国、中国、新加坡、香港(200V)、义大利、西班牙、希腊、奥地利、荷兰、菲律、泰国、挪威、新加坡、印度、纽西兰、澳洲注1:采用220~230V电压的国家里,亦有视地区需要并用110~130V电压等情形,如瑞典、俄罗斯。为什么还有380V呢?原来,我们通用的电力系统是三相电,有A、B、C三根火线和一根零线。任何两根火线之间的电压是380V,火线和零线之间的电压是220V 所谓工业用电为三项五线制供电,民用只有三根线,一是相线,一是零线,另一个是地线,习惯上地线全部用黄绿相间的线,相线标志为L,零线标为N,你见到的所有插座都应该是左零右相,上边是地线。而三相五线制就变成A、B、C这三个相线,如上所说,所有相线之间电压为380V,相零相地之间为220V。回答者:stepper_行者- 举人五级3-11 18:04 100V :日本、北韩110~130V:台湾、美国、加拿大、巴拿马、古巴、黎巴嫩、墨西哥220~230V :英国、德国、法国、中国、新加坡、香港(200V)、义大利、西班牙、希腊、奥地利、荷兰、菲律、泰国、挪威、新加坡、印度、纽西兰、澳洲 世界各国的用电电压和频率,供大家参考!!! 阿根廷:电压:220V (单相) ,380V (三相),频率:50Hz 巴西:电压:110/220V(单相) ,380/460V(三相),频率:60Hz 加拿大:电压:120/240V (单相) ,208/240V (三相);频率:60Hz 墨西哥: 电压:127/220V (单相) ,220V (三相);频率:60Hz 美国:电压:120/240V (单相) ,208/240V (三相);频率:60Hz 澳大利亚/ 新西兰:电压:240/415V (单相) ,415V (三相);频率:50Hz 香港:电压:120/220V (单相) ,220V (三相);频率:50Hz 印度:电压:230V; 频率:50Hz 印尼: 电压:230V (单相) ,380V (三相) ;频率:50Hz 日本: 电压:100/200V (單相) ,200V (三相);频率:50Hz 韩国: 电压:220 (单相) ,380 (三相); 频率:60Hz 马来西亚:电压:220-240V; 频率:50Hz 菲律宾: 电压:220V 频率:60Hz 新加坡:电压:230V (单相) 400V (三相) 频率:50Hz 台湾: 电压:110/220V (单相) 220V (三相)频率:60Hz 泰国: 电压:220V (单相) 380V (三相)频率:50Hz 越南: 电压:120/220V (单相) 220V (三相)频率:50Hz 丹麦: 电压:230V (单相) 380V (三相) 频率:50Hz 芬兰: 电压:230V (单相) 380V (三相) 频率:50Hz 德国: 电压:230V (单相) 380V (三相) 频率:50Hz 匈牙利: 电压:230V (单相) 380V (三相) 频率:50Hz 立陶宛: 电压:230V (单相) 380V (三相) 频率:50Hz 波兰: 电压:230V (单相) 380V (三相) 频率:50Hz 斯洛伐克共和国: 电压:230V (单相) 380V (三相) 频率:50Hz 斯洛文尼亚: 电压:230V (单相) 380V (三相) 频率:50Hz 瑞典:电压:230V (单相) 380V (三相) 频率:50Hz 捷克共和国: 电压:230V (单相) 380V (三相) 频率:50Hz

基于单片机的数字电压表设计

引言 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本论文重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

1 实训要求 (1)基本要求: ①实现8路直流电压检测 ②测量电压范围0-5V ③显示指定电压通道和电压值 ④用按键切换显示通道 (2)发挥要求 ①测量电压范围为0-25V ②循环显示8路电压 2 实训目的 (1)进一步熟悉和掌握单片机的结构和工作原理; (2)掌握单片机的借口技术及,ADC0809芯片的特性,控制方法; (3)通过这次实训设计,掌握以单片机为核心的电路设计的基本方法和技术;(4)通过实际程序设计和调试,逐步掌握模块化程序设计的方法和调试技术。 3 实训意义 通过完成一个包括电路设计和程序开发的完整过程,使自身了解开发单片机应用系统的全过程,强化巩固所学知识,为以后的学习和工作打下基础。 4 总体实训方案 测量一个0——5V的直流电压,通过输入电路把信号送给AD0809,转换为数字信号再送至89s52单片机,通过其P1口经数码管显示出测量值。 4.1 结构框图 如图1—1所示 图1—1

