改进的黄金分割法

改进的黄金分割法
改进的黄金分割法

实验报告

实验项目名称改进的黄金分割法

所属课程名称最优化

实验类型算法编程

实验日期2015年12月25日

班级

学号

姓名

成绩

附录1:源程序

附录2:实验报告填写说明

1.实验项目名称:要求与实验教学大纲一致。

2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求。

3.实验原理:简要说明本实验项目所涉及的理论知识。

4.实验环境:实验用的软、硬件环境。

5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容。概括整个实验过程。

对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。对于创新性实验,还应注明其创新点、特色。

6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析。

7.实验结论(结果):根据实验过程中得到的结果,做出结论。

8.实验小结:本次实验心得体会、思考和建议。

9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价。

优化设计黄金分割发以及迭代法

机械优化设计课程论文 院系机械工程系 专业机械设计 班级一班 姓名 学号

一、优化题目 应用所学计算机语言编写一维搜索的优化计算程序,完成计算结果和输出。 二、建立优化数学模型 1、目标函数方程式: y=pow(x,4)-1*pow(x,3)-3*pow(x,2)-16*x+10 2、变量:x 3、初始值: 初始值x1=5初始步长tt=0.01 三、所选用的优化方法 1、采用外推法确定搜索区间 2、采用黄金分割法求函数最优 3、计算框图: (1)、外推法程序框图 (2)、黄金分割法程序框图

四、计算输出内容: 五、优化的源程序文件: #include #include #define e0.0001 #define tt0.01 float f(double x) { float y=pow(x,4)-1*pow(x,3)-3*pow(x,2)-16*x+10; return(y); } void finding(float*p1,float*p2) { float x1=10,x2,x3,t,f1,f2,f3,h=tt; int n=0; x2=x1+h;f1=f(x1);f2=f(x2); if(f2>f1) { h=-h;x3=x1;f3=f1; x1=x2;f1=f2; } x3=x2+h;f3=f(x3);

n=n+1; printf("n=%d,c1=%6.4lf,x2=%6.4lf,x3=%6.4lf,f1=%6.4lf,f2=^6.4lf,f3=%6.4lf\n",n, x1,x2,x3,f1,f2,f3); while(f3f2) {a=x1;x1=x2;f1=f2;x2=a+0.618*(b-a);f2=f(x2);} else {b=x2;x2=x1;f2=f1;x1=b-0.618*(b-a);f1=f(x1);} n=n+1; printf("n=%d,a=%6.4lf,b=%6.4lf,x1=%6.4lf,x2=%6.4lf,f1=%6.4lf,f2=%6.4lf\n",n,a,b ,x1,x2,f1,f2); c=fabs(b-a); } while(c>e); xmin=(x1+x2)/2; ymin=f(xmin); printf("The min is%6.4lf and the result is%6.4lf",xmin,ymin);

黄金分割线的论文

黄金分割线的实际应用 福州教育学院附属中学 高一七班 谢文,林涵,杨莺 据说在古希腊,有一天毕达哥斯拉走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比列被毕达哥斯拉用数理的方式表达出来。被应用在很多领域,后来很多人专门研究过,开普勒称其为“神圣分割”也有人称其为“金法“。在金字塔建成1000年后才出现毕达哥斯拉定律,可见这很早既存在。只是不知这个谜底。把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是5^/2-1/2或二分之根号五减一,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取0.618 ,就像圆周率在应用时取3.14一样。黄金分割的

黄金分割的应用十分广泛,不仅仅体现在艺术中,还体现在古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,黄金分割的近似值0.618在生活中可以说是无处不在. 在人体结构上,脐至脚底与头顶至脐之比;躯干长度与臀宽之比;下肢长度与上肢长度之比,均近似于0.618。而且,越是接近于这个值,整个形体就越匀称,越令人觉得完美。人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与0.618的乘积恰好是22.4℃-22.8℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。再如,营养学中强调,一餐主食中要有六成粗粮和四成细粮的搭配进食,有益于肠胃的消化与吸收,避免肠胃病。这也可纳入饮食的0.618规律之列。抗衰老有生理与心理抗衰之分,哪个为重?研究证明,生理上的抗衰为四,而心理上的抗衰为六,也符合黄金分割律。充分调动与合理协调心理和生理两方面的力量来延缓衰老,可以达到最好的延年益寿的效果。一天合理的生活作息也符合0.618的分割,24小时中,2/3时间是工作与生活,1/3时间是休息与睡眠;在动与静的关系上,究竟是"生命在于运动",还是"生命在于静养"?从辩证观和大量的生活实践证明,动与静的关系同一天休息与工作的比例一样,动四分,静六分,才是最佳的保健之道. 动静:从辩证观点看,动和静是一个0.618

