瓦斯地质汇总

瓦斯地质汇总
瓦斯地质汇总

瓦斯地质汇总

第一章绪论

1.瓦斯地质学是运用地质学的基本原理、方法以及煤矿开采方面的技术理论,研究瓦斯的形成、运移、赋存和发生瓦斯灾害的地质控制理论的一门交叉学科

2.构造煤是煤层受地质构造挤压剪切破坏作用的产物。

3.瓦斯突出煤体是指含高能瓦斯的构造煤体。

4. 构造煤和瓦斯突出煤体基础理论研究

实践表明:构造煤控制着瓦斯灾害的发生,影响着瓦斯的治理,亦控制着煤层气的地面开发。构造煤和瓦斯突出煤体基础理论,主要是指运用构造地质学、地球物理学、流体力学、量子化学、力化学等相关学科知识,研究构造煤力化学成烃作用、构造煤瓦斯多场多相耦合作用、构造煤探测理论和技术等,为瓦斯突出煤体预测、瓦斯治理和煤层气开发提供理论基础。

5. 瓦斯(煤层气)抽采地质控制机理研究

瓦斯(煤层气)的高效抽采是瓦斯灾害治理的根本性措施之一。

1.地质条件复杂

2.煤层透气性低

3.抽采难度大

第二章含煤盆地和瓦斯形成理论

1.含煤盆地是指赋存煤炭的沉积构造盆地。

2.世界范围内先后产生了5个主要聚煤期:石炭纪聚煤期、二叠纪聚煤期、早中侏罗世聚煤期、晚侏罗至早白垩世聚煤期、晚白垩至始新世聚煤期,其中石炭纪和二叠纪聚煤期成煤量最多。

3.瓦斯成因类型:生物成因(原生生物成因、次生生物成因)和热成因(热解成因、裂解成因

)两类。

4. 煤层气发生率——指从泥炭到特定煤级瓦斯气体产生的总量。

视煤气发生率——指从褐煤到特定煤级瓦斯气体产生的量。

阶段生气率——指煤化过程特定阶段瓦斯气体产生的量。

5. 地质构造演化对煤层瓦斯保存的影响:

瓦斯是气质地质体;

中国的石炭二叠纪含煤地层形成后主要经历了印支运动、燕山运动和喜马拉雅运动等。每次构造运动的规模、涉及范围、构造应力场等均不尽相同;

煤层形成后在历经构造运动中拉张裂陷、隆起剥蚀会使煤层瓦斯大量逸散;

煤层形成后在历经构造运动中挤压拗陷有利于瓦斯保存,挤压剪切易于形成构造煤、同时形成好的封闭条件;

6.不同地质构造类型对瓦斯保存的影响:

1.向斜构造

2. 背斜构造

3.推覆构造对瓦斯保存的影响

4. 伸展构造对瓦斯保存的影响

7.沉积作用对瓦斯保存的影响

瓦斯形成于煤层,储于煤层;沉积环境、沉积作用在很大程度上决定了瓦斯生成的物质基础以及煤储层、盖层的几何和物性特征。

通过煤层与围岩之间的组合关系影响到瓦斯的保存条件。

(2)聚煤期前后沉积环境演化对瓦斯保存的影响

环境演化决定下伏、上覆地层厚度、岩性组合和厚度,关系到

岩层的透气性。(1)聚煤期前后平静水体环境有利瓦斯赋存(2)聚煤期前后冲积环境沉积不利于瓦斯赋存

8.煤层厚度对瓦斯保存的影响

瓦斯的逸散以扩散方式为主,空间两点之间的浓度差是其扩散的主要动力。在其他初始条件相似的情况下,煤储层厚度越大,达到中值浓度或者扩散终止所需要的时间就越长。煤储层本身是一种高度致密的低渗透性岩层,上部分层和下部分层对中部分层有强烈的封盖作用,煤储层厚度越大,中部分层中煤层气向顶底板扩散的路径就越长,扩散阻力就越大,对瓦斯的保存就越有利。

9.水文地质对瓦斯保存的影响

一是水力运移逸散作用;二是水力封闭作用;三是水力封堵作用。

第三章瓦斯赋存构造逐级控制理论

板块构造与中国煤矿地质构造特征(了解)

(一)华北地区

印支期主要受西伯利亚板块由北向南和扬子地块由南向北推挤作用,形成近东西向的宽缓褶皱和断裂,但不剧烈。

燕山早、中期受太平洋库拉板块俯冲碰撞作用,活动剧烈,形成一系列北北东、北东向的大规模隆起和拗陷,伴随剧烈的岩浆活动,如太行山隆起、贺兰山隆起、鄂尔多斯盆地拗陷、

沁水盆地拗陷等。

华北地区煤层主要发育近东西向、北北东向、北东向的褶皱和断裂及其叠加和复合构造。(二)华南地区

华南地区地质构造比华北地区复杂,北面受华北板块的碰撞挤压,西面受藏滇板块的推挤,南面受印支板块的作用,东面受太平洋菲律宾板块长时期的碰撞挤压作用。

华南板块既发育有近东西向构造,又发育有北西向构造和北北东向、北东、北东东向构造,使华南地区煤层构造破坏严重,构造极为复杂,煤层厚度变化大,构造煤发育。

(三)西北地区

中国大陆西部受印度板块由南向北挤压、西伯利亚板块相对阻挡,地壳大幅度隆起,使得塔里木盆地、准噶尔盆地的早、中侏罗统煤层抬起,大面积煤层距地表很浅。

从新疆天山山脉到内蒙古中部的阴山山脉,山体表现为东西向延展;盆地表现为压陷盆地;煤田地质构造主要表现为压性、压扭性断裂和褶皱,多为逆冲推覆构造。

(四)东北地区

主要受天山——兴安活动带和滨太平洋构造域构造演化的控制。

位于东段的东北黑、吉、辽三省地区,自印支运动以来受西伯利亚板块自北而南和太平洋板块自南东向北西的双向挤压,呈现着东西向构造与北东、北北东向构造相互复合的格局。燕山期以来,主要表现为大兴安岭隆起、松辽盆地拗陷大范围的岩浆喷发等活动,晚侏罗—早白垩统煤系地层以火山碎屑岩沉积为主。

板块构造与中国煤层瓦斯赋存分布特征

(一)华北地区

普遍沉积了中国较老的石炭二叠系含煤地层

以中高变质烟煤、无烟煤为主

煤层瓦斯生成条件比较优越,是我国高瓦斯矿井、矿区主要分布区

(二)华南地区

华南地区煤层煤化程度高,多为无烟煤和高变质烟煤,在闽、浙、粤东沿海一带,主要为高阶无烟煤。华南地区除高阶无烟煤矿井之外,80%以上的矿井为高瓦斯和煤与瓦斯突出矿井。(三)西北地区

塔里木盆地,准噶尔盆地向东到内蒙中部,都沉积了中国煤炭资源量最大的早、中侏罗世的煤层。由于受印度板块由南向北推挤和西伯利亚板块阻挡南北挤压作用,盆地大范围的抬升,煤层距地表浅,并受到风化剥蚀作用.

目前80%以上的矿井为低瓦斯矿井。但是深部高瓦斯矿井将逐渐增加,局部地带也将会有煤与瓦斯突出危险突出矿井6对、高瓦斯矿井13对,共发生瓦斯突出6次。

(四)东北地区

沉积于松辽盆地以东,黑龙江鸡西、双鸭山、鹤岗,吉林辽源、通化,辽宁阜新等矿区的晚侏罗—早白垩世的煤层,松辽盆地的晚侏罗-早白垩世的煤层,由于受大范围岩浆活动的作用,煤化程度增高,多为中高变质烟煤,加上煤系地层普遍沉积厚层火山凝灰岩和火山碎屑岩,透气性低,对煤层瓦斯保存具有封盖作用,因此多为高瓦斯突出矿井、矿区分布。抚顺矿区早第三系抚顺组煤层也为高瓦斯突出煤层。

沉积于大兴安岭东侧的早、中侏罗世的煤层,煤化程度低,以褐煤为主,并遭受风化剥蚀作用,90%以上的矿井为低瓦斯。

中国煤与瓦斯突出动力灾害特征

1、中国是世界上煤与瓦斯突出动力灾害最严重的国家;

2、含有高能瓦斯的构造煤是煤与瓦斯突出发生的基础;

3、煤与瓦斯突出发生在构造挤压剪切破坏带

板块构造对中国煤与瓦斯突出区域分布的控制(重点)

板缘构造带控制着煤与瓦斯突出的敏感地带。

板内造山带控制着煤与瓦斯突出的敏感地带。

深层构造陡变带是影响煤与瓦斯突出的敏感地带。

深层活动断裂带是影响煤与瓦斯突出的敏感地带。

推覆构造带是煤与瓦斯突出的敏感地带。

强变形带是控制煤与瓦斯突出的敏感地带

瓦斯赋存构造逐级控制理论内涵(重点)