世界各国工业电压标准

国家电压频率标准 民用工业美标德标意标国标 阿根廷220 德标 阿拉伯联合酋长国220 美标德标 阿鲁巴岛127 美标 阿曼240 德标 埃及220 德标 埃塞俄比亚230 瑞士插头爱尔兰230 德标 爱沙尼亚230 德标 安哥拉220 德标 安圭拉岛110 美标日本插头安提瓜岛230 奥地利230 德标 澳大利亚230 国标 巴巴多斯岛115 美标 巴布亚新几内亚240 国标 巴哈马群岛120 美标 巴基斯坦230 美标 巴拉圭220 德标 巴利阿里群岛220 德标 巴林群岛230 美标 巴拿马110 美标 巴西220 美标 百慕大群岛120 美标 保加利亚230 德标 贝宁湾220 德标 比利时230 德标 冰岛220 德标 波多黎各120 美标 波兰220 德标 波斯尼亚220 德标 玻利维亚220 德标 伯利兹城220 美标 博茨瓦纳230 美标 不丹230 美标 布基纳法索220 德标 布隆迪220 德标 赤道几内亚220 德标 丹麦220 德标 德国230 德标 东帝汶220 德标 多哥220 德标

多米尼加230 美标 多米尼加共和国110 日本插头俄罗斯220 德标 厄瓜多尔120 美标 厄立特里亚230 德标 法国230 德标 法罗群岛220 德标 菲律宾220 美标 斐济240 国标 芬兰230 德标 冈比亚230 美标 刚果230 德标 哥伦比亚110 美标 哥斯达黎加120 美标 格林纳达230 美标 格陵兰220 德标 古巴110/220 德标 瓜德罗普岛230 德标 关岛120 美标 圭亚那240 美标 哈萨克斯坦220 德标 海地110 美标 韩国220 德标 荷兰230 德标 洪都拉斯110 美标 怀特岛240 德标 基里巴斯240 国标 吉布提220 德标 几内亚220 德标 几内亚比绍共和国220 德标 加拿大120 美标 加纳230 美标 加蓬220 德标 加沙230 柬埔寨230 德标 捷克斯洛伐克230 德标 津巴布韦220 美标 喀麦隆220 德标 卡塔尔240 美标 开曼群岛120 美标 科摩罗220 德标 科威特240 德标 克罗地亚230 德标 肯尼亚240 美标 拉脱维亚220 德标

#简易数字电压表的设计

一、简易数字电压表的设计 l .功能要求 简易数字电压表可以测量0~5V 的8路输入电压值,并在四位LED 数码管上轮流显示或单路选择显示。测量最小分辨率为0.019 V ,测量误差约为土0.02V 。 2.方案论证 按系统功能实现要求,决定控制系统采用A T89C52单片机,A /D 转换采用ADC0809。系统除能确保实现要求的功能外,还可以方便地进行8路其它A /D 转换量的测量、远程测量结果传送等扩展功能。数字电压表系统设计方案框图如图1-1。 3.系统硬件电路的设 计 简易数字电压测量电 路由A /D 转换、数据处 理及显示控制等组成,电 路原理图如图1-2所示。A /D 转换由集成电路0809完 成。0809具有8路模拟输人 端口,地址线(23~25脚)可决定对哪一路模拟输入作A /D 转换,22脚为地址锁存控制,当输入为高电平时,对地址信号进行锁存,6脚为测试控制,当输入一个2us 宽高电平脉冲时,就开始A /D 转换,7脚为A /D 转换结束标志,当A /D 转换结束时,7脚输出高电平,9脚为A /D 转换数据输出允许控制,当OE 脚为高电平时,A /D 转换数据从该端口输出,10脚为0809的时钟输入端,利用单片机30脚的六分频晶振频率再通过14024二分频得到1 MHz 时钟。单片机的P1、P3.0~P3.3端口作为四位LED 数码管显示控制。P3.5端口用作单路显示/循环显示转换按钮,P3.6端口用作单路显示时选择通道。P0端口作A /D 转换数据读入用,P2端口用作0809的A /D 转换控制。 4.系统程序的设计 (1)初始化程序 系统上电时,初始化程序将70H ~77H 内存单元清0,P2口置0。 (2)主程序 在刚上电时,系统默认为循环显示8个通道的电压值状态。当进行一次测量后,将 图1-1 数字电压表系统设计方案