黄金分割用法和实战 (1)汇总

股市活雷锋经验分享制作 https://www.360docs.net/doc/129822714.html,/cctv1717

黄金分割由来 ?黄金分割点约等于0.618:1 ?是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。 ?利用线段上的两黄金分割点,可作出正五角星,正五边形。 ? 2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比 2/3,3/5,4/8,8/13,13/21,...近似值的。 ?黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。 ?其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 ?因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"

最优化方法(黄金分割与进退法)实验报告

一维搜索方法的MATLAB 实现 姓名: 班级:信息与计算科学 学号: 实验时间: 2014/6/21 一、实验目的: 通过上机利用Matlab 数学软件进行一维搜索,并学会对具体问题进行分析。并且熟悉Matlab 软件的实用方法,并且做到学习与使用并存,增加学习的实际动手性,不再让学习局限于书本和纸上,而是利用计算机学习来增加我们的学习兴趣。 二、实验背景: 黄金分割法 它是一种基于区间收缩的极小点搜索算法,当用进退法确定搜索区间后,我们只知道极小点包含于搜索区间内,但是具体哪个点,无法得知。 1、算法原理 黄金分割法的思想很直接,既然极小点包含于搜索区间内,那么可以不断 的缩小搜索区间,就可以使搜索区间的端点逼近到极小点。 2、算法步骤 用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下: (1)选定初始区间11[,]a b 及精度0ε>,计算试探点: 11110.382*()a b a λ=+- 11110.618*()a b a μ=+-。 (2)若k k b a ε-<,则停止计算。否则当()()k k f f λμ>时转步骤(3)。 当 ()()k k f f λμ≤转步骤(4)。 (3) 11111110.382*()k k k k k k k k k k a b b a b a λλμμ+++++++=??=?? =??=+-?转步骤(5)

(4) 转步骤(5) (5)令1k k =+,转步骤(2)。 算法的MATLAB 实现 function xmin=golden(f,a,b,e) k=0; x1=a+0.382*(b-a); x2=a+0.618*(b-a); while b-a>e f1=subs(f,x1); f2=subs(f,x2); if f1>f2 a=x1; x1=x2; f1=f2; x2=a+0.618*(b-a); else b=x2; x2=x1; f2=f1; x1=a+0.382*(b-a); end k=k+1; end xmin=(a+b)/2; fmin=subs(f,xmin)

湖南省蓝山二中高二数学《第一讲 优选法 三、黄金分割法0.618法》教案 新人教A版

湖南省蓝山二中高二数学《第一讲 优选法 三、黄金分割法0.618 法》教案 新人教A 版 一、黄金分割常数 对于一般的单峰函数,如何安排试点才能迅速找到最佳点? 假设因素区间为[0, 1],取两个试点102、101 ,那么对峰值在)10 1,0(中的单峰函数,两次试验便去掉了长度为 54的区间(图1);但对于峰值在)1,102(的函数,只能去掉长度 为 10 1的区间(图2),试验效率就不理想了. 怎样选取各个试点,可以最快地达到或接近最佳点? 在安排试点时,最好使两个试点关于[a ,b ]的中心 2 b a + 对称. 为了使每次去掉的区间有一定的规律性,我们这样来考虑:每次舍去的区间占舍去前的区间的比例数相同. 黄金分割常数:2 51+-,用ω表示. 试验方法中,利用黄金分割常数ω确定试点的方法叫做黄金分割法.由于 21 5-是无理数,具体应用时,我们往往取其近似值0.618.相应地,也把黄金分割法叫做0.618

法. 二、黄金分割法——0.618法 例.炼钢时通过加入含有特定化学元素的材料,使炼出的钢满足一定的指标要求.假设为了炼出某种特定用途的钢,每吨需要加入某元素的量在1000g 到2000g 之间,问如何通过试验的方法找到它的最优加入量? 人 我们用存优范围与原始范围的比值来衡量一种试验方法的效率,这个比值 叫做精度,即n 次试验后的精度为 原始的因素范围 次试验后的存优范围n n =δ 用0.618法确定试点时,从第2次试验开始,每一次试验都把存优范围缩小为原来的0.618.因此, n 次试验后的精度为 1618.0-=n n δ 一般地,给定精度δ,为了达到这个精度,所要做的试验次数n 满足,1618.01<≤-δn