区域地质构造演化

现今煤矿瓦斯分布和赋存状态是含煤盆地经历了印支运动、燕山运动、喜马拉雅运动和现今地球构造应力场演化作用的结果,都可归结为挤压剪切构造活动或拉张裂陷构造活动作用的结果。

瓦斯赋存地质构造逐级控制理论研究路线

运用板块构造理论,区域地质构造演化理论深入地研究区域地质构造,从而深入地研究瓦斯赋存地质构造逐级控制规律,逐级缩小范围,揭示不同级别范围的瓦斯地质规律,有的放矢的预测防治瓦斯灾害。

瓦斯赋存地质构造逐级控制规律

瓦斯分布、赋存状态存在着地质构造逐级控制规律,板块构造控制区域地质构造,区域地质构造控制矿区,矿区构造控制矿井、采掘工作面。通过构造逐级控制,可以逐级缩小范围,最后圈定瓦斯富集区和煤与瓦斯突出危险区。

瓦斯赋存地质构造逐级控制机理

只有运用区域地质构造演化理论和瓦斯赋存地质构造逐级控制理论才能厘清不同级别的挤压剪切构造和拉张裂陷构造,才能厘清瓦斯富集区、煤与瓦斯突出煤层、突出矿井、煤与瓦斯突出危险区的分布。

第四章煤层瓦斯赋存与煤储层物性特征

吸收瓦斯:进入煤体内部的瓦斯

吸着瓦斯:吸附在煤体表面的瓦斯

吸附瓦斯:吸收瓦斯和吸着瓦斯的统称

游离瓦斯:在气饱和情况下,煤的孔隙和裂隙中充满着处于游离状态的瓦斯。

影响煤吸附性的因素

煤吸附性大小主要取决于3个方面的因素:

①煤结构、煤的有机组成和煤的变质程度;

②被吸附物质的性质;

③煤体吸附所处的环境条件。

解吸:煤层压力降低到一定程度,煤中被吸附的甲烷开始从微孔表面分离,即发生解吸。解吸率:损失气量与解吸气量之和与总含气量之比。

解吸量:损失气量与现场两小时解吸气量之和,即解吸率与实测含气量的乘积。

影响煤层瓦斯含量的因素:

主要地质因素包括:煤的变质程度、围岩条件、地质构造、煤层埋藏深度、煤田的暴露程度、地下水活动和岩浆活动。

地质构造类型及组合对瓦斯保存的影响

不同类型的地质构造在其形成过程中,由于构造应力场及其内部应力状态的不同,导致煤层和盖层的产状、结构、物性、裂隙发育状况及地下水径流等条件出现差异,进而影响到煤层瓦斯的保存。

褶皱构造影响煤层瓦斯的保存为多数研究者所承认,也是煤矿开采实际所证明

背斜和向斜特别是它们的轴部及其附近, 既有煤层瓦斯含量较高、或者发生瓦斯涌出或发生煤与瓦斯突出的现象, 也有煤层瓦斯含量较低或不发生集中瓦斯涌出或煤与瓦斯突出

褶皱构造控制煤层瓦斯的基本类型

背斜上层逸散型

背斜下层聚集型

向斜上层聚集型

向斜下层逸散型

断裂构造对瓦斯保存的影响

断裂构造破坏了煤层的连续完整性,使煤层瓦斯运移条件发生变化。

有的断层有利于瓦斯排放,有的断层对抑制瓦斯排放而成为逸散的屏障。

前者称为开放型断层、后者称为封闭型断层

断层的开放性与封闭性取决于下列条件:

断层属性和力学性质,一般张性正断层属开放型,而压性或压扭性逆断层通常具有封闭性;断层与地表或与冲积层的连通情况,规模大且与地表相通或与冲积层相连的断层一般为开放型;

断层将煤层断开后,煤层与断层另一盘接触的岩层性质有关,若透气性好则利于瓦斯排放;断层带的特征、断层带的充填情况、紧闭程度、裂隙发育情况等都会影响到断层的开放性或封闭性。

岩浆活动的影响

岩浆侵入含煤岩系或煤层,在岩浆热变质和接触变质的影响下,煤的变质程度升高,瓦斯的生成量和吸附能力增大。

在缺少隔气盖层或封闭条件不好时,岩浆的高温作用可以强化煤层瓦斯排放,使煤层瓦斯含量减小。

岩浆岩体有时会使煤层局部被覆盖或封闭,形成隔气盖层,瓦斯得以保存

但在某些情况下,由于岩脉蚀变带裂隙增加,造成风化作用加强,可逐渐形成裂隙通道,有利于瓦斯的排放。

岩浆活动对瓦斯赋存既有生成和保存作用,在某些条件下又会增加瓦斯逸散的可能性。因此,在研究岩浆活动对煤层瓦斯的影响时,要结合地质背景作具体分析。

总的来看,岩浆侵入煤层有利于瓦斯生成和保存的现象比较普遍。

煤层瓦斯垂向分带:二氧化碳-氮气带、氮气带、氮气-甲烷带、甲烷带。

瓦斯风化带下界确定指标

①瓦斯压力P=0.1~0.15MPa (1~1.5 kg/cm2);

②瓦斯组分CH4≥80%(体积百分数);

③相对瓦斯涌出量大于2 m3/t 。

④煤层瓦斯含量(x )

煤储层压力:作用于煤孔隙和裂隙空间上的流体压力(包括水压和气压),又称为孔隙流体压力,相当于常规油气储层中的油层压力或气层压力。煤储层流体受到三个方面力的作用,包括上覆岩层静压力、静水柱压力和构造应力。 (1)当煤层渗透性较好并与地下水连通时,孔隙流体所承受的压力为连通孔道中的静水柱压力,即煤储层压力等于静水压力;

(2)若煤储层被不渗透地层所包围,由于储层流体被封闭而不能自由流动,储层孔隙流体压力与上覆岩层压力保持平衡,此时,储层压力等于上覆岩层压力;

(3)在煤层渗透性很差且与地下水连通性较差的条件下,由于岩性不均而形成局部半封闭状态,则上覆岩层压力由储层内孔隙流体和煤基质块共同承担,此时,煤储层压力小于上覆岩层压力而大于静水压力。即:

式(4-13)中,σv —上覆岩层压力,MPa ;p —煤储层压力,MPa ;σ—煤层骨架应力,MPa 。

储层压力梯度:单位垂深内的储层压力增加,常用井底压力除以从地表到测井井段终点深度而得出。用kPa/m 或MPa/100m 表示。 压力梯度/(kPa/m)

<9.5 9.5~10.0 >10.0 储存压力类型

低压 正常 高压

压力系数定义:实测地层压力与同深度静水柱压力之比值,石油天然气地质中常用该系数表述储层压力的性质和大小。当压力系数等于1时,储层压力与静水柱压力相等,储层压力正常;当压力系数大于1时,储层压力高于静水压力,称为高异常压力;如果储

σσ+=p v

层压力远远大于静水柱压力,则称超压异常;若压力系数小于1,储层压力低于静水柱压力时,称低异常压力。

煤层裂隙系统

渗透性是流体通过多孔介质的能力,表征渗透性的量是渗透率,与渗透率有关的概念有绝对渗透率、有效(相)渗透率、相对渗透率等。

绝对渗透率:只存在一相流体,且流体与介质不发生任何物理化学作用,则多孔介质允许流体通过的能力称为绝对渗透率。渗透率单位是达西,符号为D (相当于SI 制单位的μm 2),1D 的物理意义是:当黏度为1cP (厘泊)的流体,在压差为1atm 作用下,通过截面积为1cm 2、长度为1cm 的多孔介质,其流量为1cm 3/s 时,该多孔介质的渗透率就称为1D (达西)。煤储层的渗透率往往较低,常用千分之一达西,即毫达西mD (10-3μm 2)作为单位。

有效渗透率:若孔隙中存在多相流体,则多孔介质允许每一相流体通过的能力称为每相流体的相渗透率,也称为有效渗透率。

相对渗透率

有效(相)渗透率与绝对渗透率的比值称为相对渗透率。煤储层相对渗透率通常采用单相有效渗透率同气相(甲烷或氦气)克氏渗透率或绝对渗透率的比值。即:

式中: K τw ,K rg ——水、气相对渗透率; K we ,K ge ——水、气有效渗透率;

气体穿过煤储层孔隙的流动机制

煤层孔隙和裂隙的分类

0K K K we w =τ0

K K K ge

rg =

第五章煤体结构和构造煤

构造煤:是煤层在构造应力作用下,发生成分、结构和构造的变化,引起煤层破坏、粉化、增厚、减薄等变形作用和煤的降解、缩聚等变质作用的产物.