电流表电压表功率表及电阻表检定规程

电流表电压表功率表及电阻表检定规程 1适用范围 本规程适用于新制造、使用中及修理后的直接作用模拟指示直流和交流(频率 40Hz~10kHz) 电流表、电压表、功率表和电阻表(电阻1Ω~1MΩ)以及测量电流、电压及电阻的万用表(以下均 简称仪表)的检定。 本规程不适用于自动记录式仪表、数字式仪表、电子式仪表、平均值和峰值电压表、低功率因素 表、泄漏电流表及电压高于600V的静电电压表的检定。 2引用标准 中华人民共和国国家计量检定规程JJG124---2005 3计量性能要求 3.1准确度等级 仪表的准确度等级及最大允许误差(即引用误差)应符合表1规定。 表1 准确度等级及最大允许误差 3.2 3.2.1仪表的基本误差在标度尺测量范围(有效范围)内所有分度线上不应超过表1中规定的最大 允许误差。 仪表的基本误差以引用误差表示,按(1)式计算。 式中:X——仪表的指示值; Xo——被测量的实际值; X N——引用值(各类仪表的引用值由附录1给出)。 3.2.2升降变差 仪表的升降变差不应超过最大允许误差的绝对值。按(2)式计算。 式中:X01和X02分别为某点被测量的上升和下降的实际值,X N的含义与公式(1)中的相同。 3.3偏离零位 对在标度尺上有零分度线的仪表,应进行断电回零试验。 3.3.1在仪表测量范围上限通电30s,迅速减小被测量至零,断电15s内,用标度尺长度的百分数表 示,指示器偏离零位分度线不应超过最大允许误差的50%。 3.3.2对功率表还要进行只有电压线路通电,指示器偏离零分度线的试验,其改变量不应超过最大 允许误差的100%。 3.3.3 对电阻表偏离零位没有要求。 3.4 位置影响

直流数字电压表设计说明书

专业资料 《电子测量技术》直流数字电压表设计 院系软件职业技术学院 专业应用技术2班 学生姓名郭妍 学号 5103130016

目录 一、题目及设计要求……………………………………………………………………3页 二、主要技术……………………………………………………………………………3页 三、方案选择…………………………………………………………………………… 3页 四、电路设计原理……………………………………………………………………… 3页 4.1 模数转换………………………………………………………………………… 4页 4.2 数字处理及控制……………………………………………………………………5页 五、电路图分介绍……………………………………………………………………… 5页 5.1 AT89C51介绍………………………………………………………………………6页 5.2排阻介绍……………………………………………………………………………7页 5.3 晶振电路……………………………………………………………………………7页 5.4 复位电路……………………………………………………………………………8页 5.5 ADC0808介绍………………………………………………………………………8页 5.6共阴极数码管………………………………………………………………………9页 5.7模拟输入电路………………………………………………………………………9页5.8总设计图……………………………………………………………………………10页 5.9仿真图………………………………………………………………………………10页 六、设计程序……………………………………………………………………………11页 七、心得体会……………………………………………………………………………14 页