黄金分割论文

黄金分割 希腊的自然科学研究影响西方文化和文明的发展,他们重视分析、分解、假设、推理、推导、实验、验证等思维方式。这与东方重视整体、模糊处理、直觉综合、和谐大同、“仁者爱人”等思维方式和思想有明显的差别。胡适在“中国的文艺复兴”一文中说“当孟子在对人性的内在美德进行理论探讨时,欧几里德正在完善几何学,正在奠定欧洲的自然科学的基础。”这种说法不全面,东方的中华文明有过比西方更辉煌的历史,但在五百多年来,西方经历了继承希腊的文艺复兴和工业革命,使科学和技术快速发展,而中国因封建统治和闭关锁国等原因而衰落。现在应该撷取东西方文明的长处,把它们整合起来,创建中华夏兴。“科学中的美和美的科学”,早期属于自然哲学,自古希腊人开始研究,至今约有2500年。古希腊人喜欢抽象研究。抽象研究又分为逻辑推理研究和形象推理研究,后者所用的工具有直尺和圆规。代数和平面几何为两者的典型代表。 曾提出这样一个问题:“一根棍从哪里分割最为美妙?”答案是:“前半段与后半段之比应等于后半段与全长之比”。设全长为1,后半段为x,此式即成为(1-x):x=x:1,也就是X2+X-1=0。其解为:。棍内分割只能取正值,此值就是著名的黄金分割比值G,G=0.618033988≈0.618。而且G(1+G)=1,即G和(1+G)互为倒数。 偏有一些古希腊人想用形象方法解决黄金分割问题,并获得漂亮

的结果。欧几里德(约公元前330-257年)总结了前人的经验和研究成果,编著了《几何原理》十三卷。这是世界上最早用公理方法叙述的数学著作。其中所载的黄金分割几何问题已引起广泛的兴趣,在科学、艺术、建筑、技术各领域有着广泛的应用,哲学家和美学家也曾反复讨论,不断有文章发表。 自然界的形成、运行、演化、生长、繁衍、消亡等都是有规律的,有些物体可以直接感到自然美,但更多的物体令人迷惑不解。我们深信“天道崇美”,但需要人去探究,揭露其规律,使人感受到深层次的自然美和科学美。这就是“因人而彰”。黄金分割律,就是想梳理和探讨这种自然美和科学美。人有爱美的天性,而且人本身也是很精美的。“天道崇美,人性好美”有普遍性,无论是天然物品还是人工制品,形态的丑陋必然表明其功能的缺陷,而某些功能的完美,往往伴随着美的外形. 黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多动物、昆虫的身体结构中,特别是人体中更是有着丰富的黄金比的关系。当人们认识了这一自然法则之后,就被广泛地应用于人类的生活之中。此后,在我们的生活环境中,就随处可见了,如建处门窗、橱柜、书桌;我们常接触的书本、报纸、杂志;现代的电影银幕。电视屏幕,以及许多家用器物都是近似

黄金分割法

机电产品优化设计课程设计 姓名: 学号:2908003032 学院:机械电子工程学院

一维搜索黄金分割法 一、优化方法阐述 1.原理阐述 1.1基本原理 设一元函数如图1所示,起始搜索区间为[a,b],为所要寻求的函数的极小点。 在搜索区间[a,b]内任取两点与,且,计算函数与。当将与进行比较时,可能的情况有下列三种: (1):如图1(a)、(b)所示,这种情况下,可丢掉 (,b]部分,而最小点必在区间[a,]内。 (2):如图1(c)、(d)所示,这种情况下,可丢掉[a,)部分,而最小点必在区间[,b]内。 (3):如图1(e)所示,这种情况下,不论丢掉[a, )还是丢掉(,b],最小点必在留下的部分内。 图1(a)

图1(b) 图1(c) 图1(d) 图1(e)