分类: 碎裂结构(碎裂煤)、碎粒结构(碎粒煤)、粉粒结构(粉粒煤)、糜棱结构(糜棱煤)宏观煤岩成分和宏观煤岩类型:

构造煤宏观结构特征:

碎裂结构煤被密集的次生裂隙相互交切成碎块,但碎块之间基本没有位移,煤层原生层理基本可见,时断时续。碎裂结构常常位于原生结构与碎粒结构的过渡部位。

碎粒结构煤被破碎成粒:主要粒级大于1mm。大部分煤粒由于相互位移摩擦失去棱角,煤层原生层理被破坏,层理不清,裂隙较发育,煤层煤体主要呈粒状。碎粒结构往往紧靠碎裂结构分布,常常距离煤层顶板或底板一定距离,也常常位于断裂带的中心部位。

糜棱结构煤被破碎成很细的粉末,主要粒级小于1mm。有时被重新压紧,煤层原生层理完全被破坏,已看不到煤层原生层理和节理,滑移面、摩擦面很多,煤体呈透镜体状、粉状、鳞片状,极易捻成粉末。糜棱结构煤是强挤压、剪切破坏的束缚,常出现在压应力很大的断裂褶皱带中。

顺煤层剪切带对构造煤的控制:

顺煤层剪切带是指沿煤层发育的剪切面与煤层以小角度相交或者近于平行的剪切带。顺层剪切带也叫逆掩断层、顺层断层、缓倾角断层、层滑构造等。

(1)与煤层产状一致的顺煤层剪切带

这种大规模的顺煤剪切带的走向、倾向和倾角和煤层是近于一致的。形成大规模的构造煤。(2)波状起伏的顺煤层剪切带

一些影响带较窄但范围较大的顺煤层剪切带在剖面上波状起伏,剪切面产状变化较大。(3)顺煤层剪切带选层性

顺层剪切带的发生具有选层性。这一特性决定于煤层的岩石力学强度差异及其煤层所在构造剖面中的位置。根据其选层的级别可以分为三种:煤层、煤系和构造层。

第七章煤矿三级瓦斯地质图

煤矿矿区、矿井、采掘工作面三级瓦斯地质图,是瓦斯地质规律和瓦斯预测成果的直观高度概括。

我国瓦斯地质的发展与应用_袁崇孚

第22卷第6期煤炭学报V ol.22 No.6 1997年 12月JOURNAL OF CH INA COAL SOC IET Y Dec. 1997  我国瓦斯地质的发展与应用 袁 崇 孚 (焦作工学院) 摘要 煤矿安全生产的需要,促进了我国瓦斯地质的发展.这一新兴学科如何向前发展是令人关注的问题.10多年来,瓦斯地质学科在服务煤矿生产实践中,在煤矿瓦斯地质编图、矿井瓦斯地质规律研究、瓦斯涌出量预测和突出危险性预测以及煤层气评价诸方面均取得了明显的应用成效. 关键词 瓦斯地质 应用 学科发展 中图分类号 TD712 瓦斯地质是70年代后期在我国煤炭行业发展比较快的一个新领域.它是研究煤层瓦斯赋存、运移、分布,矿井瓦斯涌出和煤与瓦斯突出与地质因素的关系,并探明其规律性的边缘学科,是在吸收地质工程和安全技术工程两学科的相关理论,经过生产实践、科学研究和理论提炼,直接应用于资源、环境和煤矿安全生产的新学科.瓦斯地质研究的显著特点是密切联系生产实际,它把对煤矿瓦斯涌出和突出分布规律的研究与瓦斯的综合治理结合起来,提高了防治措施的针对性和有效性,更好地发挥了瓦斯防治措施的安全和经济效益.它把对煤层瓦斯生成和赋存规律的研究与煤层气资源的勘探和评价结合起来,提高了接替能源开发和利用的可行性.由于瓦斯地质的研究方向、方法和理论符合我国煤矿生产建设的客观需要,这门学科得到了比较快的发展,在煤矿生产建设的实践中取得了明显的成效. 1 煤矿安全生产的需要促进了瓦斯地质的发展 70年代煤炭院校的部分地质教师涉足矿井瓦斯与地质因素关系的调查研究,它们的介入提高了对瓦斯现象的认识[1],煤炭工业部科技局对这项研究给予了热情的支持,并纳入了部级科研计划.1978年在焦作召开了煤炭行业第一次瓦斯地质座谈会,交流和肯定了瓦斯与地质之间的关系,“瓦斯地质”的名称也为大家所接受.一些单位相继开展了这方面的研究,总结提出了一些规律性的认识和成果,瓦斯地质工作逐渐被引入煤矿瓦斯防治领域中.1983年煤炭工业部下发的煤技字1751号文件《关于加强瓦斯地质工作的通知》,明确指出了开展瓦斯地质工作的意义,进一步推动了瓦斯地质工作的开展.煤炭工业部科研项目“全国煤矿瓦斯地质编图”的实施促进了瓦斯地质工作的普及.瓦斯地质工作经历了由浅入深、由普及到提高的逐步深化过程. 我国煤矿中高瓦斯矿井和煤与瓦斯突出矿井占全国统配及重点煤矿总数的46%以上,我国煤矿中发生过煤与瓦斯突出的矿井约250多对.随着开采深度的增加和开发强度的增大,以及一些新井的建设投产,矿井瓦斯涌出量呈明显上升趋势,突出矿井的数量和突出次数有所增加,突出矿井煤炭产量所占的比重也逐年有所增大.矿井瓦斯涌出和排放不相适应的情况在一些高瓦斯矿区表现严重,矿井瓦斯涌收稿日期:1997-04-28

莲花矿瓦斯地质图编制说明书

重庆市巫山县莲花煤业有限责任公司瓦斯地质图编制说明书 矿山名称:重庆市巫山县莲花煤业有限责任公司编制单位:重庆市巫山县煤矿安全技术服务站 编制时间:二〇一〇年十月

重庆市巫山县莲花煤业有限责任公司 瓦斯地质图编制说明书 报告提交单位:重庆市巫山县煤矿安全技术服务站总经理: 技术负责: 项目负责: 审核: 主要编制人: 报告编写时间:二〇一〇年十月

目录 1 概述 (1) 1.1 目的任务 (1) 1.2 执行技术标准及依据 (1) 1.3 以往地质工作 (2) 1.4 本次工作情况 (3) 2 矿井概况 (5) 2.1交通位置 (5) 2.2矿山基本概况 (5) 3 矿井地质 (10) 3.1地质概况 (10) 3.2煤层 (13) 3.3煤质特征 (14) 3.4瓦斯、煤尘及煤层自燃倾向性 (15) 3.5水文地质特征 (16) 4 矿井构造 (19) 4.1 矿区地质构造演化及分布特征 (19) 4.2 矿井地质构造及分布特征 (21) 4.3 构造煤发育情况及分布特征 (24) 5 矿井瓦斯地质规律 (25) 5.1 构造对瓦斯赋存的影响 (25) 5.2 顶底板岩性对瓦斯赋存的影响 (26)

5.3 煤层埋深及上覆岩层对瓦斯赋存的影响 (27) 5.4 岩溶陷落柱对瓦斯赋存的影响 (28) 5.5 瓦斯含量分布及预测 (28) 6 矿井瓦斯涌出量预测 (32) 6.1 矿井瓦斯涌出量资料统计及分析 (32) 6.2 矿井瓦斯抽采(放)资料统计及分析 (36) 6.3 矿井回采工作面瓦斯涌出量预测 (36) 7 煤与瓦斯区域突出危险性预测 (44) 7.1 煤与瓦斯突出危险性参数测定及统计 (44) 7.2 煤与瓦斯突出危险性影响因素分析 (44) 7.3 煤与瓦斯区域突出危险性预测 (46) 8 煤层气资源量估算 (48) 8.1 资源量估算方法 (48) 8.2 资源量估算及参数的确定 (49) 8.3 资源量估算结果及评价 (49) 9 矿井瓦斯地质图编制 (52) 9.1 编图资料 (52) 9.2 编图内容和表示方法 (52) 10 结论和建议 (54) 10.1结论 (54) 10.2建议 (54)

瓦斯地质汇总

瓦斯地质汇总 第一章绪论 1.瓦斯地质学是运用地质学的基本原理、方法以及煤矿开采方面的技术理论,研究瓦斯的形成、运移、赋存和发生瓦斯灾害的地质控制理论的一门交叉学科 2.构造煤是煤层受地质构造挤压剪切破坏作用的产物。 3.瓦斯突出煤体是指含高能瓦斯的构造煤体。 4. 构造煤和瓦斯突出煤体基础理论研究 实践表明:构造煤控制着瓦斯灾害的发生,影响着瓦斯的治理,亦控制着煤层气的地面开发。构造煤和瓦斯突出煤体基础理论,主要是指运用构造地质学、地球物理学、流体力学、量子化学、力化学等相关学科知识,研究构造煤力化学成烃作用、构造煤瓦斯多场多相耦合作用、构造煤探测理论和技术等,为瓦斯突出煤体预测、瓦斯治理和煤层气开发提供理论基础。 5. 瓦斯(煤层气)抽采地质控制机理研究 瓦斯(煤层气)的高效抽采是瓦斯灾害治理的根本性措施之一。 1.地质条件复杂 2.煤层透气性低 3.抽采难度大 第二章含煤盆地和瓦斯形成理论 1.含煤盆地是指赋存煤炭的沉积构造盆地。 2.世界范围内先后产生了5个主要聚煤期:石炭纪聚煤期、二叠纪聚煤期、早中侏罗世聚煤期、晚侏罗至早白垩世聚煤期、晚白垩至始新世聚煤期,其中石炭纪和二叠纪聚煤期成煤量最多。 3.瓦斯成因类型:生物成因(原生生物成因、次生生物成因)和热成因(热解成因、裂解成因 )两类。 4. 煤层气发生率——指从泥炭到特定煤级瓦斯气体产生的总量。 视煤气发生率——指从褐煤到特定煤级瓦斯气体产生的量。 阶段生气率——指煤化过程特定阶段瓦斯气体产生的量。 5. 地质构造演化对煤层瓦斯保存的影响: 瓦斯是气质地质体;