各国工业电压

各国工业电压 阿根廷:电压:220V (单相) ,380V (三相),频率:50Hz 巴西:电压:110/220V(单相) ,380/460V(三相),频率:60Hz 加拿大:电压:120/240V (单相) ,208/240V (三相);频率:60Hz 墨西哥:电压:127/220V (单相) ,220V (三相);频率:60Hz 美国:电压:120/240V (单相) ,208/240V (三相);频率:60Hz 澳大利亚/ 新西兰:电压:240/415V (单相) ,415V (三相);频率:50Hz 香港:电压:120/220V (单相) ,220V (三相);频率:50Hz 印度:电压:230V;频率:50Hz 印尼:电压:230V (单相) ,380V (三相) ;频率:50Hz 日本:电压:100/200V (單相) ,200V (三相);频率:50Hz 韩国:电压:220 (单相) ,380 (三相);频率:60Hz 马来西亚:电压:220-240V;频率:50Hz 菲律宾:电压:220V 频率:60Hz 新加坡:电压:230V (单相) 400V (三相) 频率:50Hz 台湾:电压:110/220V (单相) 220V (三相)频率:60Hz 泰国:电压:220V (单相) 380V (三相)频率:50Hz 越南:电压:120/220V (单相) 220V (三相)频率:50Hz 丹麦:电压:230V (单相) 380V (三相) 频率:50Hz 芬兰:电压:230V (单相) 380V (三相) 频率:50Hz 德国:电压:230V (单相) 380V (三相) 频率:50Hz 匈牙利:电压:230V (单相) 380V (三相) 频率:50Hz 立陶宛:电压:230V (单相) 380V (三相) 频率:50Hz 波兰:电压:230V (单相) 380V (三相) 频率:50Hz 斯洛伐克共和国:电压:230V (单相) 380V (三相) 频率:50Hz 斯洛文尼亚:电压:230V (单相) 380V (三相) 频率:50Hz 瑞典:电压:230V (单相) 380V (三相) 频率:50Hz 捷克共和国:电压:230V (单相) 380V (三相) 频率:50Hz 克罗地亚:电压:230V (单相) 380V (三相) 频率:50Hz 挪威:电压:230V (单相) 380V (三相) 频率:50Hz 瑞士:电压:230V (单相) 380V (三相) 频率:50Hz 乌克兰:电压:230V (单相) 380V (三相) 频率:50Hz 俄罗斯:电压:230V (单相) 380V (三相) 频率:50Hz

简易电压表设计实验报告

数字电路与逻辑设计实验 实验报告 课题名称:简易数字电压表的设计 学院:信息与通信工程学院 班级: 姓名: 学号: 班内序号:

一.设计课题的任务要求 设计并实现一个简易数字电压表,要求使用实验板上的串行AD 芯片ADS7816。 1.基本要求: (1)测量对象:1~2 节干电池。 (2)AD 参考电压:2.5V。 (3)用三位数码管显示测量结果,保留两位小数。 (4)被测信号超过测量范围有溢出显示并有声音提示。 (5)按键控制测量和复位。 2. 提高要求: (1)能够连续测量。 (2)自拟其他功能。 二. 系统设计(包括设计思路、总体框图、分块设计) 1.设计思路 本次实验利用ADS7816作为电压采样端口,FPGA作为系统的核心器件,用LED数码管进行已测电压值的显示,先把读取的12位串行二进制数据转换成并行的12位二进制数据,然后再把并行的12位二进制数据转换成便利于输出的3位十进制BCD码送给数码管,以显示当前测量电压值。这些工作由ADS7816转换控制模块、数据转换控制模块、译码显示模块完成。 2. 总体框图

3. 分块设计 3.1 ADS7816转换控制模块 (1)ADS7816工作原理 在ADS7816的工作时序中,串行时钟DCLK用于同步数据转换,每位转换后的数据在DCLK 的下降沿开始传送。因此,从Dout引脚接收数据时,可在DCLK的下降沿期间进行,也可以在DCLK的上升沿期间进行。通常情况下,采用在DCLK的上升沿接收转换后的各位数据流。CS 的下降沿用于启动转换和数据变换,CS有效后的最初1至2个转换周期内,ADS7816采样输入信号,此时输出引脚Dout呈三态。DCLK的第2个下降沿后,Dout使能并输出一个时钟周期的低电平的无效信号。在第4个时钟的上升沿,Dout开始输出转换结果,其输出数据的格式是最高有效位(B11位)在前。当最低有效位(B0位)输出后,若CS变为高电位,则一次转换结束,Dout显三态。 (2)元件设计: en:A/D转换启动键,输入。输入高电平时开始转换。 clk:时钟输入。 ad_dat:ADS7816转换结束后的12位串行二进制数据输入端。 cs:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。 data_out[11..0]:12位并行二进制数据输出端。 3.2 数据转换控制模块

各国工业电压

各国工业电压 美洲 国名(地区)单相电压插头单相电压(V)三相电压(V)频率(Hz) 美国A 120 240/480 60 夏威夷A 120 240/480 60 关岛、赛班A 120 240/480 60 加拿大A 120 240/480 60 墨西哥A 127 220 60 巴西127 220/380 60 智利220 380 50 哥伦比亚110 220 60 哥斯达黎加120 240 60 多尼加110 220 60 祕魯110 220 60 厄瓜多尔127 220 60 摩洛哥127 220/380 50 波多黎各120 240 60 阿根廷220 380 50 委内瑞拉120 240 60