因此,只要在搜索区间内任取两点,计算它们的函数值并加以比较之后,总可以把搜索的区间缩小。 对于第(1)、(2)两种情况,经过缩小的区间内都保存了一个点的函数值,即或,只要再取一个点,计算函数值 并加以比较,就可以再次缩短区间进行序列消去。但对于第(3)种情况,区间中没有已知点的函数值,若再次缩短区间必须计算两个点的函数值。为了简化迭代程序,可以把第(3)种情况合并到前面(1)、(2)两种情况之一中去,例如可以把上述三种情况合并为下述两种情况: (1)若,取区间[a,]。 (2)若,取区间[,b]。 这样做虽然对于第(3)种情况所取的区间扩大了,但在进一步搜索时每次只要计算一个点,和第(1)、(2)种情况一致,简化了迭代程序。 1.2 “0.618”的由来 为了简化迭代计算的过程,希望在每一次缩短搜索区间迭代过程中两计算点、在区间中的位置相对于边界来说应是对称的,而且还要求丢去一段后保留点在新区间中的位置与丢去点在原区间中的位置相当。如图2所示,设区间[a,b]全长为L,在其内取两个对称计算点和,并令l/L=称为公比,无论如图2(b)所示丢去(,b],还是如图2(c)所示丢去[a,),保留点在新区间中相应线段比值仍为, (1) 由此得 解此方程的两个根,取其正根为 0.6180339887 这种分割称为黄金分割,其比例系数为,只要第一个试点取在原始区间长的0.618处,第二个试点在它的对称位置,就能保证无论经过多少次缩小区间,保留的点始终处在新区间的0.618处。再要进一步缩短区

黄金分割点---0.618无处不在

黄金分割点---0.618无处不在 黄金分割概述 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√5-1)/2,取其前三位数字的近似值是 0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这个分割点就叫做黄金分割点(golden section ratio通常用φ表示)这是一个十分有趣的数字,我们以0.618来近似表示,通过简单的计算就可以发现:(1-0.618)/0.618=0.6一条线段上有两个黄金分割点。 人与黄金分割 在人体中包含着多种“黄金分割” 的比例因素,至少可以找出18个“黄金点”(如:脐为头顶至脚底之分割点、喉结为头顶至脐分割点、眉间点为发缘点至颏下的分割点等)几乎身体相邻的每一部分都成黄金比,随着人类对自然界(动物、植物、宇宙、人类自身)的认识的日益深入,人类关于“黄金分割比” 这一神奇比例的了解也越来越丰富 人体最适应的温度乃是用黄金分割率切割自身的温度,因为人正常体温是37.5度,它和0.618的乘积为23.175℃,

在这一环境温度中,机体的新陈代谢、生理节奏和生理功能均处于最佳状态。 人们发现自然界中这一神奇比例几乎无所不在。从低等的动植物到高等的人类,从数学到天文现象中,几乎都暗含着这种比例结构。 养生学中的黄金率 几千年前古希腊学者提出的“黄金分割率”(0.618),在保健养生方面也有许多适用价值,甚至能帮助我们破译养生学中许多难解之谜。1、舒适温度人体在环境温度为22℃~24℃时,感觉最舒适。因为人的正常体温37℃与0.618的乘积为22.8℃,在这一环境温度中,机体的新陈代谢和生理节奏均处于最佳状态。 2、理想睡眠 近来科学家研究证实,每天7.5小时是最理想的睡眠时间,长期这样睡眠的人大多既健康又长寿。一天中白昼和夜晚各为12小时,人最理想的睡眠刚好是夜晚12小时的0.618(7.416),即近7.5小时。 3、愉快起床 如果估计早起穿衣服的时间要两分钟,那么躺在床上睁开眼睛的“预备时间”应为三分钟;若刷牙三分钟,洗脸应两分钟。整个过程利用黄金分割率,前段事情与