中国的石炭二叠纪含煤地层形成后主要经历了印支运动、燕山运动和喜马拉雅运动等。每次构造运动的规模、涉及范围、构造应力场等均不尽相同; 煤层形成后在历经构造运动中拉张裂陷、隆起剥蚀会使煤层瓦斯大量逸散; 煤层形成后在历经构造运动中挤压拗陷有利于瓦斯保存,挤压剪切易于形成构造煤、同时形成好的封闭条件; 6.不同地质构造类型对瓦斯保存的影响: 1.向斜构造 2. 背斜构造

义煤公司瓦斯地质图管理规定(试行)

义煤公司瓦斯地质图管理规定(试行) 一、矿井三级瓦斯地质图包括矿井瓦斯地质图、采区瓦斯地质图、采煤工作面瓦斯地质图。突出矿井必须编制三级瓦斯地质图,其他矿井必须编制矿井瓦斯地质图;存在瓦斯异常区域的高瓦斯矿井和瓦斯矿井必须编制瓦斯异常区域所在的采区瓦斯地质图和采煤工作面瓦斯地质图。 二、根据矿井瓦斯地质实际情况,在瓦斯地质图和采掘工程平面图上必须标注清楚重点瓦斯管理区域和瓦斯异常条带,以充分发挥瓦斯地质图指导矿井安全生产的作用。 1、矿井瓦斯地质图是指导矿井进行瓦斯防治的基础图件。在横向上通过汇集瓦斯地质信息、分析瓦斯地质规律,划分出瓦斯治理的重点管理区域;在纵向上通过收集分析瓦斯压力、瓦斯含量、煤与瓦斯突出危险性和瓦斯涌出量预测等参数,预测矿井向深部延伸的瓦斯压力、含量递增梯度和瓦斯赋存规律,指导矿井有重点的开展瓦斯防治工作。 2、采区瓦斯地质图是对矿井瓦斯地质图的细化和补充,是指导采区瓦斯防治的基础图件。采区瓦斯地质图通过进一步细化矿井瓦斯地质图划分和预测瓦斯治理的重点区域,指导矿井编制采掘工作面瓦斯综合治理设计、掘进工作面作业规程、瓦斯治理专项措施,采取针对性措施确保掘进工作面

安全施工。 3、采煤工作面瓦斯地质图是指导采煤工作面瓦斯治理、安全回采的基础图件。通过收集采煤工作面煤巷掘进过程中的地质构造、瓦斯基础参数、效检指标、瓦斯涌出量、打钻异常情况等资料,划分出采煤工作面的瓦斯异常区域,制定有针对性的安全技术措施,保障采煤工作面的安全回采。 三、矿井瓦斯防治部门要与地测部门紧密结合,指定专人负责填图,并建立防突(瓦斯)信息联系单及瓦斯地质图交换制度,每月定期互通瓦斯地质信息,实现资料共享。 四、矿井瓦斯地质图、采区瓦斯地质图每月至少更新一次,每季度至少修订一次,有重大变化时要及时修订;采煤工作面瓦斯地质图根据回采工作面的瓦斯地质变化及时更新。 五、矿井瓦斯地质图和采区瓦斯地质图每季度首月5日前报送公司通风、地测部门进行季度交换;采煤工作面瓦斯地质图在采煤工作面进行瓦斯抽采达标评判前报送公司通风、地测部门备案。 六、矿井可根据需要对底图进行简化,如适当删除丢煤区、积水区、发火区等;巷道交叉、变坡处以及平巷每50~100m注记轨面或底板高程、地面信息只标注重要的地名和建筑物、回采巷道可用单线条表示、已采工作面不表示采空区线条符号等。

瓦斯地质管理规定

瓦斯地质管理规定 Through the process agreeme nt to achieve a uni fied action policy for differe nt people, so as to coord in ate acti on, reduce bli ndn ess, and make the work orderly.

编制:____________________ 审核:____________________ 批准:____________________

瓦斯地质管理规定 简介:该制度资料适用于公司或组织通过程序化、标准化的流程约定,达成上下级或不同的人员之间形成统一的行动方针,从而协调行动,增强主动性,减少盲目性,使工作有条不紊地进行。文档可直接下载或修改,使用时请详细阅读内容。 第一条随着矿井开采深度的延深,煤层瓦斯压力、瓦斯 压力、瓦斯含量越来越大,尤其在地质构造附近,瓦斯异常涌出 严重威胁着安全生产。为杜绝瓦斯超限事故的发生,确保矿井安 全生产,特制订规定。 第二条地测科、通风科必须加强对瓦斯地质的研究。 1、地测科每月填绘一次14?-1煤层瓦斯地质图(1 : 5000),图中要标明地质构造、采掘进度、被保护范围、突出点 的位置、突出强度、瓦斯基本参数等地质资料。 2、抽排区根据瓦斯地质图,及时预测采掘工作面瓦斯涌 出情况和突出危险性并制定相应的防突措施。 3、地测科要绘制11-2煤层瓦斯地质图(1 : 5000),标 明瓦斯异常涌出地点及地质构造异常带。 4、通风负责划分矿井突出危险性区域。 第三条对石门揭穿突出煤层和突出煤层过断层,必须有前

瓦斯地质学

第一章 瓦斯:瓦斯狭义上讲就是甲烷,广义上是指井下所有涌出有害气体的总称 煤与瓦斯突出:煤与瓦斯突出是指在压力作用下,破碎的煤与瓦斯由煤体内突然向采掘空间大量喷出,是另一种类型的瓦斯特殊涌出现象 地质构造变动:岩层形成后,在地壳运动影响下发生变形和变位(位移、倾斜、弯曲、断裂),其原始产状受到不同程度的改变,称为地质构造变动。 地质构造:发生构造变动的岩层所呈现的各种空间形态称为地质构造。 地质构造分为两类:褶皱构造、断裂构造。 瓦斯地质学是研究瓦斯的形成、运移、赋存和发生瓦斯灾害的地质控制理论的一门交叉学科。实践证明:所有的煤与瓦斯突出动力现象均发生在构造煤分布区。瓦斯突出煤体具有瓦斯高含量、高解吸速度、低强度、低渗透性的“两高两低”特性,因此构造煤控制着瓦斯灾害的发生,影响着瓦斯的治理,亦控制着煤层气的地面开发,是瓦斯地质研究的核心理论之一。第二章 中国含煤盆地成生时期与全球具有同时性,主要发生在晚古生代石炭纪以后,并以石炭纪、二叠纪、三叠纪(晚三叠世)、侏罗纪(早、中侏罗世)、白垩纪(早白垩世)及古近纪和新近纪(第三纪)为主要成煤期 板块:地球岩石圈被洋中脊、岛弧海沟系、转换断层等三大构造活动带分割形成的大小不一的不连续的岩石圈块体。 板块构造:由于洋底分裂、扩张、板块间的运动和相互作用形成的全球性板状地质构造。 1 中国石炭纪含煤盆地经过多期构造运动改造,现今含煤盆地主要分布在塔里木~华北板块和华南板块。在西伯利亚板块的准噶尔~兴安活动带仅有零星的残存盆地。 2 中国二叠纪含煤盆地的分布格局与石炭纪大体相似,含煤盆地主要分布在塔里木~华北板块和华南板块。从沉积范围、沉积特征及改造后的含煤盆地特征方面,华北板块更具继承性。华南板块石炭至二叠纪随着海盆的扩展、退缩,二叠纪含煤盆地比石炭纪更为广阔,几乎遍布整个扬子地块。 中国三叠纪含煤盆地主要分布于华北板块与扬子地块。 侏罗纪含煤盆地分布 经过三叠纪过渡时期后,侏罗纪含煤盆地分布状况已完全改观。大型盆地除鄂尔多斯侏罗纪含煤盆地仍继承发育外,在华北板块和扬子地块大型含煤盆地基本上不复存在,但在塔里木板块周缘以及西伯利亚板块准噶尔-兴安活动带西部的准噶尔地块却发育了规模较大的侏罗纪含煤盆地。 白垩纪含煤盆地分布 白垩纪含煤盆地主要分布在西伯利亚板块的准噶尔-兴安活动带及塔里木-华北板块的天山-赤峰活动带和华北北缘隆起带。 中国大陆南部,仅在藏滇板块冈底斯-腾冲活动带见有零星白垩纪含煤盆地。 古近纪和新近纪(第三纪)含煤盆地分布 古近纪和新近纪含煤盆地主要分布在大陆的东部。除台湾活动带台西盆地面积稍大外,其余盆地面积都很狭小,分布零星。古近纪和新近纪含煤盆地发育时代在大陆北部以老古近纪和新近纪为主,而大陆南部以新古近纪和新近纪为主。 瓦斯成因类型 从泥炭到褐煤、烟煤到无烟煤,其分子组成变化如下: 4C16H18O5(泥炭)→C57H56O10(褐煤)+4CO2+3CH4+2H2O C57H56O10 (褐煤)→C54H42O5(烟煤)+CO2+2CH4+3H2O C54H42O5(烟煤)→C15H14O(半无烟煤)+CO2+CH4+H2O