国名(地区)单相电压插头单相电压(V)三相电压(V)频率(Hz) 韩国A/D/E 110/200 200/220/380 60 日本A 100 200 50/60 香港D/F 200 220/346/380 50 中国A/C/D/E/F 220 380 50 台湾A 110 220/380 60 菲律宾A/C/E 277 220/400 60 泰国C/D 220 380 50 新加坡B/C/D 230 400/415/440 50 伊朗220 380 50 以色列230 400 50 约旦220 380 50 科威特240 415 50 马来西亚240 400/415/440 50 巴基斯坦220 380/400 50 越南120 208/220/380 50 敘利亚220 380 50 沙特阿拉伯127 220/380/415 50/60 孟加拉220 380 50 印尼127 220/380 50 印度B/C 230 400 50

简易直流电压表的设计

目录 1技术要求.............................................................. - 1 -2基本原理.............................................................. - 1 - 2.1设计的具体思想................................................... - 1 - 2.2主要芯片介绍..................................................... - 2 - 2.2.1 89c51系列芯片介绍......................................... - 2 - 2.2.2 ADC0809芯片介绍........................................... - 5 - 2.2.3 LED基本结构............................................... - 7 - 2.2.4 LED显示器的选择........................................... - 8 -3建立模型描述.......................................................... - 9 - 3.1方案一........................................................... - 9 - 3.2方案二.......................................................... - 11 -4模块功能分析或源程序代码............................................. - 14 - 4.1方案一代码...................................................... - 14 - 4.2方案二代码...................................................... - 19 -5调试过程及结论....................................................... - 21 -6心得体会............................................................. - 23 -7参考文献............................................................. - 24 -

电压测量练习题

电压测量 一、填空题 1、用一只0.5 级50V的电压表测量直流电压,产生的绝对误差≤__伏。 答案:0.25 2、用峰值电压表测量某一电压,若读数为1V,则该电压的峰值为____伏。 答案: 1.41 3、采用某电压表(正弦有效值刻度)测量峰值相等(Vp=5V)的正弦波、方波、三角波,发现读数相同,则该表为____检波方式,读数____。 答案:峰值 3.53V 4、.峰值电压表的基本组成形式为________式。 答案:检波—放大 7、某数字电压表的最大计数容量为19999,通常称该表为________位数字电压表;若其最小量程为0.2V,则其分辨力为________ 。 答案:(或四位半) , 10μV 9. 四位半的DVM测量15V的稳压电源电压为15.125V,取四位有效数字时其值为。答案: 15.12V 二、判断题: 2、数字电压表的固有误差由两项组成,其中仅与被测电压大小有关的误差叫读数误差,与选用量程有关的误差叫满度误差。()√ 5、有效值电压表适应于非正弦波的电压测量,其电压刻度与被测电压波形无关。()× 6、双斜式DVM中,其平均特性可以抑制共模干扰影响。()√ 7、双积分式DVM中变换结果与积分器积分元件RC有关,但其积分器线性不好也不会引起测量误差。()× 8、对于双积分式DVM,对输入信号积分的时间只有等于工频(50Hz)的周期时,才能抑制工频干扰。()× 9. 一台四位半的DVM,基本量程为2V,则其具有超量程能力。( ) × 四位半的DVM显示为19999,若基本量程为2V,则不能再超过此值。 三、选择题: 1、交流电压的波峰因素Kp定义为____。( C )

简易电压表设计

《单片机原理与接口技术》课程设计报告设计题目:简易数字电压表设计 专业班级:电信1202 学号:2012001452 学生姓名:庞宏平 同组人:万培石一雄 指导教师:武娟萍

太原理工大学 课程设计任务书 注:课程设计完成后,学生提交的归档文件应按,封面—任务书—说明书—图纸的顺 指导教师签名:日期:2015.6

简易数字电压表设计 目录 1.引言 (4) 1.1设计任务 (4) 1.2 设计要求 (5) 2.硬件电路设计 (5) 2.1 系统的硬件构成及功能 (5) 2.2 AT89S51单片机及其引脚说明 (6) 2.3 ADC0808引脚及功能说明 (7) 2.4 ADC0808的外部引脚特征 (8) 2.5 ADC0808的内部结构及工作流程 (9) 3.LCD显示系统以及74LS373 (10) 3.1 LCD显示系统设计 (10) 3.2 74LS373引脚图及功能 (11) 3.3 总体电路设计 (13) 4.程序设计 (14) 4.1 程序设计总方案 (14) 4.2 系统子程序设计 (15) 5 .软件测试及仿真 (16) 5.1 软件调试 (16) 5.2 显示结果及误差分析 (17) 5.3 附加功能 (18) 结论 (19) 附录程序代码 (20)