黄金分割论文

数学应用案例讲座——黄金分割 黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 黄金比例,又称黄金比,是一种数学上的比例关系。黄金分割具严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取0.618或1.618 ,就像圆周率在应用时取3.14一样。黄金分割早存在于大自然中,呈现于不少动物和植物外观。现今很多工业产品、电子产品、建筑物或艺术品均普遍应用黄金分割,呈现其功能性与美观性。 常用希腊字母表示黄金比值,用代数式表达就是: 黄金比例是属于数学领域的一个专有名词,但是它最后涵盖的内容不只是有关数学领域的研究,以目前的文献探讨我们可以说黃金比例的发现和如何演进至今仍然一个谜。但有研究指出公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割的一些规则,也发现了无理数。他侧重于从数学关系去探讨美的规律,并认为美就是和谐与比例,按照这种比例关系就可以组成美的图案,这其实是一个数字的比例关系,即将一条线分成两部分,较长的一段与较短的一段之此等于全长与较长的一段之比,它们的比例大约是1.618:1。按此种比例关系组成的任何事物都表现出其内部关系的和谐与均衡。 公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称神圣比例为黄金分割。到19世纪黄金分割这一名称才逐渐通行,而证据在于德国数学家欧姆所写的“基本纯数学”的第二版一书中在注释中写到有关黃金比例的解释,他是这样写的“人们习惯把按此方式将任一直线分割成两部分的方法,称为黄金分割”而在1875出版的大英百科全书的第九版中,苏利有提到这一段话“由费区那……提出的有趣、实验性浓厚的想法宣称,‘黄金分割’在视觉比例上具有所谓的优越性。”可见黄金分割在当时已经流行了。二十世纪时美国数学家巴尔也给他一个叫phi的名子。黄金分割有许多有趣的性质,人类对它的实际应用也很广泛,造就了他今天的名气。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 黄金分割应用领域很广泛,包括艺术创作、人体美学、植物、作息制度、医学、股市等

黄金分割法,进退法,原理及流程图

1黄金分割法的优化问题 (1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

黄金分割

黄金分割(黄金比例) 黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。 据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数学的方式表达出来。[2]外文名golden section提出者毕达哥拉斯提出时间公元前5世纪 应用学科数学建筑绘图记载著作《几何原本》 数学定义 把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为黄金分割。其比值是(√5-1):2,近似值为0.618,通常用希腊字母Ф表示这个值。[1] 附:黄金分割数前面的32位为:0.6180339887 4989484820 458683436565

特殊的数列 设一个数列,它的最前面两个数是1、1,后面的每个数都是它前面的两个数之和。例如:1,1,2,3,5,8,13,21,34,55,89,144·····这个数列为“斐波那契数列”,这些数被称为“斐波那契数”。 经计算发现相邻两个斐波那契数的比值是随序号的增加而逐渐逼近黄金分割比。由于斐波那契数都是整数,两个整数相除之商是有理数,而黄金分割是无理数,所以只是不断逼近黄金分割。[5] 黄金三角形 所谓黄金三角形是一个等腰三角形,其底与腰的长度比为黄金比值,正是因为其腰与边的比为(√5-1)/2而被称为黄金三角形。黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。由五角形的顶角是36度可得出黄金分割的数值为2sin18度(即2*sin(π/10))。 将一个正五边形的所有对角线连接起来,在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的,所产生的五角星里面的所有三角形都是黄金分割三角形。[6] 发展简史 黄金分割最早记录在公元前6世纪,关于黄金分割比例的起源大多认为

关于黄金分割数学论文

关于黄金分割数学论文 学生姓名:柳静漪班级:初一四班

一.简述黄金分割 1.黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 2.关于黄金分割比例的起源大多认为来自毕达哥拉斯,据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数理的方式表达出来,被应用在很多领域,后来很多人专门研究过,开普勒称其为“神圣分割”,也有人称其为“金法”。在金字塔建成1000年后才出现毕达哥拉斯定律,可见这很早就存在,只是不知道这个谜底。 3.把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是(√5-1):2,取其小数点后三位的近似值是0.618。由于按此比例设计的造型十分美丽柔和,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:1÷0.618≈1.618 (1-0.618)÷0.618≈0.618 或根号5减1的差除以二。如图所示,黄金分割图形 二.黄金分割与生活 1.黄金分割与人体 人体肚脐的位置到脚底的长度与人体身高的比值符合黄金比例 例如一个人身高为136cm,从肚脐到脚底有84cm,肚脐以上52cm,则52:84=0.619……,同时84:136=0.618……,符合黄金分割比例。 2.黄金分割与建筑物 从4600年前修建的埃及金字塔,到2400年前修建的巴特农神殿,到埃菲尔铁塔、东方明珠、联合国大厦,在许多著名的建筑中,人们发现了一个惊人的巧合,那就是,它们都运用了黄金分割。 3.黄金分割与乐器 斯特拉迪瓦里在制造他那有名的小提琴时,运用了黄金分割来确定f形洞的确切位置;二胡要获得最佳音色,其千斤须放在琴弦长度的0.618处。 三.黄金分割与数学 1.黄金分割与图形 ①黄金分割三角形 正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。黄金分割三角形有一个特殊性,所有的三角形都可以用四个与其本身全等的三角形来生成与其本身相似的三角形,但黄金分割三角形是唯一一种可以用5个而不是4个与