煤矿瓦斯地质图编制资料收集清单

贵州省矿井瓦斯地质图编制 基础资料收集清单 一、地质资料 (1)矿井地质勘探精查或详查报告,矿井生产修编地质报告(地质说明书)。 (2)矿井设计说明书。 (3)矿井采掘工程平面图,煤层底板等高线图,构造纲要图,井上下对照图,地层综合柱状图。 (4)采掘工作面地质说明书和相关图件。 (5)煤巷编录的构造煤厚度,测井曲线解释、地球物理方法探测的构造煤厚度。 (6)断层,褶皱,陷落柱,火成岩,顶、底板砂、泥岩分界线等。 (7)所有的钻孔柱状图和勘探线剖面图。 (8)三维地震勘探资料。 二、瓦斯资料 (1)收集整理建矿以来掘进、回采工作面瓦斯日报表,风量报表,产量报表,日产量报表,采、掘月进尺等资料。结合瓦斯抽采量计算回采工作面的绝对瓦斯涌出量和相对瓦斯涌出量;掘进工作面的绝对瓦斯涌出量。 (2)瓦斯含量资料:地质勘探钻孔取样测定的瓦斯含量和生产阶段取样测定的瓦斯含量。 (3)瓦斯抽采资料:收集整理地面和井下瓦斯抽采资料,包括所有的瓦斯抽采设计方案和瓦斯抽采台帐,整理预抽瓦斯和采掘过程中边采边抽的瓦斯量,计算瓦斯抽采量。 (4)瓦斯压力测试数据。 (5)煤巷掘进测试的煤与瓦斯突出预测参数,如钻屑瓦斯解吸指标Δh2、钻孔最大瓦斯涌出初速度qmax、钻孔最大钻屑量Smax、瓦斯放散初速度ΔP、煤的坚固性系数f值、瓦斯突出危险综合指标K值。 (6)煤与瓦斯突出点动力现象资料。 统计建矿以来的所有煤与瓦斯突出点动力现象资料,描述发生过程和突出位置地质资料,描述作业工序详细资料。 三、水文资料 (1)水文地质报告。 (2)综合水文地质图。 (3)水位等值线、充水性图。 四、其他资料 以往矿井有关瓦斯、地质、水文方面的研究报告、图表。

瓦斯地质图绘制行业标准-2007-10-20

河南省矿井瓦斯地质图编制细则 河南理工大学 二○○七年十月

河南省矿井瓦斯地质图编制细则 1 编图原理和目的 矿井瓦斯地质图是以矿井煤层底板等高线图和采掘工程平面图作为地理底图。在系统收集、整理建矿以来采掘工程揭露和测试的全部瓦斯资料和地质资料,如采掘工作面每日的瓦斯浓度、风量和瓦斯抽采量;煤与瓦斯突出危险性预测指标及煤与瓦斯突出点资料等,在搞清矿井瓦斯地质规律,进行瓦斯涌出量预测、煤与瓦斯突出危险性预测、瓦斯(煤层气)资源量评价和构造煤厚度分布等基础上绘制而成。 矿井瓦斯地质图能高度集中反映煤层采、掘揭露和地质勘探等手段测试的瓦斯地质信息。它可准确的反映矿井瓦斯涌出规律和赋存规律;准确的预测瓦斯涌出量、瓦斯含量、煤与瓦斯突出危险性,准确地评价瓦斯(煤层气)资源量及开发技术条件。 2 编图内容和方法 2.1 地理底图 选用1:5000矿井采掘工程平面图和煤层底板等高线图作为地理底图。要求地理底图的选取应能反应最新的瓦斯地质信息。 2.2 地质内容和方法 (1)煤层底板等高线:一般是标高差50m一条,但在褶皱和断层影响引起煤层倾角变化大的部位,等高线密度增加; (2)全部地质勘探钻孔,煤层露头,向斜,背斜,断层,煤层厚度,

陷落柱,火成岩,煤层顶底板砂,泥岩分界线,构造煤的类型、厚度分布等。 2.3 瓦斯内容和方法 (1)瓦斯涌出量点:掘进工作面绝对瓦斯涌出量点,回采工作面绝对瓦斯涌出量和相对瓦斯涌出量点,每月筛选一个数据,按表1和表9中图例表示; (2)瓦斯涌出量等值线:绘制绝对瓦斯涌出量实测等值线与预测等值线,按表1和表9中图例表示; (3)瓦斯涌出量区划:根据矿井瓦斯涌出量等值线,一般是级差5m3/min,按图例填绘不同的面色,表示瓦斯涌出量区划级别; (4)瓦斯含量点和瓦斯含量等值线,按表2和表9中图例表示; (5)瓦斯突出危险性预测参数:瓦斯压力P、瓦斯放散初速度ΔP,煤的坚固性系数f值,瓦斯突出危险性综合指标K值,钻屑瓦斯解吸指标Δh2,钻孔最大瓦斯涌出初速度q max、钻孔最大钻屑量s max等。按表3、表4、表5和表9中图例表示 (6)煤与瓦斯突出危险性区划:根据预测结果,将井田范围划分为突出危险区、突出威胁区和无突出区,按表9图例表示。 (7)矿井瓦斯资源量:根据瓦斯含量、煤炭储量,分块段计算矿井瓦斯资源量,按表9图例填图。 3 编图资料收集、整理要求 3.1 地质资料

瓦斯地质学重点

《瓦斯地质学》复习思考题 第一章绪论 1.瓦斯地质学研究的对象? 瓦斯地质学是应用地质学理论和方法,研究煤层瓦斯的赋存、运移和分布规律,矿井瓦斯涌出和煤与瓦斯突出的地质条件及其预测方法,直接应用于资源、环境和煤矿安全生产的一门新的边缘学科 2.瓦斯地质学研究的内容是什么? 1.瓦斯的形成 2.瓦斯赋存的地质条件 3.煤与瓦斯突出的地质条件 4.瓦斯危险性预测 第二章瓦斯地质基础 1.什么是瓦斯?瓦斯的主要成分是什么? 是指从煤层及煤层围岩中涌出的,以及在煤矿生产过程中产生的各种气体的统称 矿井瓦斯成分很复杂,其主要成分是甲烷(CH4),其次是二氧化碳(CO2)和氮气(N2),还含有少量或微量的重烃类气体 2.矿井瓦斯来源于哪几个方面? 1煤(岩)层和地下水释放出来的 2化学及生物化学作用产生的 3煤炭生产过程中产生的 3. 瓦斯的物理性质有哪些?爆炸范围是多少? 无色、无味、无嗅、可燃烧、窒息、有毒性、微溶于水。 爆炸范围:5%-16%(体积百分比) 4.瓦斯的危害和用途有哪些? 1.可造成瓦斯窒息事故(>43%呼吸短促,>57%即刻昏迷) 2.可酿成瓦斯燃烧事故(<5%或>16%存在火源)

3.引起瓦斯爆炸事故(5%-16%存在火源) 4.产生煤与瓦斯突出事故 用途: 1.用城镇煤气 2.用作锅炉和窑炉燃料 3.瓦斯发电 4.作为机动车燃料 5.用作化工原料和化工产品 5.瓦斯是如何形成的? 6.简述瓦斯的垂向分带,各带的瓦斯成份有何不同? 7. 瓦斯风化带的界限是如何确定的?影响瓦斯风化带深度有哪些因素?瓦斯风化带下限 1)煤层中所含瓦斯的CH4成份达80%; (2)煤层瓦斯压力为0.1-0.15MPa;

矿井瓦斯地质图编制

矿井瓦斯地质图编制标准 一、矿井瓦斯地质图编图原理和目的 矿井瓦斯地质图是以矿井煤层底板等高线图和采掘工程平面图作为地理底图,在系统收集、整理建矿以来采、掘工程揭露和测试的全部瓦斯资料和地质资料,如采掘工作面每日的瓦斯浓度、风量和瓦斯抽采量,煤与瓦斯突出危险性预测指标及煤与瓦斯突出点资料等,在查清矿井瓦斯地质规律,进行瓦斯涌出量预测、煤与瓦斯突出危险性预测、瓦斯(煤层气)资源量评价和构造煤的发育特征等基础上按照图例绘制而成。矿井瓦斯地质图能高度集中反映煤层采掘揭露和地质勘探等手段测试的瓦斯地质信息,可准确反映矿井瓦斯赋存规律和涌出规律,准确预测瓦斯涌出量、瓦斯含量、煤与瓦斯突出危险性,准确评价瓦斯(煤层气)资源量及开发技术条件。 二、矿井瓦斯地质图编图内容和方法 1 、地理底图 选用1:5000矿井采掘工程平面图和煤层底板等高线图作为地理底图,要求地理底图的选取应能反应最新的瓦斯地质信息。 2、地质内容和方法