第1章引言 本次课程设计利用单片机技术来实现一台简易数字电压表,具有性能可靠、电路简单、成本低等特点。 1.1数字电压表概述 电压表应用十分广泛,但大部分是模拟电压表,而由于其特性,反应速度慢,读数麻烦并且误差较大,所以为适应不断快速的高速信号领域,已经广泛使用数字电压表。本实验设计是基于51单片机开发平台实现的一种数字电压表系统。该设计采用AT89S51单片机为核心,以ADC0809为模数转换数据采样,实现被测电压的采样。 1.2此次设计任务 1.2.1设计任务 设计制作一个简易数字电压表,该直流电压表能测直流电压 目标:基于MCS—51单片机,对设计硬件电路和软件程序应用的设计,使用发光二极管来显示所要测试模拟电压的数字电压值。 内容:设计符合要求的原理图,完成硬件电路设计,设计符合要求的软件。方法:分阶段,分模块设计,先自己查找相关资料,熟悉设计要达到的目标,然后进行硬件电路的设计,最后实现软件设计,并且书写规范的设计论文。

各国电压电网标准

各国电压电网标准

————————————————————————————————作者:————————————————————————————————日期:

各国电压标准 美洲地区 国名电压频率插座类型 美国120 60 (A) 夏威夷120 60 (A) 智利220 50 (B) 加拿大120 60 (A) 墨西哥127 60 (A) 欧洲地区 国名电压频率插座类型 英国240 50 (D) 法国127/220 50 (D) 意大利127/220 50 (C) 西班牙127/220 50 (A)(C) 希腊220 50 (C) 瑞典220 50 (C) 奧地利220 50 (C) 德国220 50 (C) 荷兰220 50 (C) 挪威、瑞典220 50 (C) 俄国127/220 50 (A)(C) 亚洲地区 国名电压频率插座类型 韩国110/220 60 (A)(C)(E) 日本100 50 香港200 50 (D)(F) 中国220 50 (A)(C)(D)(E)(F) 菲律宾220 60 (A)(C)(E) 泰国220 50 (C)(D)

新加坡230 50 (B)(C)(D) 印度230 50 (B)(C) 非洲地区 国名电压频率插座类型 中非220 50 (C) 摩洛哥115 50 (B) 南非220 50 (C) 埃及220 50 (C)(D) 刚果220 50 (C) 肯亚240 50 (B)(C)(D) 尚比亚230 50 (D)(F) 奈及利亚230 50 (D)(F) 1世界各国电压概況 目前世界各国室內用电所使用的电压大体有两种,分別为100V~130V,与220~240V 二个类型。100V、110~130V被归类低压,如美国、日本等以及船上的电压,注重的是安全;220~240V则称为高压,其中包括了中国的220伏及英国的230伏和很多欧洲国家,注重的是效率。采用220~230V电压的国家里,也有使用110~130V电压的情形,如瑞典、俄罗斯。 100V:日本、韩国2国 110~130V:中国台湾、美国、加拿大、墨西哥、巴拿马、古巴、黎巴嫩等30国 220~230V:中国、香港(200V)、英国、德国、法国、意大利、澳大利亚、印度、新加坡、泰国、荷兰、西班牙、希腊、奧地利、菲律宾、挪威约120国 2出国旅游转换插头 国标美标英标欧标(德标) 南非标意标瑞士标 目前,世界上的用电插头存在着多种标准有中国标准旅游插头(国标)、美国标准旅游插头(美标)、欧洲标准旅游插头(欧标、德标)、英国标准旅游插头(英标)和南非标准旅游插头(南非标)等。 我们出国时带的电器一般都是国标插头,在国外大多数国家无法使用,如果在国外再买相同的电器或旅游插头则价格相当昂贵,为了不影响旅行,建议大家出国前自己准备好几个出国转换插头。