黄金分割论文

黄金分割及应用 李新英摘要:黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多动物、昆虫的身体结构中,特别是人体中更是有着丰富的黄金比的关系。当人们认识了这一自然法则之后,就被广泛地应用于人类的生活之中。此后,在我们的生活环境中,就随处可见了,如建处门窗、橱柜、书桌;我们常接触的书本、报纸、杂志;现代的电影银幕。电视屏幕,以及许多家用器物都是近似这个数比关系构成的。它特别表现艺术中,在美术史上曾经把它作为经典法则来应用,许多艺术家自觉地被黄金分割的魅力所诱惑,从而使数学与艺术创作紧密的结合起来,创造了不少不朽的名著。 关键词:黄金分割;艺术创作;斐波那契数列 1.引言 大千世界的万事万物都有其独特的结构形式,因而关于形体的结构比例也是多种多样的。人们最常见的一种和谐比例关系,就是毕达哥拉斯学派提出的“黄金分割”,又称“黄金段”或“黄金律”。黄金分割指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值是5^/2-1/2或二分之根号五减一,取其前三位数字的近似值是0.618。0.618被公认为最具审美意义的比例数字。上述比例是最能引起人的美感的比例,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 [1] (1-0.618)/0.618=0.618

这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。其无穷魅力再许多伟大的作品中都有体现。 2.神奇美妙的黄金分割 2.1黄金分割的起源与数学证明 公元前4世纪,古希腊著名的数学家、天文学家欧多克斯,他曾研究过大量的比例问题,提出“中外比”。虽然最先系统研究黄金分割的是欧多克斯,但是,现在人一般认为,黄金分割是由公元前6世纪的毕达哥拉斯发现的。用C点分割木棒AB,整段AB 与长段CB之比,等于长段CB与短段AC之比。 毕达哥拉斯还发现,把较短的一段放在较长的一段上面,也产生同样的比例,这一规律可以重复下去。 经计算得出结沦:长段a(CB)与短段b(AB)之比为1:0.618,其比值为0.618。可用下面的等式表达 a:b= ( a +b) :a 即长段长度的平方又恰等于整个木棒与短段长度的乘积,即 2 a= (a+b) b 在《几何原本》一书中,欧几里得将黄金分割做了系统的论述,这一神奇的比例关系,后来被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”,简称“黄金律”、“黄金比”。19世纪威尼斯数学家帕乔里将黄金分割律誉为“神赐的比例”。文艺复兴时期,许多艺术大师把黄金分割与人们的审美联系在一起。黄金分割更被广泛的应用于艺术创作之中。 黄金分割是古希腊人的重大发现,表现为数学命题:已知一线段,试把它分成两部分,使长的一段为短的一段和原线段的比例中项。 例:设原线段常为a,分成长为一段长为x,那么短的一段长为a-x。如图

精品毕业论文数学中的黄金分割美

目录 中文摘要 (Ⅰ) 英文摘要 (Ⅱ) 前言 (1) 一、黄金分割理论发展概况 (2) (一)黄金分割概述 (2) (二)黄金分割理论的产生和发展 (3) 二、现实生活中的黄金分割 (4) (一)人体中的黄金分割 (4) (二)自然界中的黄金分割 (5) (三)艺术作品中的黄金分割 (6) (四)著名建筑中的黄金分割 (7) (五)自然现象中的黄金分割 (8) 三、黄金分割与证券投资 (9) (一)家庭理财中的黄金分割法 (9) (二)证券价格预测中的黄金分 (9) (三)波浪理论 (10) 结束语 (12)

参考文献 (13) 致谢 (15)

数学中的黄金分割美 摘要 黄金分割是世界上最优美的比例之一,是将一条线段分成不相等的两段,使较小线段与较大线段的比等于较大线段与整个线段的比。黄金分割作为自然界普遍存在的客观规律,是自然界现象之间必然的、实质性的、不断重复着的关系,体现了客观世界统一性与多样性的辩证关系,它在科学研究中被广泛运用。斐波纳契数列又称黄金分割数列,是一个蕴含黄金分割关系的神奇数列。黄金分割广泛存在于我们的生活中。在股市上,黄金分割率为艾略特所创的波浪理论所套用,被投资人士广泛采用。波浪理论的数学基础,就是在13世纪发现的斐波那契数列。本文通过对黄金分割在不同领域的运用和不同地方的体现进行分析,去揭示那些神秘现象,体现了人与社会、人与自然的和谐。 关键词:黄金分割;斐波那契数列;波浪理论