(1)煤层底板等高线:一般是标高差50m一条,在褶皱和断层影响引起煤层倾角变化大的部位,等高线密度增加; (2)井田地质勘探钻孔、煤层露头、向斜、背斜、断层、煤层厚度、陷落柱分布、煤层顶底板砂泥岩分界线,构造煤的类型、厚度分布等。 上述内容按瓦斯地质图图例绘制。 3 、瓦斯内容和方法 (1)瓦斯涌出量点:掘进工作面绝对瓦斯涌出量点,回采工作面绝对瓦斯涌出量和相对瓦斯涌出量点,每月筛选一个数据,按瓦斯地质图图例填绘和表1、表2统计; (2)瓦斯涌出量等值线:绝对瓦斯涌出量等值线又分实测线和预测线,按瓦斯地质图图例填绘和表1、表2统计; (3)瓦斯压力等值线:煤层瓦斯压力等值线分为实测等值线和预测等值线,其中要有0.74MPa等值线,按瓦斯地质图图例填绘和表4统计; (4)瓦斯涌出量区划:根据矿井瓦斯涌出特征,一般是级差5m3/min,按瓦斯地质图图例填绘不同的面色,表示瓦斯涌出量区划级别;但对大型、特大型矿井,产量高、瓦斯涌出量大的矿井,绝对瓦斯涌出量等量差可适当增加。 (5)瓦斯含量点和瓦斯含量等值线,按瓦斯地质图图例填绘和表3统计;

最新 矿区瓦斯地质图

矿区瓦斯地质图 矿区瓦斯地质图 矿区瓦斯地质图是在深入研究区域地质和矿区构造演化及其分布特征的基础上,理清区域构造和矿区构造对井田构造的控制作用,从而理清构造对煤层瓦斯生成、保存和赋存分布的控制特征,理清矿区瓦斯地质规律。结合大量的瓦斯地质测试资料和瓦斯涌出、瓦斯突出、瓦斯含量实测和预测资料,在编制所有矿井瓦斯地质图的基础上,编制矿区瓦斯地质图,包括瓦斯涌出量等值线、瓦斯含量等值线,划分瓦斯(煤层气)资源量评价区块和煤与瓦斯区域突出危险性级别。为矿区瓦斯综合治理和瓦斯(煤层气)开发、利用提供重要依据。 系统收集整理了新集矿区—矿、二矿、三矿采掘工作面瓦斯浓度、瓦斯抽放量、风量、日产量等瓦斯资料,计算瓦斯涌出量点;系统整理了矿区各主采煤层瓦斯压力、瓦斯含量、煤与瓦斯突出危险性预测参数等测试资料,进行了矿区各井田瓦斯涌出量预测和煤与瓦斯区域突出危险性预测;绘制了瓦斯涌出量等值线,编制了矿井瓦斯地质图。以此为基础,编制了1:10000新集矿区13-1、11-2、8、6-1、和1煤层的瓦斯地质图。 3.1编图资料

4mm;线宽为0mm。6mm;线宽为0mm。8mm;线宽为0mm。

10mm;线宽为0mm。 4mm;线宽为0mm;颜色值为222。

4mm;线宽为0mm;颜色值为222。4mm;线宽为0mm;颜色值为222。4mm;线宽为0mm;颜色值为10。

4mm;线宽为0mm;颜色值为10。 续表 12 mm,宽 6 m;线宽为0.3mm;其它线宽为0mm;颜色值为RGB(240,200,240)。

0mm,颜色值为RGB(240,200,240)。 0.4mm;颜色值为 RGB(255,144,255);字体为宋体,字号20号。

瓦斯地质规律的研究对防治煤与瓦斯突出的意义

瓦斯地质规律的研究对防治煤与瓦斯突出的意义 发表时间:2018-01-26T15:52:20.607Z 来源:《防护工程》2017年第27期作者:梁凯 [导读] 在煤矿生产中,煤与瓦斯突出是一种特殊的瓦斯涌出现象,煤与瓦斯突出是井工煤矿五大自然灾害之一。 神华集团乌达五虎山矿业有限责任公司内蒙古乌海 016040 摘要:在煤矿生产中,煤与瓦斯突出是一种特殊的瓦斯涌出现象,煤与瓦斯突出是井工煤矿五大自然灾害之一。虽然它每次发生之前都会出现征兆,但由于每次征兆不管是在方式上还是时间上都会有所不同,所以矿井煤与瓦斯突出事故常会造成井下作业人员伤亡。因此,为了降低矿井中煤与瓦斯突出事故发生的概率,有必要对煤层瓦斯地质规律进行探寻、分析,进而对煤与瓦斯突出加以控制。 关键词:煤层地质结构煤与瓦斯突出控制 瓦斯地质规律是指揭示瓦斯与所有地质因素之间内的联系的规律。瓦斯是生于煤层、储存于煤层或围岩中的气体地质体,只要开采煤炭就会有瓦斯涌出。它的生成条件、运移规律以及赋存、分布规律都受着极其复杂的地质作用控制。因此,研究瓦斯地质规律是进行煤与瓦斯区域突出危险性预测和瓦斯涌出量预测的关键,同时也是瓦斯地质图编制的基础。 矿井瓦斯含量主要受煤层变质程度、埋藏深度、上覆地层有效厚度、煤层顶底板岩性、煤厚、地质构造、水文和等综合因素的影响。 一、煤与瓦斯区域突出危险性预测 瓦斯地质研究的实践认为,煤层瓦斯含量高是发生煤与瓦斯突出的基础;一定厚度的构造煤是发生煤与瓦斯突出的必要条件;压性、压扭性构造带是发生煤与瓦斯突出的有利地带;构造应力相对集中的地带是瓦斯突出发生的主要位置。 构造挤压、剪切作用会使煤体结构发生不同程度的脆韧性破坏,形成构造煤。不同级别的构造活动和构造应力场控制着构造作用的范围和强度,也就控制着不同区域、不同范围煤层瓦斯的赋存和分布,同时控制着煤层赋存条件、煤体结构破坏的程度和范围,也就是控制着煤与瓦斯突出危险程度和危险区域的范围。 煤与瓦斯突出是一种极其复杂的动力地质灾害,牵涉到复杂的地质因素和开采因素。国内外大量的观测研究表明,所有煤与瓦斯突出都发生在构造煤分层,并且在突出过程中伴随数倍于煤层的原始瓦斯含量的瓦斯喷出,说明构造煤与高能瓦斯和煤与瓦斯突出的关系密切。构造煤是发生煤与瓦斯突出的物质基础,高能瓦斯是发生煤与瓦斯突出的主要能源,一定厚度的构造煤和高能瓦斯赋存是煤与瓦斯突出两个必要条件。地质构造控制着煤层瓦斯的赋存和构造煤分层破坏程度以及厚度分布,控制着煤与瓦斯突出,含高能瓦斯的一定厚度的构造煤为瓦斯突出煤体,高能瓦斯与一定厚度的构造煤的叠加区域即为煤与瓦斯突出危险区。 几乎所有的煤与瓦斯突出都间接或直接地与地质构造有关。板缘构造活动带、造山带、深层构造陡变带、深大断裂活动带、逆冲推覆构造带、强变形带等,是发生煤与瓦斯突出的敏感地带。瓦斯赋存分布是构造演化作用的结果,构造煤的形成和分布是构造挤压和剪切作用的结果。煤与瓦斯突出动力灾害主要发生的构造复杂区和构造发育区。 二、构造对瓦斯赋存的影响 2.1.断层的影响 断裂构造破坏了煤层的连续完整性,使煤层瓦斯运移条件发生变化。断层对瓦斯赋存的影响是多方面的,它不仅对煤层的完整性和瓦斯的封闭条件,而且对煤体结构、煤岩显微特征及煤的渗透率均有不同程度的影响。此外,大量实际资料表明,断裂构造对煤层瓦斯含量也有重要的影响。 断层对瓦斯赋存的影响程度与断层性质及规模有关,从断层性质与瓦斯赋存的关系来看,压性断层(包括逆断层、压性走滑断层或发生反转的正断层)断层面为密闭性,断层面附近成为构造应力集中带,这样可以加大瓦斯压力,使煤层吸附瓦斯量增多,煤层瓦斯含量相对增高,同时由于瓦斯不易透过断层面运移散失而有利于瓦斯的保存。张性断层(正断层、拉张走滑断层或发生反转的逆断层)断层面为开放性,断层面附近由于构造应力释放而成为低压区,煤层瓦斯大量解吸,并从断层面逸散,使煤层含气量急剧下降。但在远离断层面的两侧一般形成两个平行断层呈对称的条带状构造应力高压区,煤层瓦斯含量相对升高,成为阻止煤层瓦斯进一步向断层运移的天然屏障。此外,断层的空间方位对瓦斯的保存或逸散也有影响。一般而言,走向断层能够阻隔瓦斯沿煤层倾斜方向的逸散,而倾向和斜交断层则把煤层切割成互不联系的块体。 因此,不同类型的断层,形成了不同的构造边界条件,对瓦斯赋存产生不同的影响,瓦斯聚集的地方容易发生煤与瓦斯突出。 2.2.褶皱的影响 不同的褶皱类型及其不同构造部位,因为构造应力场的不同,会造成储层原始特征的不同改变,从而对瓦斯的封存与聚集的控制作用也明显不同。背斜构造的两翼与轴部中和面以下为挤压应力场,为高压区。背斜轴部中和面以上为拉张应力场,在其作用下会产生大量的张性裂隙或正断层,造成应力快速释放,为低压区。 因此,在背斜的两翼瓦斯往往能够较好地被封存起来,而在轴部,中和面以上的煤层气会逸散,中和面以下的煤层气则可能会聚集。不过,当煤层埋深较大且顶板为厚层泥岩时,上覆地层应力使泥岩封盖层表现为塑性,不会产生开放性裂隙,顶板仍然保持良好的覆盖性能,两翼煤层中的甲烷向轴部运移,造成煤层的高含气性,当瓦斯压力达到一定程度,极容易发生煤与瓦斯突出。 三、煤变质程度对瓦斯赋存的影响 煤化作用过程中会不断地产生瓦斯,煤化程度越高,生成的瓦斯量越多。即在其他因素恒定的条件下,煤的变质程度越高,煤层瓦斯含量越大。煤的变质程度不仅影响瓦斯的生成量,还在很大程度上决定着煤对瓦斯的吸附能力。 在成煤初期,褐煤的结构疏松,孔隙率大,瓦斯分子能渗入煤体内部,因而褐煤具有很强的吸附能力。但该阶段瓦斯生成量较少,且不易保存,煤中实际所含的瓦斯量是很小的。在煤的变质过程中,地压作用使煤的孔隙率减小,煤质渐趋致密。长焰煤的孔隙较少,内表面积较小,其吸附瓦斯的能力较弱,最大瓦斯吸附量为20~30m3/t。随着煤的进一步变质,在高温、高压作用下,煤体内部因干馏作用而生成许多微孔隙,在无烟煤时内表面积达到最大,与之相应,煤的吸附能力最强。 不同变质程度的煤,在区域分布上常呈带状分布,形成不同的变质带,这种变质分带在一定程度上控制着瓦斯的赋存和区域性分布。