四位半数字电压表设计

2 14位数字电压表 [摘要] 随着电子科学技术、传感技术、自动控制技术和计算机的发展,电阻、电压、电流等数值的测量变得越来越常见,其中电压的测量最为常见。传统的指针式电压表应经无法满足如今高精度的要求,数字电压表的诞生很好地解决了这一问题。 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。且数字电压表精度高,抗干扰能力强,可扩展性强,集成方便,读数方便。 目前由各种A/D 转换器构成的数字电压表,已被广泛应用于电子及电工测量,工业自动化仪表,自动测试系统等智能化测试领域,显示出强大的生命力。与此同时,由DVM 扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到站新水平。综上所述,数字电压表在现在及将来都会有广大的应用。 [关键词]:电压测量 数字电压 数码管 [关键字]: 译码器 ICL7135

2 14位数字电压表的英文 [Abstract] Four in digital design a form [Summary] As the voltage the table design the electronic science and technology, and sensing technology, automatic control technology and computer technology development, an electronic survey become the workers must acquire the means of electronics, precision measurement and functional requirements are higher and higher monolithic integrated circuits as computer technology have a wide application in industry, intellectualized instruments, household appliances and electronic toys and other areas. this article introduced a monolithic integrated circuits 89s52 the numbers measure the voltage electrical circuit used icl7135 high precision, two points a d transforming circuit, a direct measurement range of 0 - ± 2000 and lcd1601 use lcd modules, and in the pc to the serial communication. [Keywords] voltage measurement displayed

数字电压表设计与制作

毕业设计(论文) 题目:数字电压表的设计及制作年级专业:电气自动化14321班 学生姓名: 秦小钧 指导教师:杨海蓉 2016年10 月13 日

毕业设计任务书 毕业设计题目:数字电压表的设计及制作 题目类型工程设计题目来源学生自选题 毕业设计时间从 2016/09/25 至 2016/10/13 1.毕业设计内容要求: 采用AT89S52作MCU,ADC0809(或其他芯片)进行AD转换,测量电压的范围为直流0—5V电压,四位数码管显示。 2.主要参考资料 [1]万福君,潘松峰.单片微机原理系统设计及应用[M],中国科学技术大学出版社,01年8月第2版 [2]周责魁。控制仪表及计算机控制装置[M] ,化学工业出版社,02年9月第1版 [3]李青。电路及电子技术基础[L] ,浙江科学技术出版社,05年2月第1版 [4]陈乐。过程控制及仪表[M],中国计量学院出版社,07年3月 [5]孙育才。新型AT89S52系列单片机及其应用[M] ,清华大学出版社,05年5月第1版3.

摘要 本设计由A/D转换、数据处理及显示控制等组成,测量0~5V范围内的输入电压值,由4位共阳8段数码管扫描显示,最大分辨率0。1V,误差±0。05V.数字电压表的核心为AT89S52单片机和ADC0832 A/D转换集成芯片。 关键词:数字电压表;单片机;AT89S52; ADC0832

第一章设计方案的选择 1。1功能要求及设计目标 采用AT89S52作MCU,ADC0809(或其他芯片)进行AD转换,测量电压的范围为直流0-5V 电压,四位数码管显示。(设计并制作出实物为优)。 1.2 系统设计方案 AT89S52具有如下特点:40个引脚,8k Bytes Flash片内程序存储器,256 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器 AT89C52可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash 存储器结合在一起,特别是可反复擦写的 Flash存储器可有效地降低开发成本。 AT89S5及AT89c52相比,前者的性能比后者高,所以本设计采用AT89S52芯片。 数模转换芯片: ADC0809是采样分辨率为8位的、以逐次逼近原理进行模—数转换的器件.其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换,转换时间为100μs。 ADC0832 为8位分辨率A/D转换芯片,其最高分辨可达256级,可以适应一般的模拟量转换要求。其内部电源输入及参考电压的复用,使得芯片的模拟电压输入在0~5V之间。芯片转换时间仅为32μS,据有双数据输出可作为数据校验,以减少数据误差,转换速度快且稳定性能强. 由于ADC0832芯片的转换时间短,并且性能比较高,所以采用ADC0832作为数模转换芯片. 1 选择AT89S5 2 作为控制芯片 2 选择ADC0832芯片来进行模数转换 3 选择GEM5461GE 四位一体的共阳数码管来显示数字 4 用9012三极管来作为驱动电路,使GEM5461GE 四位一体的共阳数码工作. 5 用SW1按键作为复位按键,实现复位电路的功能.

相关文档
最新文档