The beauty of Golden section in mathematics Abstract Golden section is one of the world's most beautiful proportions. It is a ratio that the smaller line segment divided by the longer one equals to the longer one divided by the whole line segment, when divide a line segment into two. Golden section, as the common objective law of nature, is a kind of relationship that is inevitable substantive and repeated between natural phenomenas. It reflects the dialectical relationship between unity and diversity of the objective world and is widely used in scientific research. Fibonacci Sequence, also known as golden sequence, is a magic sequence which contains golden section relation. Golden section widely exists in our lives. In the stock market, golden section is used by Eliot to create wave theory, and is widely used by investors. The mathematical basis of the wave theory is Fibonacci sequence, which is fond in the 13th century. This article reveals the mysterious phenomenons through the analysis of the use of golden section in many different areas, reflects the harmony between human and society and between human and nature. Keywords:Golden Section;Fibonacci Sequence;wave principle

黄金分割法,进退法,原理及流程图

1黄金分割法的优化问题(1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(法)。该方法用不变的区间缩短率代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。 黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而着称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果

f(a1)>f(a2),令a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

生活中的黄金分割结题报告论文

生活中的黄金分割结题 报告论文 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

高二年研究性学习数学课题结题论文 一、标题“生活中的黄金分割”结题报告论文 二、署名杨晶 三、内容提要和关键词 [摘要]黄金分割是一种数学上的比例关系。黄金分割具有严格的比例性,艺术性,和谐性,蕴藏着丰富的美学价值。应用时一般取,就像圆周率在应用时取一样。黄金分割在生活的体现很多,在摄影、医学、生物界、建筑甚至人体,处处都有黄金分割。 [关键词]黄金分割和谐美应用 四、前言: 在我们的生活中处处有数学,而历史悠久的可说是黄金比例了。它可追溯到古代雅典的巴特农神庙,它之所以显得那么和谐,是因为这个建筑符合黄金比例。在我们的生活中,摄影、医学、生物界、建筑甚至人体,处处都有黄金分割。普通书的长宽比是黄金分割;有些植物的花瓣及主干上枝条的生长,也隐藏着黄金分割;一些名画、雕塑、摄影作品的主题,大多在画面的…处。艺术家们认为弦乐器的琴马放在琴弦的…处,能使琴声更加柔和甜美。由此可见黄金比例的历史和作用。我们以“生活中的黄金分割”为课题展开研究,进行近一步的了解,使学生了解生活中有数学,从而热爱数学,喜欢数学。 五、主要研究内容、方法: 1、内容:生活中的黄金分割 2、方法:1)去图书关查找资料,翻阅图书或相关的书籍

2)上网查找相关的资料 3)询问老师;小组成员之间相互探讨 3、研究涉及的知识基础、所需资源: 数学的黄金比例,斐波那契数列知识,杂志,网上所涉及的黄金比例的内容。 4、研究思路、活动步骤及进度安排: 1.将学生按班级分组,并分配各组成员的工作及调查方向。(第1周) 2.到图书馆查找有关黄金比例的书籍,并摘抄有关内容。(第2-3周) 3.到网上查找相关黄金比例内容。(第2——3周) 4.整理资料,小组组员讨论,发表观点,互相展示研究成果。(第4周) 5、研究方法 成员分工以网络及图书馆书籍查找有关资料,并对其进行汇总、筛选、加工,成员根据其结果讨论分析,并展示研究成果。 六、研究结果 1、艺术中的黄金数 “",这个比值因具有美学价值而被古希腊美学家运用到造型艺术中,因为凡符合黄金分割律的形体总是最美的形体。在美术史上曾经把它作为经典法则来应用。有许多美术家运用它创造了不少不朽的着名。例如达·芬奇的《蒙娜丽莎》、拉斐尔笔下温和俊秀的圣母像,都有意无意地用上了这个比值。

黄金分割法-进退法-原理及流程图

黄金分割法-进退法-原理及流程图

1黄金分割法的优化问题 (1)黄金分割法基本思路: 黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。因此,这种方法的适应面非常广。黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。 (2)黄金分割法的基本原理 一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。

黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。如果f(a1)>f(a2),令 a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)

相关文档
最新文档