煤矿瓦斯地质图说明书

贵州省水城县**乡**煤矿 瓦斯地质图编制说明书 项目单位:贵州省水城县**乡**煤矿 编制单位:****** 提交时间:二O一0年八月

贵州省水城县**乡**煤矿 瓦斯地质图编制说明书 项目规模: 15万t/a 设计: 审核: 项目负责人: 项目单位:贵州省水城县**乡**煤矿 编制单位:****** 提交时间:二O一0年八月

目录 0 前言 (1) 0.1 项目来源 (1) 0.2 编图的目的和意义 (1) 0.3 编制依据 (1) 0.4研究内容 ........................................................ 错误!未定义书签。 1 矿井概况 (5) 1.1 交通位臵、隶属关系及井田范围 (5) 1.2 井型、开拓方式及生产能力 (6) 1.3 瓦斯 (7) 1.4 煤层 (8) 1.5 煤质特征 (9) 1.6 岩浆岩 (10) 1.7 水文地质特征 (11) 2地质构造及控制特征研究 (16) 2.1 矿区地质构造演化及分布特征 (16) 2.2 井田地质构造及分布特征 (18) 2.3 构造煤发育及分布特征 (18) 2.4 地质构造对瓦斯赋存的控制 (21) 3 矿井瓦斯地质规律研究 (22) 3.1 断层、褶皱构造对瓦斯赋存的影响 (22)

3.2 顶、底板岩性对瓦斯赋存的影响 (23) 3.3 岩浆岩分布对瓦斯赋存的影响 (23) 3.4 煤层埋深及上覆基岩厚度对瓦斯赋存的影响 (23) 3.5 岩溶陷落柱对瓦斯赋存的影响 (25) 3.6 瓦斯含量分布及预测研究 (26) 4 矿井瓦斯涌出量预测 (29) 4.1 矿井瓦斯涌出资料统计及分析 (29) 4.2 矿井瓦斯抽采资料统计及分析 (29) 4.3 矿井瓦斯涌出量预测 (29) 5 煤与瓦斯区域突出危险性预测 (35) 5.1 煤与瓦斯突出危险性参数测定及统计 (35) 5.2 煤与瓦斯突出危险性影响因素分析 (35) 5.3 煤与瓦斯区域突出危险性预测 (36) 6 煤层气资源量计算 (39) 6.1 资源量计算方法 (39) 6.2 资源量计算及参数的确定 (41) 6.3资源量计算结果及评价 (42) 7 矿井瓦斯地质图编制 (46) 7.1 编图资料 (46) 7.2 编图内容和表示方法 (47) 8 结论和建议 (50)

瓦斯地质管理规定(通用版)

瓦斯地质管理规定(通用版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0770

瓦斯地质管理规定(通用版) 第一条随着矿井开采深度的延深,煤层瓦斯压力、瓦斯压力、瓦斯含量越来越大,尤其在地质构造附近,瓦斯异常涌出严重威胁着安全生产。为杜绝瓦斯超限事故的发生,确保矿井安全生产,特制订规定。 第二条地测科、通风科必须加强对瓦斯地质的研究。 1、地测科每月填绘一次14?-1煤层瓦斯地质图(1:5000),图中要标明地质构造、采掘进度、被保护范围、突出点的位置、突出强度、瓦斯基本参数等地质资料。 2、抽排区根据瓦斯地质图,及时预测采掘工作面瓦斯涌出情况和突出危险性并制定相应的防突措施。 3、地测科要绘制11-2煤层瓦斯地质图(1:5000),标明瓦斯

异常涌出地点及地质构造异常带。 4、通风负责划分矿井突出危险性区域。 第三条对石门揭穿突出煤层和突出煤层过断层,必须有前探钻孔资历料,以准确控制层位,探明瓦斯赋存情况。 第四条在突出煤层顶底板岩巷掘进过程中,地测部门必须定期验证层位,掌握施工巷道方向、层位和围岩变化情况,防止误穿突出煤层。 第五条地测科于每月月底前按生产作业计划编制地质预报,预报要内容充实、图文并茂。 第六条每月由矿总工程师组织召开一次瓦斯地质分析会,有关职能部门参加。地测科要认真准备材料,总结上月工作面过断层情况,预测下月各采掘工作面地质构造成对瓦斯的影响,并采取针对性措施,确保过断层期间的安全。 第七条地测科对地质构造的预测要准确、及时。 地质人员要经常深入井下,及时了解掌握采掘工作面的地质变化情况。

煤矿采掘工作面瓦斯地质图编制方法之欧阳光明创编

煤矿矿区矿井采掘工作面 欧阳光明(2021.03.07) 瓦斯地质图编制方法 全国煤矿瓦斯地质图编制技术工作组 2009年4月 1 煤矿矿区、矿井、采掘工作面瓦斯地质图图例 煤矿矿区、矿井、采掘工作面三级瓦斯地质图,是瓦斯地质规律和瓦斯预测成果的直观表达和高度概括。瓦斯地质图,内容丰富、区带分明;层次清晰、一目了然;直观简明、使用方便。使得各级领导和工程技术人员进行瓦斯综合治理有了共同语言,它直接用于安全生产管理、瓦斯(煤层气)抽采利用和煤矿规划,是我国煤炭工业发展必不可少的技术和图件,随着煤矿开采深度的日趋增加和地质条件的复杂性,越来越显得重要。 《煤矿安全规程》第一百八十一条,突出矿井必须及时编制矿井瓦斯地质图。无论是高瓦斯矿井、煤与瓦斯突出矿井还是低瓦斯矿井;无论是瓦斯灾害防治,还是瓦斯资源开发利用,都需要编制煤矿三级瓦斯地质图。2007年,经国家安全生产监督管理总局批准,中煤协会科技[2007]54号文,下达了《矿井瓦斯地质图编制方法》行业标准的通知。 图例是表达图的纲领性语言,是编图工作的关键技术。此次提出的煤矿矿区、矿井、采掘工作面瓦斯地质图图例(表1),是瓦斯地质研究和瓦斯地质编图工作多年的结晶,它随着瓦斯地质编图工作的发展将不断完善。

续表1 矿区、矿井、采掘工作面瓦斯地质图图例

注:字高为AutoCAD中取值,新罗马字体指Times New Roman。2煤矿三级瓦斯地质图统计表 瓦斯地质资料的收集和系统整理是编制煤矿三级瓦斯地质图和做好瓦斯地质规律与瓦斯预测研究最主要的基础,提出24个资料统计表格(表2-表25),以供参考。 表2 ××煤矿××掘进工作面瓦斯涌出量统计表

瓦斯地质

瓦斯地质 wasi dizhi coalbed gas geology 运用地质理论和方法,研究煤层瓦斯成分成因,赋存、运移规律,煤与瓦斯突出条件及预测,煤成气、煤层气可采性评价的学科。其任务是为煤矿瓦斯防治和煤成气、煤层气开发利用提供地质依据。 简史 瓦斯地质是20世纪70年代蕴酿,80年代在中国建立的新兴学科。它的萌芽期可追朔到20世纪50年代。杨力生在总结1956~1960年大同低瓦斯矿忻州窑矿三次严重瓦斯爆炸事故时发现,它们均与掘进巷道遇断层有关,进而在少数矿井进行瓦斯与地质关系的研究。七八十年代初,随着煤炭工业发展,瓦斯突出事故增加,瓦斯突出与地质条件相关的现象,被更多的通风安全工程技术人员发现,要求地质人员参与研究。中国矿业大学、焦作矿业学院部分地质教师到四川、贵州、山西、吉林、甘肃、河南、湖南和江西等省的突出矿区、矿井进行了气源,赋存及其地质背景的调查,总结了瓦斯突出及其地质条件的初步规律,为防治突出提供了初步依据。1983年,杨力生主持编制《全国瓦斯地质图》。同年12月,煤炭工业部颁发《关于加强瓦斯地质工作的通知》。1985年,中国煤炭学会设立瓦斯地质专业委员会,并在部分煤炭高等学校开设《瓦斯地质》选修课。 在煤和瓦斯突出较严重的其它国家,同样在从事这方面的研究。其中,以前苏联的资料较为丰富。他们在1951年设立了《防止煤与瓦斯突出中央委员会》,苏联科学院地质研究所参加了瓦斯突出与地质条件研究;莫斯科地质勘探学院的А.И.克拉符佐夫(А.И.Кравцов,1967,1973,1980),乌克兰科学院地质技术力学研究所的В.Е.Забигайло (1980),苏联科学院矿产综合开发问题研究所的А.Г.Айруни (1987)等都有专门的论著出版,其内容涉及瓦斯地质各个方面,包括气体成因、含气形式、瓦斯运移和分带,地质因素对天然气分布影响,煤层瓦斯突出的地质条件,煤的微结构、煤内瓦斯赋存与运移的理论等。1980年,还出版了

矿井瓦斯地质图编制

矿井瓦斯地质图编制 1 地理底图 选用1:5000矿井采掘工程平面图和煤层底板等高线图作为地理底图,要求地理底图的选取应能反应最新的瓦斯地质信息。 2 瓦斯内容和方法 (1)瓦斯涌出量点:掘进工作面绝对瓦斯涌出量点,回采工作面绝对瓦斯涌出量和相对瓦斯涌出量点,每月筛选一个数据,按表1图例、表2和表3填绘; (2)瓦斯涌出量等值线:绝对瓦斯涌出量等值线又分实测线和预测线; (3)瓦斯压力等值线:煤层瓦斯压力等值线分为实测等值线和预测等值线,其中要有0.74MPa等值线,按表1图例和表5填绘; (4)瓦斯涌出量区划:根据矿井瓦斯涌出特征,一般是级差5m3/min,按表1图例填绘不同的面色,表示瓦斯涌出量区划级别;但对大型、特大型矿井,产量高、瓦斯涌出量大的矿井,绝对瓦斯涌出量等量差可适当增加。 (5)瓦斯含量点和瓦斯含量等值线; (6)瓦斯突出危险性预测参数:瓦斯压力P,瓦斯放散初速度ΔP,煤的坚固性系数f值,瓦斯突出危险性综合指标K值,钻屑瓦斯解吸指标Δh2,钻孔最大瓦斯涌出初速度qmax,钻孔最大钻屑量Smax等; (7)瓦斯突出危险性区划:根据预测结果,将井田范围划分为突出危险区、突出威胁区和无突出区; (8)矿井瓦斯资源量:根据瓦斯含量、煤炭储量,分块段计算。 3 矿井瓦斯地质图编图资料收集、整理要求 1) 地质资料

(1)矿井地质勘探精查或详查报告、矿井生产修编地质报告(地质说明书); (2)矿井采掘工程平面图、煤层底板等高线图、构造纲要图、井上下对照图、地层综合柱状图; (3)采掘工作面地质说明书和相关图件; (4)煤巷编录的构造煤厚度、测井曲线解释、物理方法探测构造煤厚度; (5)断层、褶皱、陷落柱、火成岩和顶底板砂泥岩分界线等;按表1图例和表10、表14填绘; (6)所有的钻孔柱状图和勘探线剖面图,按表1图例标注; (7)三维地震勘探资料。 2) 瓦斯资料 (1)建矿以来掘进、回采工作面瓦斯日报表、瓦斯抽采台帐、风量报表、产量报表、采掘月进尺等资料,统计出各回采、掘进工作面的瓦斯绝对涌出量和相对涌出量; (2)瓦斯含量资料:地质勘探钻孔取样测定的瓦斯含量和生产阶段取样测定的瓦斯含量; (3)瓦斯抽采资料:详细收集煤层预抽瓦斯和采掘过程中抽采的瓦斯量、所有的瓦斯抽采设计方案和瓦斯抽采台帐; (4)瓦斯压力测试数据; (5)煤巷掘进测试的瓦斯突出预测参数,钻屑瓦斯解吸指标Δh2,钻孔最大瓦斯涌出初速度qmax,钻孔最大钻屑量Smax,瓦斯放散初速度ΔP,煤的坚固性系数f值,瓦斯突出危险综合指标K值; (6)煤与瓦斯突出点资料。

光明井矿井瓦斯地质说明书

光明井矿井瓦斯地质说明书 前言 新疆生产建设兵团新疆屯南煤业有限责任公司光明矿井(以下简称光明矿井),位于新疆和布克赛尔蒙古自治县和什托洛盖镇。矿区西北至和布克赛尔蒙古自治县城48km,北至布尔津县176km;东至(经布尔津)阿勒泰市296km,西至塔城470km,南至克拉玛依市156km,西南至乌苏290km,上述地点均有国道和省道相连,交通方便。 根据该矿井所划定的井田境界,井田走向长3.95km,倾斜宽0.6km,面积为2.37km2。 光明矿井始建于1978年隶属于新疆生产建设兵团农十师,作为兵团老矿山企业,担负着屯垦戍边、建设边疆的重任,扎根于新疆和布克赛尔蒙古自治县,从事煤炭资源开采30年,在兵团和农十师的领导与大力支持下,经过近30年的发展,矿井已发展成为年可生产原煤20万t的矿井。 光明矿井是农十师煤矿主要生产矿井,该矿井系《新疆煤炭工业“十五”结构调整规划》的保留矿井之一,矿井建有两个斜井(主、副),井筒及立风井组成,设计生产规模为15万吨/年矿井,矿井外部条件优越。矿井与外部有沥青公路相连,所产煤炭均由汽车运往电厂及附近市、县;矿井电源取自和什托洛盖电厂,距工业广场2.5km;水源取自和布克河,距矿井工业广场约3km。 以往地质工作 该区曾有多家单位、多名专家学者从事过矿产、地质工作。最早在该区进行的地质调查为前苏联奥布鲁切夫院士所作1∶50万路线调查。对该区地质构造特征、含煤地层划分、

含煤性及煤质特征等有指导意义的地质工作都是在解放以后进行的,主要有: 1、1954年,新疆地质分局663队在矿区一带进行了1∶10万煤田找矿勘探地质测量,初步查明了侏罗系含煤地层分布、厚度、含煤性及煤层层数、厚度。 2、1955年,西北地质局新疆分局631队曾进行1∶20万地质测量,对区域地层作了较详细的划分。 3、1959年,新疆地质局塔城地质大队进行了和什托洛盖煤田地质勘探,提交了《新疆和布克赛尔县和什托洛盖煤田地质勘探报告》,原新疆地质局科学技术委员会对报告进行了评审验收,1961年11月14日下达了报告评审决议书。因钻探质量较差,部分钻孔未进行测井,影响了勘探精度和质量,“决议书”批准该报告为“详查勘探最终报告”。该报告仍然是煤矿建井设计和以后地质勘探工作的重要依据。 4、1983—1990年,新疆地矿局第九地质大队进行了和什托洛盖煤田煤炭资源远景调查,完成了1∶5万煤田地质调查面积8370平方千米,1∶20万地面综合物探测量面积5500平方千米,钻探15639.29米,探槽8266.93立方米,采集种类样品1997件。对含煤岩系进行了详细划分,大致查明了煤田内下侏罗统八道湾组、中侏罗统西山窑组二含煤岩组分布范围、岩性岩相特征、含煤性、煤层层数、厚度、结构及变化。探求C级资源量71297万吨,D级资源量559189

相关文档
最新文档